首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 346 毫秒
1.
The knowledge of the climatic behavior especially that one of semi-arid regions is required to optimize the management of water resources. Here climate variability is directly related to water resources that are of a high socio-economic and environmental significance. This work deals mainly with a statistical analysis of the precipitation regime to assess its spatial distribution and temporal variation in north-western Algeria. For this, a time series and a principal component analysis are performed on rainfall series representing annual precipitations of twenty-one meteorological stations for the period 1914 to 2004, the most complete and longest of West Algeria, in order to detect patterns and trends in the region. A spectral analysis of the time series revealed the existence of a period of roughly 30 years for all stations. Furthermore, the trend of a wide part of the obtained spectra suggests the existence of another period longer than the samples size.  相似文献   

2.
For the sustainable utilization of rivers in the mid and downstream regions, it is essential that land surface hydrological processes are quantified in high cold mountains regions, as it is in these regions where most of the larger rivers in China acquire their headstreams. Glaciers are one of the most important water resources of north-west China. However, they are seldom explicitly considered within hydrological models, and climate-change effects on glaciers, permafrost and snow cover will have increasingly important consequences for runoff. In this study, an energy-balance ice-melt model was integrated within the Variable Infiltration Capacity (VIC) macroscale hydrological model. The extended VIC model was applied to simulate the hydrological processes in the Aksu River basin, a large mountainous and glaciered catchment in north-west China. The runoff components and their response to climate change were analyzed based on the simulated and observed data. The model showed an acceptable performance, and achieved an efficiency coefficient R 2 ≈ 0.8 for the complete simulation period. The results indicate that a large proportion of the catchment runoff is derived from ice meltwater and snowmelt water. In addition, over the last 38 years, rising temperature caused an extension in the snow/ice melting period and a reduction in the seasonality signal of runoff. Due to teh increased precipitation runoff, the Aksu catchment annual runoff had a positive trend, increasing by about 40.00 × 106 m3 per year, or 25.7 %.  相似文献   

3.
Remote sensing (RS) and geographic information systems (GIS) are very useful for environmental-related studies, particularly in the field of surface water studies such as monitoring of lakes. The Dead Sea is exposed to very high evaporating process with considerable scarcity of water sources, thus leading to a remarkable shrinkage in its water surface area. The lake suffers from dry out due to the negative balance of water cycle during the previous four decades. This paper discusses the application of RS, GIS, and Global Positioning System to estimate the lowering and the shrinkage of Dead Sea water surface over the period 1810–2005. A set of multi-temporal remote sensing images were collected and processed to show the lakes aerial extend shrinkage from 1973 up to 2004. Remote sensing data were used to extract spatial information and to compute the surface areas for Dead Sea for various years. The current study aims at estimating the fluctuation of Dead Sea level over the study period with special emphasis on the environmental impact assessment that includes the degradation level of the Dead Sea. The results indicated that there is a decrease of 20 m in the level of the Dead Sea that has occurred during the study period. Further, the results showed that the water surface area of the Dead Sea has shrunk from 934.26 km2 in 1973 to 640.62 km2 in 2004.  相似文献   

4.
This study used 46 years of recent data, including glacial area, temperature, precipitation, and runoff data, to examine the glacier melting and its possible socioeconomic effects in the Manas River basin in western China. The average yearly change in the glaciated area in the Manas River basin for the entire study period was 0.41 %, and the glacier mass balance mainly keeps negative in the last 46 years. The negative glacial mass balance observed between 1986 and 2006 was 2.8 times greater than that for the period 1960–1985. Additionally, the amount of meltwater runoff was 78 % greater in 1986–2006 than in 1960–1985, with a mean depth of 478 mm year?1.Glacier melting and runoff in the Manas River basin during the late twentieth century were higher than at present. Annual meltwater volumes can reach 1 × 108 m3, providing beneficial water resources to downstream areas. However, as the climate becomes warmer, the risk of meltwater flooding will also increase. Our calculations indicate that after the 2030s, the level of flooding risk will increase substantially.  相似文献   

5.
以东北半干旱地区典型流域-洮儿河流域为研究对象,应用SWAT模型对流域水文过程进行了模拟研究;选择流域上游子流域和中下游子流域分别进行参数敏感性分析,识别出影响模拟结果的敏感参数,研究发现部分参数敏感性存在空间变异性,分析主要原因在于气候和下垫面的空间异质性导致了流域上下游产流模式存在差异。采用1988-1997年水文气象数据进行模型率定和验证,结果表明:干流水文站月流量过程率定期Nash-Sutcliffe 效率系数平均值为0.78,验证期为0.72,相关系数都达到0.86以上,水量误差大多在20%以内,对日过程的模拟也有较高的精度;枯水年模拟结果较差,主要是因为流域降水站数量不够,难以反映降水的时空分布。对于水文、气象等资料相对缺乏的东北半干旱地区,SWAT模型的模拟结果总体令人满意,可以应用于与流域径流相关的各种模拟分析,研究成果对进一步加强洮儿河流域水资源综合管理提供了依据和手段。  相似文献   

6.
Urbanisation and climate change can have adverse effects on the streamflow and water balance components in river basins. This study focuses on the understanding of different hydrologic responses to climate change between urban and rural basins. The comprehensive semi-distributed hydrologic model, SWAT (Soil and Water Assessment Tool), is used to evaluate how the streamflow and water balance components vary under future climate change on Bharalu (urban basin) and Basistha (rural basin) River basins near the Brahmaputra River in India based on precipitation, temperature and geospatial data. Based on data collected in 1990–2012, it is found that 98.78% of the water yield generated for the urban Bharalu River basin is by surface runoff, comparing to 75% of that for the rural Basistha basin. Comparison of various hydrologic processes (e.g. precipitation, discharge, water yield, surface runoff, actual evapotranspiration and potential evapotranspiration) based on predicted climate change scenarios is evaluated. The urban Bharalu basin shows a decrease in streamflow, water yield, surface runoff, actual evapotranspiration in contrast to the rural Basistha basin, for the 2050s and 2090s decades. The average annual discharge will increase a maximum 1.43 and 2.20 m3/s from the base period for representative concentration pathways (RCPs) such as 2.6 and 8.5 pathways in Basistha River and it will decrease a maximum 0.67 and 0.46 m3/s for Bharalu River, respectively. This paper also discusses the influence of sensitive parameters on hydrologic processes, future issues and challenges in the rural and urban basins.  相似文献   

7.
Agriculture sector by using 80% of freshwater is the greatest water consumer in Iran. Excessive use of agricultural fertilizers in last decade, caused accumulation of enormous amounts of salts and subsequence declined the physical properties of soil. In desert and dry regions such as Rafsanjan plain, use of the groundwater resources is more than the surface water resources. Therefore, information about the quality of these resources remains a necessary task for optimum management, protection of water resources, and stopping the future damages. In this study, the groundwater quantity and quality of Rafsanjan plain was investigated by MODFLOW and MT3DMS. The presented quantitative model for this aquifer was compared by observed data and calibrated. This model was used to predict a 10-year period. Results show that water elevation decreases approximately 15 m for 10 years to come in this plain. Qualitative model results show that most quality parameters will increase. Electrical conductivity will increase more than other parameters. As values of this parameter will reach 16,000 µs/l for next 5 years. Therefore, we suggest that exploitation of water from these resources should be reduced and discharge from some of agricultural wells stop; also we suggested that recharge to groundwater resources should be increased and agricultural activities should be limited or improved using of modern irrigation systems in this plain.  相似文献   

8.
雅鲁藏布江流域径流演变规律与归因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
气候变化驱动下的水循环与水资源演变规律研究是重要的科学问题, 也是国际社会普遍关注的全球性问题。以雅鲁藏布江流域为研究区, 利用线性倾向估计、多元线性回归等方法检验气象要素变化特征, 揭示下垫面演变规律;基于Budyko假设的弹性系数法, 揭示径流演变规律, 并进行归因分析。结果表明: 1961—2014年, 雅鲁藏布江流域气温呈升高趋势, 降水整体呈增加趋势, 气候向暖湿化方向发展;植被整体改善, 上游西北部和下游植被存在退化现象;年径流序列具有3~4 a、12 a、20 a和32 a左右的周期;降水变化、潜在蒸散发量变化、下垫面变化和冰川变化对径流量增加的贡献率分别为39.62%、-2.74%、32.32%和30.94%。相关结果对理解气候变化和下垫面变化下雅鲁藏布江径流演变规律, 具有重要的参考价值。  相似文献   

9.
The assessment of freshwater resources in a drainage basin is not only dependent on its hydrologic parameters but also on the socio-economic system driving development in the watershed area; the socio-economic aspect, that is often neglected in hydrologic studies, is one of the novelties of this study. The aim of this paper is twofold: (1) presenting an integrated working methodology and (2) studying a local case of a North African watershed where scarce field data are available. Using this integrated methodology, the effects of climate and land use change on the water resources and the economic development of the Tahadart drainage basin in Northern Morocco have been evaluated. Water salinization, tourism, urbanization, and water withdrawals are a threat to water resources that will increase with future climate change. The Tahadart Basin (Morocco 1,145 km2) is characterized by rain-fed agriculture and by the presence of two water retention basins. Assessment of the effects of climate and land use change on this drainage basin was based on current and future land cover maps obtained from spatial interactions models, climate data (current and future; scenario A1b for the period 2080–2100), and hydrological models for water budget calculations. Land use suitability maps were designed assuming a A1b Special Report on Emissions Scenarios socio-economic development scenario. The most important conclusions for the period 2080–2100 are the following: (1) Freshwater availability within the watershed will likely be affected by a strong increase in evaporation from open water surface bodies due to increased temperature. This increase in evaporation will limit the amount of freshwater that can be stored in the surface reservoirs. (2) Sea level rise will cause flooding and salinization of the coastal area. (3) The risk for drought in winter is likely to increase. The methodology used in this paper is integrated into a decision support tool that is used to quantify change in land use and water resources.  相似文献   

10.
The water availability relies primarily on precipitation whose spatial and temporal variability depends on meteorological and topographic attributes. Water becomes a precious natural resource, especially in semiarid areas. Generally, decisions on water resources are made on the whole watershed, but the variability of precipitation is related to topography. The work was aimed at quantifying the spatial variability of annual precipitation for a 40-year-long time series in the Macta basin (Algeria) by using a geostatistical approach and to detect the temporal stability of dry areas. To assess if annual precipitation variability could depend upon the elevation, the study area was divided into five geographical units (polygons) based on elevation and polygon kriging was applied. For each hydrologic year, the standardized relative difference of precipitation (SRDP) was evaluated and dry areas identified. The temporal stability of SRDP with elevation was assessed using the Spearman rank coefficient. Geostatistical approach showed different variability structures of annual precipitation over the considered period. Results highlighted differences in SRDP within the geographical units located at different elevation and the non-stability of dry periods with time within the same polygon. A remarkable dry tendency was assessed in the northern polygon, while the polygons at higher elevations were dominated by temporal instability. The spatio-temporal non-stability of dry areas might be attributed to the change in general atmospheric circulation in North Africa over the last decades and to the nonlinear interaction among precipitation and orography. The identification of dry areas can help decision-makers to plan management and conservation programs in Algeria.  相似文献   

11.
雅鲁藏布江流域气候和下垫面变化对径流的影响研究   总被引:3,自引:0,他引:3  
典型高原寒区雅鲁藏布江流域径流变化是反映该区域气候和下垫面变化的重要指标。在全球升温背景下,由于观测资料稀缺,导致缺乏针对整个流域的气候和下垫面变化对径流影响的研究。因此,本研究基于1986—2010年的气象数据和奴下水文站月尺度、动态土地利用数据等,利用改进的水文模型并结合不同的模拟策略厘清了流域1991—2010年不同时段间气候和下垫面变化对径流的影响。结果表明:在1991—2010年期间,不同时段间气候和下垫面变化对径流变化的贡献率差异较大,气候变化对径流变化的贡献率高于下垫面变化,且使径流量增加。从空间上看,气候变化对流域产流的贡献率在上游和中游都较大,在下游东北部的贡献率较小,而在该区域下垫面变化的贡献率较大。雪冰融水径流呈增加的趋势,对年径流的平均贡献率在21.1%~48.6%范围内,多年平均贡献率为33.6%;雪冰融水径流一般从4月开始增大,8月达到最大,10月达到消融末期。本研究的开展和发现既是雅鲁藏布江流域水文、水资源基础性研究的需要,具有重要的理论研究意义,同时也可为该流域的水资源保护、规划与管理提供科学理论和决策依据,具有重要的现实意义。  相似文献   

12.
The Yuanshui River Basin is one of the most important river basins ensuring food production and livelihoods in the Hunan and Guizhou Provinces of China. Based on digital elevation model, land use, soil, and meteorological data, the soil and water assessment tool was used to analyze the response of water resources in the basin to climate change. Specifically, the monthly runoff from the Yuanshui River Basin was simulated. Runoff measurements from the 1961–1990 series were used to calibrate model parameters, and measurements from the 1991–2010 series were used for model validation. The Nash–Sutcliffe efficiency coefficient, correlation coefficient, and water balance error were used to evaluate the simulation results; the values obtained for these parameters were 0.925, 0.929, and 2.0%, respectively, indicating that the established model can be applied successfully to runoff simulations. To evaluate the effects of climate change and human activities on runoff, 24 different climate scenarios were modeled. By comparing the model simulation results with the baseline scenario, the effects of climate change were analyzed by year, during the dry season, and during extremely dry conditions. The results showed that runoff decreased with increasing air temperature and decreasing precipitation, and that the effects of rainfall on runoff were greater than those of air temperature. Under the same baseline conditions, the effects of climate change on runoff were most pronounced during extremely dry months.  相似文献   

13.
定量分析汾河径流锐减的形成原因是汾河流域水资源可持续利用与管理中迫切需要解决的问题。本项研究首先采用降水-径流双累积曲线对汾河流域产流条件演变过程进行了两个时期的划分;然后采用距平百分比法对汾河流域年降水系列进行了丰枯状态划分,并建立了汾河河津站年径流量与当年降水量、上一年降水量之间的多元动态回归模型;并运用该模型定量分析了降水丰枯变化和产流条件改变对汾河径流的影响程度。结果表明:在1956-1973年间的产流条件下,降水变化使得河津站年均径流量平均减少约22.71%;在1974-2008年间的产流条件下,降水变化使得河津站年均径流量在平、枯两种年份平均减少了约18.95%;在1956-1973年间的年降水为平水或枯水条件下,产流条件改变使得河津站年均径流量减少了约47.11%;在1974-2008年间的降水条件下,产流条件改变使得河津站年均径流量减少了约55.20%。  相似文献   

14.
Land cover and vegetation in Lake Baikal basin (LBB) are considered to be highly susceptible to climate change. However, there is less information on the change trends in both climate and land cover in LBB and thus less understanding of the watershed sensitivity and adaptability to climate change. Here we identified the spatial and temporal patterns of changes in climate (from 1979 to 2016), land cover, and vegetation (from 2000 to 2010) in the LBB. During the past 40 years, there was a little increase in precipitation while air temperature has increased by 1.4 °C. During the past 10 years, land cover has changed significantly. Herein grassland, water bodies, permanent snow, and ice decreased by 485.40 km2, 161.55 km2 and 2.83 km2, respectively. However, forest and wetland increased by 111.40 km2 and 202.90 km2, respectively. About 83.67 km2 area of water bodies has been converted into the wetland. Also, there was a significant change in Normalized Difference Vegetation Index (NDVI), the NDVI maximum value was 1 in 2000, decreased to 0.9 in 2010. Evidently, it was in the mountainous areas and in the river basin that the vegetation shifted. Our findings have implications for predicting the safety of water resources and water eco-environment in LBB under global change.  相似文献   

15.
The spatial distribution of vegetation pattern and vegetation cover fraction (VCF) was quantified with remote sensing data in the Hailiutu River basin, a semiarid area in North China. The moderate resolution imaging spectroradiometer normalized different vegetation index (NDVI) values for 4 years from 2008 to 2011 and field observation data were used to assess the impact of climate factors, landform and depth to water table on vegetation distribution at large scale. In the VCF map, 74 % of the study area is covered with low and low–medium density vegetation, 24 % of the catchment is occupied by medium–high and high-density vegetation, and 2 % of area is bare soil. The relationship between NDVI and climate factors indicated that NDVI is correlated with relative humidity and precipitation. In the river catchment, NDVI increases gradually from landform of sand dune, eolian sand soil to river valley; 92.4 % of low NDVI from 0.15 to 0.3 is mostly distributed in sand dunes and the vegetation type is shrubs. Crops, shrubs and some dry willows dominate in eolian sand soil and 82.5 % of the NDVI varies between 0.2 and 0.35. In the river valley, 70.4 % of NDVI ranges between 0.25 and 0.4, and grass, dry willow and some crops are the main plants. Shrubs development of Korshinsk peashrub and Salix psammophila are dependent on groundwater by analyzing NDVI response to groundwater depth. However, NDVI of Artemisia desertorum had little sensitivity to groundwater.  相似文献   

16.
Due to deficient water resources in the Loess Plateau, watershed management plays a very important role, not only for ecological and environmental protection but also for the social development of the region. To better understand the hydrological and water resource variations in the typical watershed of the Loess Plateau and the Qinghe River Basin, the influences of land cover and climate change were analysed, and a SWAT model was built to simulate the response of the hydrological situation to land cover changes that have occurred over the past 30 years. The results demonstrated that the main land cover change occurring in the Qinghe River Basin was the conversion of land cover from grassland to woodland and farmland from the late 1980s to 2010. Woodland and farmland took 87.36 and 10.55%, respectively, from the overall area transferred over 20 years and more than 18% of the total watershed area. Hydrological simulation results indicated that land cover played a predominant role in the hydrological variation of the Qinghe River Basin, although the effects of climate change should not be discounted. The significant changes in land cover could be superimposed by policy orientation and economic requirements. Although it is hard to evaluate the land cover changes and the corresponding hydrological responses in a simple language, related analyses have demonstrated an increasing trend of runoff in the dry season, while there is a somewhat decreasing trend during the flood season in the river basin. There results could be significant and provide a positive influence on both future flood control and the conservation of water and soil.  相似文献   

17.
This work describes the climate change impact study on rainfall patterns in Macta watershed, located in the northwest of Algeria. The monthly rainfall data collection, verification and validation have built a database with 42 stations, each with 42 years of observations from 1970 to 2011. The study of annual total rainfall has identified a downward trend and quantifies the deficits that are within the observation time series. The division of the annual rainfall series into four periods allowed to highlighting the increase in inter-year temporal variability with the coefficient of variation increases from 17 to 27%. The study shows an annual rainfall deficit increment from 13 to 25%. The standard deviation values decrease significantly for the last two periods showing a spatial variability. Multivariate statistical study by the hierarchical clustering method resulted in the formation of station groups indicating the unification of monthly rainfall patterns.  相似文献   

18.
This paper is an assessment of the suspended sediment yield in the Mellah Catchment of northern Algeria. We use discharge–sediment load relationships to explore the variability of water discharge and sediment load, and to investigate the impact of geomorphic factors disturbance on erosion and sedimentation. Suspended sediment load was analyzed in the Mellah Catchment (550 km²) which was controlled by a gauging station to measure discharge and sediment transport. The relations between daily mean sediment concentration and daily mean water discharge were analyzed to develop sediment rating curves. For storms with no water samples, a sediment rating curve was developed. The technique involves stratification of data into discharge-based classes, the mean of which are used to fit a rating curve according to single flow data and season to provide various rating relationships. The mean annual sediment yield during the 24 years of the study period was 562 T km?2 in the Mellah Catchment. This drainage basin had high rainfall and runoff, the erosion was high. The high sediment yield in the Mellah basin could be explained by a high percentage of sparse grassland and cultivation developed on shallow marly silty-clayey soils with steep slopes often exceeding 12%. Almost all suspended sediment loads are transported during storm events that mainly occur in the winter and spring heavy and medium downpours. The scarceness of these events leads to a very large interseasonal variability of the wadi sediment fluxes. The negative impacts of this enhanced sediment mobility are directly felt in the western part of the basin which shows many mass movements, bank and gully erosion because cultivated areas are often bared during autumnal brief flash floods and furrowed downslope during the winter season.  相似文献   

19.
This paper is proposed for the investigation of possible relationships between the large-scale atmospheric circulation phenomena such as the North Atlantic Oscillation (NAO), Southern Oscillation (SOI), Mediterranean Oscillation (MO), Western Mediterranean Oscillation (WeMO) and rainfall of Sebaou river watershed (Northern central Algeria), covering a period of 39 years at monthly scale. Several time and scale-based methods were used: correlation and spectral analysis (CSA), continuous wavelet transform (CWT), multiresolution wavelet analysis (MRWA), cross wavelet analysis (XWT), wavelet coherence transform (WCT) and cross multiresolution wavelet analysis (CMRWA). The rainfall analysis by CSA and CWT has been clearly demonstrating the dominance of 1 year and 1–3-year modes, which they explain 30 to 51% and 25 to 28% of the variance respectively. However, the indices have shown that inter-annual fluctuations up to long-term explain between 60 and 90%. CWT and MRWA indicated significant fluctuations materialising a dry period more marked between the 1980s and 1990s with strong trend towards drier conditions starting from the 1980s, explained by the decadal components D7 and the approximation A7. In addition to the annual component, the XWT spectrums reveal strong coefficients for the SOI between 1992–2005 and 1986–2000 for the modes of 5–10 years and higher than 10 years respectively and less intense for NAO. The WCT between NAO and rainfall indicated the most significant relationship for 1 year, 1–3 years and 3–5 years approximately from the early 1980s corresponding to the dry period. However, the SOI affects rainfall only locally and with significant values more or less localised in the time-frequency space between MO, WeMO and rainfall, but this influence could be significant for low-frequency events. CWMRA shows that the components of 5–10 years and higher than 10 years are the most effective to represent climate index-rainfall significant relationships, where change in Daubechies wavelet properties can improve the correlation across the scales. Furthermore, has indicated that the short-term processes dominate the relationship index-rainfall, which masks the long-term phenomena whose influence can sometimes be very distant. As such, the rainfall variability of the study area has shown fairly significant links, at least locally with large-scale atmospheric circulation phenomena.  相似文献   

20.
Groundwater is an important component of the global freshwater supply and is affected by climate. There is a strong need to understand and evaluate the impacts of climate change over the long term, in order to better plan and manage precious groundwater resources. Turkey, located in Mediterranean basin, is threatened by climate change. The purpose of this study was, through a quantitative overview, to determine the impacts of climate change on the groundwater recharge rates in Küçük Menderes River Basin in western Turkey. According to the data of Ödemi? and Selçuk meteorological stations located in the basin, there is a significantly decreasing trend in precipitation combined with increasing trends in temperature and evaporation observed in 1964–2011. The calculations of groundwater recharge with hydrologic budget method for the observation period showed an approximately 15% decline in groundwater recharge in the basin. Thus, the combined impacts of climate change and excessive groundwater pumping, due to increasing water demand, have caused a significant decline in groundwater levels. Consequently, the proper management of the groundwater resources threatened by climate change requires effective governance to both mitigate the adverse impacts of climate change and facilitate the adaptation of sustainable integrated water management policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号