首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Features of the physical oceanographic conditions of the Barents Sea   总被引:17,自引:2,他引:15  
  相似文献   

2.
To examine algae populations, three expeditions (in March 2001, April 2002 and February 2003) were conducted in the Guba Chupa (Chupa Estuary; north-western White Sea), and one cruise was carried out in the open part of the White Sea in April 2003 and in the northern part of the Barents Sea in July 2001. Sea ice algae and phytoplankton composition and abundance and the content of sediment traps under the land-fast ice in the White Sea and annual and multi-year pack ice in the Barents Sea were investigated. The community in land-fast sea ice was dominated by pennate diatoms and its composition was more closely related to that of the underlying sediments than was the community of the pack ice, which was dominated by flagellates, dinoflagellates and centric diatoms. Algae were far more abundant in land-fast ice: motile benthic and ice-benthic species found favourable conditions in the ice. The pack ice community was more closely related to that of the surrounding water. It originated from plankton incorporation during sea ice formation and during seawater flood events. An additional source for ice colonization may be multi-year ice. Algae may be released from the ice during brine drainage or sea ice melting. Many sea ice algae developed spores before the ice melt. These algae were observed in the above-bottom sediment traps all year around. Three possible fates of ice algae can be distinguished: 1) suspension in the water column, 2) sinking to the bottom and 3) ingestion by herbivores in the ice, at the ice-water interface or in the water column.  相似文献   

3.
利用美国冰雪中心发布的海冰密集度数据,对1979—2012年北极海冰范围进行年际和年代际变化分析。结果表明:(1)海冰在秋季融化速度最快,其次为夏季、冬季、春季。2000年后春季下降速率变缓,而其他季节融化速度加快;(2)由于多年冰的融化,太平洋扇区在夏秋季节融化速度要高于其他海区。而大西洋扇区在冬季和春季海冰的融化速度要快于夏秋季节,主要是因为大西洋海温升高;(3)东半球在夏秋季节海冰融化的范围要大于西半球,因此东北航道比西北航道提前开通应用。而整个北极区域近几年春季融化速度变缓,则主要是西半球的作用;(4)从空间分布年代际变化来看,1989—1998年最接近气候态,1979—1988年密集度偏大区域主要在巴伦支海和东西伯利亚海,2009—2012年海冰密集度较常年显著偏小,东半球密集度减小幅度比西半球更大,尤其是冬春季在巴伦支海,夏秋季在楚科奇海。春季时由于风的作用,白令海附近海冰密集度异常偏大;(5)北极区域海冰范围在冬春季比夏秋季突变明显,基本在2003年前后,海冰范围变化周期为6年。  相似文献   

4.
2014年夏季北极东北航道冰情分析   总被引:1,自引:0,他引:1       下载免费PDF全文
使用2003—2014年6—9月份的AMSR-E和AMSR-2海冰密集度数据计算了北极海冰范围, 并获得海冰空间分布图。通过分析得出, 2014年北极夏季海冰范围在数值上与2003—2013年的多年平均值很接近, 在空间分布上与多年中值范围相比主要表现为两个方面的不同:(1)2014年夏季拉普捷夫海及其以北海域海冰明显少于多年中值范围, 9月份冰区最北边界超过了85°N;(2)巴伦支海北部斯瓦尔巴群岛至法兰士约瑟夫地群岛区域海冰范围明显多于多年中值范围, 而且海冰范围在8月份不减反增, 冰区边界较7月份往南扩张了约0.8个纬度。2014年夏季在拉普捷夫海以南风为主, 而在巴伦支海以北风为主。南风将俄罗斯大陆上温暖的空气吹向高纬地区, 造成高纬地区温度偏高, 促进拉普捷夫海海冰融化, 并使海冰往北退缩。北风将北冰洋上的冷空气吹向低纬地区, 造成巴伦支海的气温偏低, 不利于海冰的融化, 同时北风使海冰往南漂移扩散, 造成巴伦支海北部海冰范围在2014年偏多。2014年北地群岛航线开通时间范围大约在8月上旬到10月上旬, 时长约两个月。新西伯利亚群岛及附近海域的开通时间稍早于北地群岛, 但关闭时间比北地群岛晚, 所以 2014年东北航道全线开通的时间主要受制于北地群岛附近海冰变化。  相似文献   

5.
In this paper the effect of a delayed onset of glaciation in the Barents Sea on glacial isostatic adjustment is investigated. The model calculations solve the sea-level equation governing the total mass redistributions associated with the last glaciation cycle on a spherically symmetric, linear, Maxwell viscoelastic earth for two different scenarios for the growth phase of the Barents Sea ice sheet. In the first ice model a linear growing history is used for the Barents Sea ice sheet, which closely relates its development to the build-up of other major Late Pleistocene ice sheets. In the second ice model the accumulation of the Barents Sea ice sheet is restricted to the last 6 ka prior to the last glacial maximum.
The calculations predict relative sea levels, present-day radial velocities, and gravity anomalies for the area formerly covered by the Weichselian ice sheet. The results show that observed relative sea levels in the Barents Sea are appropriate for distinguishing between the different glaciation histories. In particular, present-day observables such as the free-air gravity anomaly over the Barents Sea, and the present-day radial velocities are sensitive to changes in the glaciation history on this scale.
A palaeobathymetry derived from relative sea-level predictions before the last glacial maximum based on the second ice model essentially agrees with a palaeobathymetry derived by Lambeck (1995). The additional emerged areas provide centres for the build-up of an ice sheet and thus support the theory of Hald, Danielsen & Lorentzen (1990) and Mangerud et al. (1992) that the Barents Sea was an essentially marine environment shortly before the last glacial maximum.  相似文献   

6.
From 1993 to 1996, three oceanographic moorings were deployed in the north-western Barents Sea, each with a current meter and an upward-looking sonar for measuring ice drafts. These yielded three years of currents and two years of ice draft measurements. An interannual variability of almost I m was measured in the average ice draft. Causes for this variability are explored, particularly its possible connection to changes in atmospheric circulation patterns. We found that the flow of Northern Barents Atlantic-derived Water and the transport of ice from the Central Arctic into the Barents Sea appears to be controlled by winds between Nordaustlandet and Franz Josef Land, which in turn may be influenced by larger-scale variations such as the Arctic Oscillation/North Atlantic Oscillation.  相似文献   

7.
The mixing processes and the water formations (transformations) in the Arctic Ocean are reviewed and their influence on the stratification discussed. The relations between the stratification and the nutrient distribution are examined. The interactions between drifting sea ice and advected warmer and nutrient-rich waters favour an early biological activity. By contrast, in the central Arctic Ocean and over comparably deep shelf areas such as the northern Barents Sea, the possibilities for large productivity are more limited because of late melting, less nutrient supply, and in the central Arctic, less available light. The sedimentation of organic matter on the shelves and the remineralisation into cold, dense waters formed by brine rejection and draining off the shelves lead to a loss of nutrients to the deep waters, which must be compensated for by advection of nutrient rich waters to the Arctic Ocean.
Possible effects of a reduction of the river run-off on the stratification and the nutrient distribution are discussed.  相似文献   

8.
Temperature conditions in the Barents Sea are determined by the quality and quantity of the inflowing Atlantic water from the west and by processes taking part in the Barents Sea itself, in particular as a consequence of winter cooling and ice formation. The field of inflow to the Barents Sea during the period 1977-1987 has been studied. The surface winter temperatures within the Barents Sea vary in parallel with variations in the deeper layers of the inflowing water masses, whereas the surface temperatures in summer have a different variation pattern which is most likely dependent on the summer heating process.  相似文献   

9.
This study describes shoreline migration paths for late Quaternary sediments on the inner Barents Sea shelf between Kola and the Pechora Sea. The depositional geometries provide an example of stratigraphical architecture in a glacially influenced basin prone to isostatic movements as well as rapid and high-amplitude changes in eustatic sea level. The depositional geometries reflect asymmetrical relative sea level changes characterised by marine inundation upon deglaciation and prolonged forced regressions. Thus, all deposition occurs during the falling stage and lowstand systems tracts. The transgressive and highstand systems tracts are lacking and the maximum landward position of the shoreline is coinciding with the basal surface of forced regression. Shoreline migration is dominated by downward and seaward trajectories, but aggradation occurs on the falling limb of the relative sea level curve due to superimposed eustatic cycles of lower hierarchical order. Fluvial aggradation behind the shoreline takes place during the lowstand systems tract, but is also linked to high sediment supply and may also respond to superimposed lower order sea level fluctuations. Lateral variations in isostatic load due to asynchronous ice advances lead to regional variations in shoreline trajectories. Significant differences in sea level history exist across former ice margins leading to time-transgressive and laterally discontinuous stratigraphical surfaces. Sequence boundaries are not only diachronous along the depositional profile, but also laterally, and basal surfaces of forced regression are strongly diachronous across former ice margins. Absolute age control allows for estimates of the time differences along significant stratigraphical surfaces.  相似文献   

10.
南北极海冰变化及其影响因素的对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
海冰是海洋-大气交互系统的重要组成部分,与全球气候系统间存在灵敏的响应和反馈机制。本文选用欧洲空间局发布的1992—2008年海冰密集度数据分析了南北极海冰在时间和空间上的变化规律与趋势,并结合由美国环境预报中心(National Centers for Environmental Prediction,NCEP)和美国大气研究中心(National Center for Atmospheric Research, NCAR)联合制作的NCEP/NCAR气温数据和ENSO指数探讨了南北极海冰变化的影响因素。结果表明,北极海冰面积呈明显的减少趋势,其中夏季海冰最小月的减少更快。北冰洋中央海盆区、巴伦支海、喀拉海、巴芬湾和拉布拉多海的减少最明显。南极海冰面积呈微弱增加趋势,罗斯海、太平洋扇区和大西洋扇区的海冰增加。北极海冰面积与气温有显著的滞后1个月的负相关关系(P0.01)。北极升温显著,北冰洋中央海盆区、喀拉海、巴伦支海、巴芬湾和楚科奇海升温趋势最大,海冰减少很明显。南极在南大西洋、南太平洋呈降温趋势,海冰增加。北极海冰减少与39个月之后ONI的下降、40个月之后SOI的上升密切相关;南极海冰增加与7个月之后ONI的下降、6个月之后SOI的上升存在很好的响应关系。南北极海冰变化与三次ENSO的强暖与强冷事件有很好的对应关系。  相似文献   

11.
Primary production of the northern Barents Sea   总被引:7,自引:0,他引:7  
The majority of the arctic waters are only seasonally ice covered; the northern Barents Sea, where freezing starts at 80 to 81°N in September, is one such area. In March, the ice cover reaches its greatest extension (74-75°N). Melting is particularly rapid in June and July, and by August the Barents Sea may be ice free. The pelagic productive season is rather short, 3 to 3.5 months in the northern part of the Barents Sea (north of the Polar Front, 75°N), and is able to sustain an open water production during only half of this time when a substantial part of the area is free of ice. Ice algal production starts in March and terminates during the rapid melting season in June and July, thus equalling the pelagic production season in duration.
This paper presents the first in situ measurements of both pelagic and ice-related production in the northern Barents Sea: pelagic production in summer after melting has started and more open water has become accessible, and ice production in spring before the ice cover melts. Judged by the developmental stage of the plankton populations, the northern Barents Sea consists of several sub-areas with different phytoplankton situations. Estimates of both daily and annual carbon production have been based on in situ measurements. Although there are few sampling stations (6 phytoplankton stations and 8 ice-algae stations), the measurements represent both pelagic bloom and non-bloom conditions and ice algal day and night production. The annual production in ice was estimated to 5.3 g Cm-2, compared to the pelagic production of 25 to 30 g Cm-2 south of Kvitøya and 12 to 15 g Cm-2 further north. According to these estimates ice production thus constitutes 16% to 22% of the total primary production of the northern Barents Sea, depending on the extent of ice-free areas.  相似文献   

12.
刘玥  庞小平  赵羲  苏楚钦  季青 《极地研究》2018,30(2):161-172
采用美国冰雪数据中心(NSIDC)的日尺度与月尺度海冰密集度数据,将海冰密集度为15%作为阈值确定海冰外缘线位置,提取波弗特海海域的海冰外缘线,计算波弗特海的海冰密集度、海冰范围与海冰面积,然后通过海冰范围与海冰外缘线的年际变化与季节变化来分析波弗特海海冰外缘线退缩的时空变化特征与趋势。实验结果表明,1978—2015年波弗特海的海冰密集度、海冰范围与海冰面积整体变化趋势一致,减少趋势显著。37年来,海冰密集度平均每年减少约0.3%,海冰范围平均每年减少3 235 km2,海冰面积平均每年减少5 084 km2。海冰密集度在1979—1996年无明显减少趋势,1996—2015年减少趋势明显。波弗特海海冰范围一般在9月达到最小值,在11月至次年5月维持在最大值(全冰覆盖状态);海冰面积一般在9月达到最小值,在12月或者1月达到最大值。海冰范围最小值出现时间有延迟的趋势,全冰覆盖状态具有起始时间越来越晚、终止时间越来越早、持续时间越来越短的趋势,平均持续天数为212 d。  相似文献   

13.
A study of the climatic system in the Barents Sea   总被引:10,自引:0,他引:10  
The climatic conditions in the Barents Sea are mainly determined by the influx of Atlantic Water. A homogeneous wind-driven numerical current model was used to calculate the fluctuations in the volume flux of Atlantic Water to the Barents Sea which are caused by local wind forcing. The study period is from 1970 to 86. When compared with observed variations in temperature, ice coverage, and air pressure, the results show remarkably good agreement between all three parameters. The climate system of the Barents Sea is discussed with emphasis on the interrelations and feedback mechanisms between air, sea, and ice.  相似文献   

14.
利用5头活动于南极普里兹湾的象海豹携带的CTD观测获得的2011年3—6月埃默里冰架前缘冰间湖区域海水温盐剖面数据, 研究了该海域上层水体结构在初冬的演化过程。结果显示, 可将该演化过程分为三个阶段:第一阶段海水温度从层化到均匀, 3月下旬次表层仍维持暖水特征, 随着表层海水冷却作用, 次表层暖水逐渐消失, 上下水体温度趋于均匀并接近冰点, 温度剖面从“逆温型”演变到“均匀型”; 第二阶段海水盐度从层化到上下均匀, 也就是从“均匀型”演变到“渐变型”, 海水结冰析盐过程使上层海水盐度增加, 增强垂直对流混合, 上下层盐度达到均匀; 第三阶段冷却结冰持续, 海水盐度继续增大, 形成盐度随深度减小, 温度随深度增大的“渐变型”结构。根据温盐剖面数据计算三个阶段的海-气之间的热通量分别是-90.93、-82.20和-43.44 Wm-2。考虑海水盐分的增加主要源于海冰形成, 由此推算三个阶段内平均的海冰形成速率分别是5.4、4.9和2.5 cm d-1。在南极初冬时期, 随着海水上层低温高盐化演变持续, 海水向大气释放的热通量逐渐减少, 海冰形成速率也呈减少趋势。  相似文献   

15.
Hydrographic and current measurements obtained during the Norwegian Antarctic Research Expedition 1978/79 to the southern Weddell Sea are presented. Cold, dense Ice Shelf Water circulating under the floating ice shelves is observed to leave the shelf as a concentrated bottom flow. From moored current metres this discharge is estimated at 0.7 106 m3/s at -2.0°C (one year average) and with no appreciable seasonal variation. This contribution to the Weddell Sea Bottom Water is clearly identified through extreme temperature gradients at our deepest stations (below 2500 m). The core of Weddell Deep Water shows a considerable (T ∼ 0.5°C) warming up since 1977, presumably due to the lack of polynya activity in the intervening period. Measurements in the coastal current at the ice shelf (70°S, 2°W) show step structures which are probably due to cooling and melting at the vertical ice barrier. Slight supercooling due to circulation under the ice shelf is also seen. The net effect of the ice shelf boundary seems to be a deep reaching cooling and freshening of the coastal current providing the low salinity, freezing point Eastern Shelf Water. This process is considered a preconditioning which enhances production of the saline Western Shelf Water which in turn is transformed to Ice Shelf Water.  相似文献   

16.
Glacial striae and other ice movement indicators such as roche moutonées, glacial erratics, till fabric and glaciotectonic deformation have been used to reconstruct the Late Weichselian ice movements in the region of eastern Svalbard and the northern Barents Sea. The ice movement pattern may be divided into three main phases: (1) a maximum phase when ice flowed out of a centre east or southeast of Kong Karls Land. At this time the southern part of Spitsbergen was overrun by glacial ice from the Barents Sea; (2) the phase of deglaciation of the Barents Sea Ice Sheet, when an ice cap was centred between Kong Karls Land and Nordaustlandet. At the same time ice flowed southwards along Storfjorden; and (3) the last phase of the Late Weichselian glaciation in eastern Svalbard is represented by local ice caps on Spitsbergen, Nordaustlandet, Barentsoya and Edgeøya.
The reconstructed ice flow pattern during maximum glaciation is compatible with a centre of uplift in the northern Barents Sea as shown by isobase reconstructions and suggested by isostatic modelling.  相似文献   

17.
冰间湖内存在强烈的海-气相互作用和结冰析盐过程,在极区以及全球气候系统中起着重要作用。本文基于数字图像处理技术,从AMSR-E高分辨卫星遥感海冰密集度数据中提取了长时间序列的冰间湖变化信息,研究北极冰间湖内的净水面积、净水表面的净热通量(向上为正)、产冰量和产盐量的季节和年际变化,比较不同冰间湖区域之间的差异。研究结果表明:总净水面积分别在结冰初期和末期存在极大值,而由于总净水面积季节变化幅度不是很大,总产冰量和产盐量的季节变化主要受净热通量影响,在1月份存在极大值;在不同冰间湖区域内净水面积的季节变化中,进入结冰期越早的冰间湖内净水面积越快达到首次极大值;净热通量的年际变化趋势总体上是减小的,总净水面积是增加大的,其中靠近太平洋和大西洋入流口的冰间湖内净热通量减小的速率要比其他区域快,靠近亚欧大陆的冰间湖内净水面积增长速率要比其他区域大;总产冰量的年际变化同总净水面积基本一致,也是呈增加趋势。最后通过研究冰间湖的年际变化信息同海冰范围变化的相关性,发现如果连续多年冰间湖内年平均净热通量为负的异常,那么海冰范围将出现一次极小值。  相似文献   

18.
The Barents Sea is a productive, shallow, high-latitude marine ecosystem with complex hydrographic conditions. Zonal hydrographic bands defined by a coastal current. North Atlantic Water, the Polar Front, and the seasonally variable marginal ice edge zone create a meridional zonation of the ecosystem during the spring-summer transition. The features reveal themselves in satellite imagery and by high-resolution (vertical and horizontal) physical-optical-biological sampling.
Surprisingly, the long-term (7-year) mean of Coastal Zone Color Scanner (CZCS) imagery reveals the Barents Sea as an anomalous "blue-water" regime at high latitudes that are otherwise dominated by satellite-observed surface blooms. A combination of satellite imagery and in situ bio-optical analyses indicate that this pattern is caused by strong stratification in summer with surface nutrient depletion. The onset of stratification of the entire region is linked to the extent of the winter ice edge: cold years with extensive sea ice apparently stratify early due to ice melt; warm years stratify later, perhaps due to weaker thermal stratification of the Atlantic waters (e.g. Skjoldal et al. 1987). The apparent "low chlorophyll" indicated by the CZCS 7-year mean is partly due to sampling error whereby the mean is dominated by images taken later in the summer. In fact, massive blooms of subsurface phytoplankton embedded in the pycnocline persist throughout the summer and maintain substantial rates of primary production. Further, these subsurface blooms that are not observed by satellite are responsible for dramatic gradients in the beam (c1) and spectral diffuse (k) attenuation coefficients. The Barents Sea exemplifies the need to couple satellite observations with spatially and temporally resolved biogeographic ecosystem models in order to estimate the integrated water column primary production, mass flux or spectral light attenuation coefficients.  相似文献   

19.
The Barents Sea ice sheet - a sedimentological discussion   总被引:1,自引:0,他引:1  
Sediment sampling and shallow seismic profiling in the western and northern Barents Sea show that the bedrock in regions with less than 300 m water depth is unconformably overlain by only a thin veneer (<10 m) of sediments. Bedrock exposures are probably common in these areas. The sediments consist of a Holocene top unit, 0.1–1.5 m in thickness, grading into Late Weichselian glaciomarine sediments. Based on average sedimentation rates (14C-dating) of the Holocene sediments, the transition between the two units is estimated to 10,000–12,000 B.P. The glaciomarine sediments are commonly 1–3 m in thickness and underlain by stiff pebbly mud, interpreted as till and/or glaciomarine sediments overrun by a glacier. In regions where the water depth is over 300 m the sediment thickness increases, exceeding 500 m near the shelf edge at the mouth of Bjørnøyrenna. In Bjømøyrenna itself the uppermost 15–20 m seem to consist of soft glaciomarine sediments underlain by a well-defined reflector, probably the surface of the stiff pebbly mud. Local sediment accumulations in the form of moraine ridges and extensive glaciomarine deposits (20–60m in thickness) are found at 250–300m water depth, mainly in association with submarine valleys. Topographic highs, probably moraine ridges, are also present at the shelf edge. Based on the submarine morphology and sediment distribution, an ice sheet is believed to have extended to the shelf edge at least once during the Pleistocene. Spitsbergenbanken and the northern Barents Sea have also probably been covered by an ice sheet in the Late Weichselian. Lack of suitable organic material in the glacigenic deposits has prevented precise dating. Based on the regional geology of eastern Svalbard, a correlation of this younger stage with the Late Weichselian is indicated.  相似文献   

20.
基于2008、2010、2012和2014年我国北极科学考察期间在白令海获取的水文观测数据,结合历史共享资料,通过对白令海水团、上层海洋热含量、净热通量变化、风场及海平面气压分布情况等的分析,探讨了白令海水文结构的年际变化特征及其原因。研究发现,白令海夏季的水团包括白令海上层水团(BUW)、中层水团(BIW)、深层水团(BDW)和白令海陆架水团(BSW)。白令海温盐分布差异最大、年际变化最剧烈的情况主要集中在上层水团。对比4年水团分布情况,最明显的变化是2012年7月调查区上层海水温度偏低,2014年7月上层海水温度偏高。这种异常变化在热含量方面表现为:2012年7月调查区各个测站上的热含量异常低,而2014年7月测站上的热含量都高于平均水平。着重研究了2014年7月海温偏高的原因,认为是由于陆架和海盆区分别有两种不同的形成机制造成:陆架区累积净热通量偏高,海水吸收热量升温;海盆区在异常强大而持久的海面气压(SLP)高压系统下,海面负的风应力旋度得到加强,从而引起持续的暖平流输送及强烈的Ekman抽吸作用,最终导致了上层海水偏暖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号