首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Coso and Big Pine volcanic fields of eastern California exhibit different magmatic histories. The Big Pine field erupted only basalt lavas, some of which bear mantle xenoliths, whereas the Coso field erupted both basalt and rhyolite and is a major geothermal resource. These different magmatic products could be explained if Coso basalts stalled in the crust before erupting, providing heat to generate silicic magma, whereas Big Pine basalts erupted directly from mantle depths. Clinopyroxene–liquid thermobarometry indicates an average clinopyroxene crystallization depth of 45 km for Big Pine basalts and 19 km for Coso basalts, consistent with this hypothesis. Differences in crustal density, crustal structure, and prior magmatic history may have contributed to the different magmatic processes operating at each field. Our results indicate that the effects of analytical error, crystal zoning, and correlated errors on estimated temperatures and pressures from the thermobarometer are relatively small compared to intersample differences.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

2.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   

3.
Clinopyroxene-rich, poorly metasomatised spinel lherzolites are rare worldwide but predominate among xenoliths in five Quaternary basaltic eruption centres in Tariat, central Mongolia. High-precision analyses of the most fertile Tariat lherzolites are used to evaluate estimates of primitive mantle compositions; they indicate Mg#PM = 0.890 while lower Mg# in the mantle are likely related to metasomatic enrichments in iron. Within a 10 × 20 km area, and between ~45 and ≥60 km depth, the sampled xenoliths suggest that the Tariat mantle does not show km-scale chemical heterogeneities and mainly consists of residues after low-degree melt extraction at 1–3 GPa. However, accessory (<1%) amphibole and phlogopite are unevenly distributed beneath the eruption centres. Ca abundances in olivine are controlled by temperature whereas Al and Cr abundances also depend on Cr/Al in coexisting spinel. Comparisons of conventional and high-precision analyses obtained for 30 xenoliths show that high-quality data, in particular for whole-rocks and olivines, are essential to constrain the origin of mantle peridotites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Petrographic and chemical analyses demonstrate that late Cenozoic mafic lavas from the Basin-Range Province, western United States, are predominantly alkali-olivine basalts. Associated with these lavas are lesser volumes of basaltic andesite which appear to be differentiates from the more primitive alkali basalts. Late Cenozoic basalts from adjacent regions (Columbia River Plateau, Snake River Plain, Yellowstone area, High Cascades and Sierra Nevada) are predominantly tholeiitic. This apparent petrologic provincialism is supported by complementary variations in heat flow, seismic velocities, crustal thickness, magnetic anomalies and geologic setting.Alkali-olivine basalts from Japan and eastern Australia are analogous to those from the Basin-Range province both in composition and tectonic environment. It is suggested that these lavas are the products of a unique environment characterized by high heat flow and a thin crust.Recent melting experiments on peridotites and basalts and measurements of heat flow allow limits to be placed on the depth of origin of Basin-Range alkali-olivine basalt magmas. It is proposed that these lavas are produced by partial melting (less than 20%) of peridotitic mantle material at depths between 40 and 60 km in response to an elevated geothermal gradient. The basaltic andesites may be derived from hydrous alkali basalt magma by fractionation at depths of 30 to 40 km.  相似文献   

5.
Data on the petro- and geochemical characteristics of mantle xenoliths in kimberlites, which sampled the mantle beneath Early Precambrian tectonic structures (Archean cratons: the basement of the Eastern Siberian Platform, Karelian, Kaapvaal, Wyoming, Western Dharvar; Early and Middle Proterozoic foldbelts: Western Olenek, Natal, and Halls Creek), and xenoliths in alkaline basalts, which sampled the mantle benath Late Proterozoic-Phanerozoic structures (foldbelts: Central Asian, Mozambique, southern tip of South America, and Central German) indicate the following: (1) The major and trace element and REE composition of the mantle is different beneath Early Precambrian structures and Late Proterozoic-Phanerozoic foldbelts and reflects the degree of partial melting of the primitive mantle and its depletion in magmaphile components beneath ancient structures compared to young ones. (2) The original composition of the mantle was different beneath the Early Precambrian and Late Proterozoic structures in terms of both major oxides and incompatible trace elements and REE and their ratios; the composition of the mantle beneath the Eastern Siberian Platform, Wyoming, and Karelian cratons is different in terms of Zr/Y, La/Sm, Ce/Sm, Gd/Yb, and Lu/Hf. (3) The degree of melting of the primitive mantle decreases with depth, as follows from the negative correlation between the MgO/SiO2 ratio and pressure (i.e., depth) and the positive correlation between the Al2O3/MgO ratio and pressure in the xenoliths. (4) The Y, Zr, Ti, Sm, Gd, and Yb conncentrations and the sum of HREE in the mantle decrease with increasing degree of melting; correspondingly, the material most strongly depleted in these incompatible trace elements and REE composes the upper levels of the lithospheric continental mantle.  相似文献   

6.
 A large new database of major, trace elements and Sr-Nd isotopic ratios from 11 lava-field provinces in New South Wales and Queensland, eastern Australia allows detailed interpretation of the origin of these basaltic magmas. Isotopic signatures and trace element patterns identify an OIB-type (oceanic island basalt) source as a dominant component for most of these and some provinces appear to have additional significant components derived from the subcontinental lithospheric mantle (SCLM). The SCLM components have geochemical characteristics that overlap those observed in spinel lherzolite xenoliths (samples of shallow lithospheric mantle) from eastern Australia. These SCLM components show geochemical provinciality that indicates the occurrence of distinct geochemical lithospheric domains reflecting the timing and style of tectonic evolution of different regions. One component reflects modification by subduction-related processes during the late Paleozoic and Mesozoic, one records enrichment by fluids during old metasomatic events and another suggests a metasomatic event involving a distinctive amphibole and apatite-style enrichment. The composition and age distribution of volcanic lava-field provinces older than 10 Ma are consistent with a model involving a regional upwelling (elongated N–S along eastern Australia) of deep hot mantle related to marginal rifting and with OIB-type source geochemical characteristics. Thermal inhomogeneities within this plume swath resulted in small diapirs which may have undergone melt segregation at about 100 km and incorporated varying amounts of SCLM components there or from higher levels of the SCLM during ascent. Subsequent hot-spot generated central volcanoes overprinted this lava-field volcanism, tapped a similar OIB-type source component and truncated the thermal events. Accepted: 15 March 1995  相似文献   

7.
Zircon megacrysts are found in alluvial deposits associated with Cenozoic basalts from Changle in Shandong Province, Mingxi in Fujian Province and Penglai in Hainan Province within the coastal area of eastern China. They are colourless, transparent to light brown–maroon, and some of them are up to 16 mm long. U–Pb ages of zircon megacrysts from Changle, Mingxi and Penglai are 19.2?±?0.7 Ma, 1.2?±?0.1 Ma and 4.1?±?0.2 Ma respectively, slightly older than the eruption ages of their corresponding host rocks (16.05–18.87 Ma, 0.9–2.2 Ma, 3 Ma). εHf(t) values of zircon megacrysts are 9.02?±?0.49, 6.83?±?0.47, 4.46?±?0.48 for Changle, Mingxi and Penglai, respectively, which indicates their mantle origin. We suggest that the zircon megacrysts originated from metasomatised lithospheric mantle and were later brought up quickly by the host basaltic magma. The euhedral forms, uniform internal structure and chemical homogeneity within a single grain suggest crystallization under stable conditions. Pronounced positive Ce anomalies and negligible Eu anomalies suggest oxidizing conditions and little or no fractional crystallization of plagioclase. The differences in Hf-isotope compositions among the zircon megacrysts from different localities are consistent with the Sr-Nd-Pb isotopic compositions of their respective host basalts. This indicates that the host basalts acquired their isotopic signatures from the lithospheric mantle from which the zircon megacrysts derived. These data document the lateral compositional heterogeneity in the upper mantle beneath eastern China. Like mantle xenoliths, zircon megacrysts also have the potential to fingerprint the composition and evolution of the subcontinental lithospheric mantle.  相似文献   

8.
Major and rare earth element (REE) data for basalts from Holes 483, 483B, and 485A of DSDP Leg 65, East Pacific Rise, mouth of the Gulf of California, support a simple fractional crystallization model for the genesis of rocks from this suite. The petrography and mineral chemistry (presented in detail elsewhere) provide no evidence for magma mixing, but rather a simple multistage cooling process. Based on its lowest TiO2 content (0.88%), FeO1MgO ratio (0.95 with total Fe as FeO), and Mg# (100 MgMg + Fe″ = 70), sample 483-17-2-(78–83) has been selected as the most primitive primary magma of the samples analyzed. This is supported by the REE data which show this sample has the lowest total REE content, a LaSmcn (chondrite-normalized) = 0.36, and EuSmcn = 1.05. Because other samples analyzed have higher SiO2, lower Mg#, and a negative Eu anomaly (EuSmcn as low as 0.89), they are most likely derivative magmas. Wright-Doherty and trace element modelling support fractional crystallization of 14.1% plagioclase (An88), 6.7% olivine (Fo86), and 4.7% clinopyroxene (Wo41En49Fs10) from 483-17-2-(78–83) to form the least differentiated sample with Mg# = 63. The LaSmcn of this derivative magma is almost identical to the parent magma (0.35 to 0.36), but the other samples have higher LaSmcn (0.45 to 0.51), more total REE, and lower Mg# (60 to 56). Both Wright-Doherty and trace element modelling indicate that the primary magma chosen cannot produce these more evolved samples. For the major elements, the TiO2 and P2O5 are too low in the calculated versus the observed (1.38 to 1.90; 0.11 to 0.17, respectively, for example). Rayleigh fractionation calculates a lower LaSmcn and requires about 60% crystal removal versus 40% for the Wright-Doherty. These more evolved samples must be derived from a parent magma different from the one selected here and, unfortunately, not sampled in this study. A magma formed by a smaller degree of partial melting with slightly more residual clinopyroxene left in the mantle than for sample 483-17-2-(78–83) is required.  相似文献   

9.
Many objections have been raised as to the ability of subcontinental lithospheric mantle to produce voluminous amounts of basalt, because this upper part of the mantle is thought to be refractory, and the geotherm is rarely above the peridotite solidus at these depths under continents. However, in the Pacific Northwest of the USA during the Neogene, the subcontinental lithospehric mantle has been proposed as a key source for basalts erupted within the northern Basin and Range, and for the Columbia River flood basalts erupted on the Columbia Plateau. An alternative explanation to melting in the subcontinental lithospheric mantle, which equally well explains the chemical compositions thought to originate there, is that these magmas were contaminated by crust of varying ages. Calc-alkaline lavas, which occupy the Blue Mountains in the center of this region, hold clues to the latter process. Their elevated trace element ratios (e.g., Ba/Zr, K2O/P2O5), coupled with differentiation indicators such as Mg? [molar Mg/(Mg?+?Fe)], and Sr, Nd, and Pb isotopic compositions, can most reasonably be explained by crustal contamination. Appraisal of continental peridotite xenolith data indicates that high trace element ratios such as Ba/Zr in continental basalts cannot result from melting in the subcontinental lithospheric mantle. Instead, as with the calc-alkaline lavas, these high ratios in the tholeiites most likely indicate crustal contamination. Furthermore, the peridotite xenoliths do not have a relative depletion in Nb and Ta that is observed in most of the lavas within the region. Relatively minor volumes of tholeiites erupted in late Neogene times in the northern Basin and Range (Hi-Mg olivine tholeiites) and Columbia Plateau (Saddle Mountains basalts), are the only lavas which have trace element and isotopic compositions consistent with being derived from, or largely interacting with a subcontinental lithospheric mantle in the Pacific Northwest. In contrast to the prior studies, we suggest that the mantle sources for most of the basalts in this region were ultimately beneath the lithospheric mantle.  相似文献   

10.
太行山中段新生代玄武岩(7.8Ma)中发现具有明显环带结构的高Mg^#橄榄石。其中心部分明显富MgO和NiO,边缘FeO、MnO、CaO和Al2O3的含量较高。高Mg^#橄榄石中心部分(Mg^#=89.892.3)与华北新生代玄武岩所携带的橄榄岩捕虏体中高Mg^#橄榄石的组成接近,中间部分(Mg^#=84.5~89.7)略高于寄主玄武岩中斑晶橄榄石中心部分的组成(Mg^#=77.1~81.7),而高Mg^#橄榄石的边缘部分(Mg^#=55.6~73.6)和寄主玄武岩斑晶橄榄石边缘的组成(Mg^#=55.6~73.6)相一致,都接近于寄主玄武岩基质中橄榄石的组成(Mg^#=54.8~66.1)。橄榄石的化学成分环带及其所具有的熔蚀结构说明它是地幔橄榄岩的解体矿物,其大颗粒的中心部分能够代表地幔橄榄岩的组成,表明在太行山中段新生代时期仍存在古老的岩石圈地幔。对比研究发现,华北地区岩石圈减薄存在时空上的差异。  相似文献   

11.
鲁江姑  郑建平 《地质学报》2011,85(3):330-342
内容提要:在对吉林辉南新生代玄武岩中捕虏体橄榄岩详细的岩相学和矿物主量元素研究基础上,重点分析了单斜辉石激光原位微量元素,并讨论了辉南陆下岩石圈地幔的性质及其在华北克拉通破坏过程中的意义。橄榄石、单斜辉石和尖晶石的Mg#和Cr#均表明该区陆下岩石圈地幔主体是饱满的,同时也存在少量过渡和难熔型地幔。单斜辉石REE配分形式包括LREE亏损、倒U字型REE和LREE富集等不同类型。这些橄榄岩是地幔经历不同程度的部分熔融作用(低于10%)和复杂地幔交代作用的产物。交代介质主体是硅酸盐熔体,但个别样品有碳酸岩熔体交代的残留。橄榄石Mg#和平衡温度无相关性,说明辉南陆下岩石圈地幔不存在明显的分层而是交叉的。这些地幔特征和华北东部其他地区新生代的主体地幔性质相似,是熔-岩反应、侵蚀作用和上涌软流圈物质冷却转变置换的综合结果。  相似文献   

12.
With the aim to better understand the cause of the iron isotope heterogeneity of mantle-derived bulk peridotites, we compared the petrological, geochemical and iron isotope composition of four xenolith suites from different geodynamic settings; sub-arc mantle (Patagonia); subcontinental lithospheric mantle (Cameroon), oceanic mantle (Kerguelen) and cratonic mantle (South Africa). Although correlations were not easy to obtain and remain scattered because these rocks record successive geological events, those found between δ57Fe, Mg#, some major and trace element contents of rocks and minerals highlight the processes responsible for the Fe isotope heterogeneity. While partial melting processes only account for moderate Fe isotope variations in the mantle (<0.2 ‰, with bulk rock values yielding a range of δ57Fe ± 0.1 ‰ relative to IRMM-14), the main cause of Fe isotope heterogeneity is metasomatism (>0.9 ‰). The kinetic nature of rapid metasomatic exchanges between low viscosity melts/fluids and their wall-rocks peridotite in the mantle is the likely explanation for this large range. There are a variety of responses of Fe isotope signatures depending on the nature of the metasomatic processes, allowing for a more detailed study of metasomatism in the mantle with Fe isotopes. The current database on the iron isotope composition of peridotite xenoliths and mafic eruptive rocks highlights that most basalts have their main source deeper than the lithospheric mantle. Finally, it is concluded that due to a complex geological history, Fe isotope compositions of mantle xenoliths are too scattered to define a mean isotopic composition with enough accuracy to assess whether the bulk silicate Earth has a mean δ57Fe that is chondritic, or if it is ~0.1 ‰ above chondrites as initially proposed.  相似文献   

13.
对产于莒南晚中生代玄武岩中的镁铁质麻粒岩和橄榄岩包体矿物进行了傅里叶变换红外光谱(FTIR)分析.结果显示,麻粒岩矿物和全岩中水含量分别为:单斜辉石300×10-6~1 180×10-6,斜方辉石80×10-6~169×10-6,斜长石717×10-6~1 239×10-6,全岩525×10-6~855×10-6;橄榄岩矿物和全岩中水含量分别为:单斜辉石466×10- 6~746×10-6,斜方辉石187×10-6~304×10-6,橄榄石6×10-6~15×10-6,全岩81×10-6~245×10-6.从单矿物看,麻粒岩和橄榄岩之间水含量的差距不是很明显,但麻粒岩的全岩水含量明显高于橄榄岩,表明大陆深部岩石圈的水含量在垂向上具有不均一性.  相似文献   

14.
Basaltic rocks of the Cima volcanic field in the southern Basinand Range province contain abundant gabbro, pyroxenite, andperidotite xenoliths. Composite xenoliths containing two ormore rock types show that upper-mantle spinel peridotite wasenriched by multiple dike intrusions in at least three episodes;the mantle was further enriched by intergranular and shear-zonemelt infiltration in at least two episodes. The oldest dikes,now metamorphosed, are Cr-diopside websterite. Dikes of intermediateage are most abundant at Cima and consist of igneous-texturedwebsterite and two-pyroxene gabbro and microgabbro of tholeiiticor calcalkalic parentage. The youngest dikes are igneous-texturedclinopyroxenite, gabbro, and olivine microgabbro of alkalicparentage. The dikes in peridotite are interpreted as partsof a system of conduits through which tholeiitic (or calcalkalic)and alkalic magmas fed lower-crustal intrusions, which are representedby abundant xenoliths of the same igneous rock types as observedin the dikes. Mineral assemblages of dikes in peridotite indicatethat an enriched uppermost mantle zone no thicker than 15 kmcould have been sampled. Because of their high densities, thegabbros and pyroxenites can occupy the zone immediately abovethe present Moho (modeled on seismic data as 10-13 km thick,with Vp 6.8 km/s) only if their seismic velocities are reducedby the joints, partial melts, and fluid inclusions that occurin them. Alternatively, these xenoliths may have been derivedentirely from beneath the Moho, in which case the Moho is notthe local crust-mantle boundary.  相似文献   

15.
在无水"干"体系的四矿物相橄榄岩中,单斜辉石由于熔点低而通常记录着丰富的部分熔融作用和地幔交代作用信息。在详细岩相学特征和组成矿物主元素分析基础上,重点对内蒙古集宁玄武岩中橄榄岩包体的单斜辉石进行了激光原位微量元素研究。通过与新生代时华北具古老克拉通地幔特征(如鹤壁)和具新生岩石圈地幔特征(如山旺)的橄榄岩对比,讨论了新生代时集宁地区陆下岩石圈地幔性质及其形成和演化机制。集宁地区岩石圈地幔是相当于原始地幔经过较低程度的部分熔融抽取形成的,除个别样品的部分熔融程度5%外,多数样品为5%~10%。橄榄岩的平衡温度与橄榄石Mg#关系表明新生代时集宁地区的陆下岩石圈地幔是不均一的,无明显分层现象,表现为饱满与过渡型地幔的共存。这种主体饱满并兼有过渡型地幔的不均一现象,可能是软流圈物质对古老地幔进行不均匀侵蚀、改造和置换作用的结果。  相似文献   

16.
闫峻  陈江峰  谢智  杨刚  喻钢  钱卉 《地球化学》2005,34(5):455-469
长江中下游地区繁昌火山盆地蝌蚪山晚白垩世玄武岩为硅饱和岩石, SiO2含量在 47.63%~ 50.02%之间,在 TAS图上位于碱性和亚碱性的分界线上,多数属于玄武岩,少数为粗面玄武岩. MgO含量较低( 3.72%~ 5.58%),但 Mg#值较高( 61~ 71).岩石富集大离子亲石元素 Ba、 Th、 U、 LREE和 Pb,亏损高场强元素 Nb、 Zr和 Ti,具富集的 Sr、 Nd和 Pb同位素组成.初始 87Sr/86Sr(t)比值介于 0.706 5~ 0.706 6之间,ε Nd(t)值介于-5.5~-7.3之间.在 87Sr/86Sr(t)-ε Nd(t)相关图上投在富集的第Ⅳ象限,并趋向于 EMⅡ地幔端员. 206Pb/204Pb(t)、 207Pb/204Pb(t)和 208Pb/204Pb(t)比值分别为 17.928~ 18.311、 15.426~ 15.621和 37.785~ 38.525,在 Pb同位素相关图上处在 DMM和 EMⅡ地幔端员之间.蝌蚪山玄武岩的地球化学特征表明其原始岩浆来源于岩石圈地幔,底侵到壳幔边界后曾有一段时间的滞留,并经历了一定程度的以橄榄石和斜方辉石为主的结晶分异,随后在上升过程中没有受到明显的地壳物质的混染.本地区晚中生代时期陆下岩石圈地幔具有同位素富集的性质,曾受到过古老俯冲事件中析出流体 /熔体的交代.与本地区新生代玄武岩地球化学性质的对比表明,从晚中生代至新生代,由于岩石圈拉张和软流圈的上涌,长江中下游地区发生了岩石圈的减薄,其过程和华北地块东部的岩石圈减薄事件基本一致.造成华北地块东部和华南地块东部的岩石圈减薄具有一致的动力学机制和背景,很可能是晚中生代时期古太平洋板块向亚洲大陆之下俯冲造成的弧后盆地的拉张减薄.  相似文献   

17.
In situ trace element analyses of constituent minerals in mantle xenoliths occurring in an alnöite diatreme and in nephelinite plugs emplaced within the central zone of the Damara Belt have been determined by laser ablation ICP-MS. Primitive mantle-normalized trace element patterns of clinopyroxene and amphibole indicate the presence of both depleted MORB-like mantle and variably enriched mantle beneath this region. Clinopyroxenes showing geochemical depletion have low La/Smn ratios (0.02–0.2), whereas those showing variable enrichment have La/Smn ranging up to 3.8 and La/Ybn to 9.1. The most enriched clinopyroxenes coexist with amphibole showing similar REE patterns (La/Smn = 1.3–4.1; La/Ybn = 4.5–9). Primitive mantle-normalized trace element patterns allow further groups to be distinguished amongst the variably enriched clinopyroxenes: one having strong relative depletion in Rb–Ba, Ta–Nb and relative enrichment in Th–U; another with similar characteristics but with additional strong relative depletion in Zr–Hf; and one showing no significant anomalies. Amphiboles show similar normalized trace element patterns to co-existing clinopyroxene. Clinopyroxene and amphiboles showing LREEN enrichment have high Sr and low Nd isotope ratios compared to clinopyroxene with LREE-depleted patterns. Numerical simulation of melt percolation through the mantle via reactive porous flow is used to show that the chromatographic affect associated with such a melt migration process is able to account for the fractionation seen in La–Ce–Nd in cryptically metasomatized clinopyroxenes in Type 1 xenoliths, where melt–matrix interactions occur near the percolation front, whereas REE patterns in clinopyroxenes proximal to the source of metasomatic melt/fluid match those found in modally metasomatized Type 2 xenoliths. The strong fractionation between Rb–Ba, Th–U and Ta–Nb shown by some cryptically metasomatized xenoliths can be also accounted for by reactive porous flow, provided amphibole crystallizes from the percolating melt/fluid close to its source. The presence of amphibole in vein-like structures in some xenoliths is consistent with this interpretation. The strong depletion in Zr–Hf in clinopyroxene and amphibole in some xenoliths cannot be accounted for by melt migration processes and requires metasomatism by a separate carbonate-rich melt/fluid. When taken together with published isotope data on these same xenoliths, the source of metasomatic enrichment of the previously depleted (MORB-like) sub-Damaran lithospheric mantle is attributed to the upwelling Tristan plume head at the time of continental breakup.  相似文献   

18.
In Late Devonian and Early-to-Late Triassic times, the southern continental margin of the Eastern European Platform was the site of a basaltic volcanism in the Donbas and Fore-Caucasus areas respectively. Both volcanic piles rest unconformably upon Paleoproterozoic and Late Paleozoic units respectively, and emplaced during continental rifting periods some 600 km away from expected locations of active oceanic subduction zones. This paper reports a comparative geochemical study of the basaltic rocks, and views them as the best tracers of the involved mantle below the Eastern European Platform. The Late Devonian alkaline basic rocks differ from the calc-alkaline Triassic basic rocks by their higher alkali-silica ratio, their higher TiO2, K2O, P2O5 and FeO contents, their higher trace element contents, a higher degree of fractionation between the most and the least incompatible elements and the absence of Ta-Nb negative anomalies. These general features, clearly distinct from those of partial melting and fractional crystallization, are due to mantle source effects. With similar Nd and Sr isotopic signatures indicating mantle-crust mixing, both suites would originate from the melting of a same but heterogeneous continental mantle lithosphere (refertilized depleted mantle). Accordingly the Nd model ages, the youngest major event associated with mantle metasomatism occurred during Early Neoproterozoic times (∼650Ma).  相似文献   

19.
张岗岚  刘勇胜  张拉 《岩石学报》2023,39(1):119-134

了解大陆地幔的不均一性对于理解地壳成分再循环、壳-幔相互作用等过程至关重要。本文通过对华北克拉通北缘汉诺坝地区来自不同地幔深度幔源岩石(玄武岩及橄榄岩和辉石岩包体)的研究进行综述,探讨了地幔在垂向上成分的不均一性特征。汉诺坝玄武岩的研究揭示了汉诺坝地区软流圈顶部存在再循环的碳酸盐化榴辉岩以及岩石圈底部具有富集的古老洋壳和沉积物成分。另外,玄武岩携带的橄榄岩和多类型辉石岩包体记录了不同来源(蚀变洋壳、沉积碳酸盐岩、碎屑沉积物、拆沉下地壳、软流圈)且不同成分(硅酸盐、碳酸盐)的熔/流体活动。富集地壳来源的熔/流体加入明显影响了汉诺坝地区陆下地幔成分的均质性,使得陆下地幔在微米至千米尺度存在明显的成分不均一特征。汉诺坝地区陆下地幔不均一性的认识为了解地壳物质再循环提供了绝佳的窗口。

  相似文献   

20.
The compositionally bimodal Pleistocene Coso volcanic fieldis located at the western margin of the Basin and Range province  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号