首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss a near-infrared (NIR) narrow-band tunable birefringent filter system newly developed by the Big Bear Solar Observatory (BBSO). This is one of the first narrow-bandpass NIR filter systems working at 1.56 μm which is used for the observation of the deepest solar photosphere. Four stages of calcite were used to obtain a bandpass of 2.5 Å along with a free spectral range (FSR) of 40 Å. Some unique techniques were implemented in the design, including liquid crystal variable retarders (LCVRs) to tune the bandpass in a range of ±100 Å, a wide field configuration to provide up to 2° incident angle, and oil-free structure to make it more compact and handy. After performing calibration and characteristic evaluation at the Evans Facility of the National Solar Observatory at Sacramento Peak (NSO/SP), a series of high-resolution filtergrams and imaging polarimetry observations were carried out with the Dunn Solar Telescope of NSO/SP and the 65-cm telescope of BBSO, in conjunction with the high-order adaptive optics system and the Fabry–Pérot Interferometer (FPI). In this paper, we describe the optical design and discuss the calibration method. Preliminary observations show that it is capable of serving as either a stand-alone narrow-band filter for NIR filtergram observations or an order-sorting filter of a FPI applied to NIR two-dimensional imaging spectro-polarimetry.  相似文献   

2.
We present, for the first time, high-spatial-resolution observations combining high-order adaptive optics (AO), frame selection, and post-facto image correction via speckle masking. The data analysis is based on observations of solar active region NOAA 10486 taken with the Dunn Solar Telescope (DST) at the Sacramento Peak Observatory (SPO) of the National Solar Observatory (NSO) on 29 October 2003. The high Strehl ratio encountered in AO corrected short-exposure images provides highly improved signal-to-noise ratios leading to a superior recovery of the object’s Fourier phases. This allows reliable detection of small-scale solar features near the diffraction limit of the telescope. Speckle masking imaging provides access to high-order wavefront aberrations, which predominantly originate at high atmospheric layers and are only partially corrected by the AO system. In addition, the observations provided qualitative measures of the image correction away from the lock point of the AO system. We further present a brief inspection of the underlying imaging theory discussing the limitations and prospects of this multi-faceted image reconstruction approach in terms of the recovery of spatial information, photometric accuracy, and spectroscopic applications.The editors apologize to the authors: due to a misunderstanding during the editorial process, the publication of this paper has been delayed.  相似文献   

3.
We present observations of four filaments that exhibit large-amplitude periodic mass motion. Observations are obtained using the high resolution (2″) and high cadence (1 min) Hα telescope system at the Big Bear Solar Observatory (BBSO). The motions found in these events are along the axis of the filaments, and are associated with the activity of a nearby flare or filament. The most characteristic properties of these motions are long period (≥ q80 min), large distance (≥ q 4 × 104 km) of mass transport at much higher velocity (≥ q 30 km s−1) than ever detected from filament motions. The velocity, period, dimension and damping timescale measured for these motions are presented, and discussed to identify the most plausible restoring force and damping mechanism.  相似文献   

4.
G.A. Chapman 《Solar physics》2002,209(1):141-152
This paper is a study of NOAA region 9144, an emerging flux region (EFR) which grew rapidly beginning 25 August 2000. This region was visible in SOHO data at 0 UT on 25 August 2000 as a small, isolated spot. It was recognizable as an active region with multiple spots by 06:00 UT on the 25th and was a fully developed AR by 24h UT on the 26th of August. Data are presented from the Michelson Doppler Imager (MDI) experiment on the Solar and Heliospheric Observatory satellite (SOHO), from Big Bear Solar Observatory (BBSO) and from the San Fernando Observatory (SFO). The MDI data are Dopplergrams, magnetograms, and continuum images. The BBSO data are high-resolution Hα filtergrams. The SFO data are Dopplergrams, magnetograms and continuum images from the Video SpectraSpectroHeliograph (VSSHG). MDI Doppler images show that during the rapid growth of this EFR during the day of 26 August, the most obvious feature in area and lifetime is a red-shifted area in the trailing part of the region. SFO Doppler images show a more complex pattern, but still dominated by red shifts in the trailing part of the region near the end of the day of 26 August.  相似文献   

5.
The Coudé feed of the vacuum telescope (aperture D = 65 cm) at the Big Bear Solar Observatory (BBSO) is currently completely remodelled to accommodate a correlation tracker and a high‐order Adaptive Optics (AO) system. The AO system serves two imaging magnetograph systems located at a new optical laboratory on the observatory's 2nd floor. The InfraRed Imaging Magnetograph (IRIM) is an innovative magnetograph system for near‐infrared (NIR) observations in the wavelength region from 1.0 μm to 1.6 μm. The Visible‐light Imaging Magnetograph (VIM) is basically a twin of IRIM for observations in the wavelength range from 550 nm to 700 nm. Both instruments were designed for high spatial and high temporal observations of the solar photosphere and chromosphere. Real‐time data processing is an integral part of the instruments and will enhance BBSO's capabilities in monitoring solar activity and predicting and forecasting space weather.  相似文献   

6.
The multi-wavelength analysis is performed on a flare on September 9, 2002 with data of Owens Valley Solar Arrays (OVSA), Big Bear Solar Observatory (BBSO), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and Extreme UV Imager Telescope (EIT), and The Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO). The radio sources at 4.8 and 6.2 GHz located in the intersection of two flaring loops at 195 of SOHO/EIT respectively with two dipole magnetic fields of SOHO/MDI, in which one EIT loop was coincident with an X-ray loop of RHESSI at 12–25 keV, and two Hαbright kernels a1 and a2 of BBSO, respectively at the two footpoints of this loop; the second EIT loop connected another two Hαkernels b1 and b2 and radio sources at 7.8 and 8.2 GHz of OVSA. The maximum phase of microwave bursts was evidently later than that of hard X-ray bursts and Hαkernels a1 and a2, but consistent with that of Hαkernels b1 and b2. Moreover, the flare may be triggered by the interaction of the two flaring loops, which is suggested by the cross-correlation of radio, optical, and X-ray light curves of a common quasi-periodic oscillation in the rising phase, as well as two peaks at about 7 and 9 GHz of the microwave spectra at the peak times of the oscillation, while the bi-directional time delays at two reversal frequencies respectively at 7.8 and 9.4 GHz (similar to the peak frequencies of the microwave spectra) may indicate two reconnection sites at different coronal levels. The microwave and hard X-ray footpoint sources located in different EUV and optical loops may be explained by different magnetic field strength and the pitch angle distribution of nonthermal electrons in these two loops.  相似文献   

7.
The NST (New Solar Telescope), a 1.6 m clear aperture, off‐axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on‐line late in the next decade. The NST will be outfitted with state‐of‐the‐art scientific instruments at the Nasmyth focus on the telescope floor and in the Coudé Lab beneath the telescope. At the Nasmyth focus, several filtergraphs already in routine operation have offered high spatial resolution photometry in TiO 706 nm, Hα 656 nm, G‐band 430 nm and the near infrared (NIR), with the aid of a correlation tracker and image reconstruction system. Also, a Cryogenic Infrared Spectrograph (CYRA) is being developed to supply high signal‐to‐noise‐ratio spectrometry and polarimetry spanning 1.0 to 5.0 μm. The Coudé Lab instrumentation will include Adaptive Optics (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), and Fast Imaging Solar Spectrograph (FISS). A 308 sub‐aperture (349‐actuator deformable mirror) AO system will enable nearly diffraction limited observations over the NST's principal operating wavelengths from 0.4 μm through 1.7 μm. IRIM and VIM are Fabry‐Pérot based narrow‐band tunable filters, which provide high resolution two‐dimensional spectroscopic and polarimetric imaging in the NIR and visible respectively. FISS is a collaboration between BBSO and Seoul National University focussing on chromosphere dynamics. This paper reports the up‐to‐date progress on these instruments including an overview of each instrument and details of the current state of design, integration, calibration and setup/testing on the NST (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A high‐order Adaptive Optical (AO) system for the 65 cm vacuum telescope of the Big Bear Solar Observatory (BBSO) is presented. The Coudé‐exit of the telescope has been modified to accommodate the AO system and two imaging magnetograph systems for visible‐light and near infrared (NIR) observations. A small elliptical tip/tilt mirror directs the light into an optical laboratory on the observatory's 2nd floor just below the observing floor. A deformable mirror (DM) with 77 mm diameter is located on an optical table where it serves two wave‐front sensors (WFS), a correlation tracker (CT) and Shack‐Hartman (SH) sensor for the high‐order AO system, and the scientific channels with the imaging magnetographs. The two‐axis tip/tilt platform has a resonance frequency around 3.3 kHz and tilt range of about 2 mrad, which corresponds to about 25″ in the sky. Based on 32 × 32 pixel images, the CT detects image displacements between a reference frame and real‐time frames at a rate of 2 kHz. High‐order wave‐front aberrations are detected in the SH WFS channel from slope measurements derived from 76 sub‐apertures, which are recorded with 1,280 × 1,024 pixel Complex Metal Oxide Semiconductor (CMOS) camera manufactured by Photobit camera. In the 4 × 4 pixel binning mode, the data acquisition rate of the CMOS device is more than 2 kHz. Both visible‐light and NIR imaging magnetographs use Fabry‐Pérot etalons in telecentric configurations for two‐dimensional spectro‐polarimetry. The optical design of the AO system allows using small aperture prefilters, such as interference or Lyot filters, and 70 mm diameter Fabry‐Pérot etalons covering a field‐of‐view (FOV) of about 180″ × 180″.  相似文献   

9.
We performed two-dimensional spectroscopic observations of the preceding sunspot of NOAA 10905 located off disk center (S8 E36, μ≈0.81) by using the Interferometric BI-dimensional Spectrometer (IBIS) operated at the Dunn Solar Telescope (DST) of the National Solar Observatory, New Mexico. The magnetically insensitive Fe I line at 709.04 nm was scanned in wavelength repetitively at an interval of 37 s to calculate sequences of maps of the line-wing and line-core intensity, and the line-of-sight Doppler velocity at different line depths (3% to 80%). Visual inspection of movies based on speckle reconstructions computed from simultaneous broadband data and the local continuum intensity at 709.04 nm revealed an umbral dot (UD) intruding rapidly from the umbral boundary to the center of the umbra. The apparent motion of this object was particularly fast (1.3 km s−1) when compared to typical UDs. The lifetime and size of the UD was 8.7 min and 240 km, respectively. The rapid UD was visible even in the line-core intensity map of Fe I 709.04 nm and was accompanied by a persistent blueshift of about 0.06 km s−1.  相似文献   

10.
The index of scintillation measurement is a good parameter to compare different sites for image quality or ‘seeing’. We have developed a scintillometer, which is deployed on the high resolution SPAR telescope in the island site of Udaipur Solar Observatory, for the site characterization to specify the proposed MAST (Multi Application Solar Telescope). The scintillometer consists of a miniature telescope, termed as micro telescope (4 mm aperture, 15 mm focal length) mounted on a drive which tracks the Sun continuously, associated amplifiers and a data acquisition system. A photodiode is used as the detector. The telescope along with detector was obtained from National Solar Observatory (NSO), and is similar to the one used for Advanced Technology Solar Telescope (ATST) site survey. At USO we developed the amplifier and data acquisition system for the scintillometer. A 24-bit analog to digital converter based system was designed, assembled, tested and used as the data acquisition system (DAS). In this paper, we discuss the instrumentation and present the initial results.  相似文献   

11.
Vanscheidt  R.  Bleul  H.  Manthey  E.  Jütte  M.  Pohlen  M.  Schmidtobreick  L.  Altmann  M.  Dieball  A.  Geffert  M.  Sanner  J.  Notni  P.  Schmoll  J. 《Earth, Moon, and Planets》1998,81(3):223-231
Extensive widefield CCD direct imaging of C/1995 O1 (Hale-Bopp) at UBVRI was carried out at Hoher List Observatory with the 1.06 m telescope (field of view 20′ × 20′) and at Potsdam Observatory with the 0.70 m telescope (field of view 8′ × 8′). The corresponding spatial resolution is 850–1000 km pix-1and 525–590 km pix-1, respectively. The data covers 25 nights from February 20 to April 21, 1997. In order to quantify the various features in the apparent inner coma we introduce a new tomographic method that minimizes the morphological bias caused by image processing. The tomographic analysis leads to quantitative maps refering to the position and intensity of the dust ejections for each image frame. Variability and periodicity within the inner coma can be thoroughly deduced due to various sets of consecutive nights in the observation period mentioned above. The results are compared with applications of adaptive Laplace filtering. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Ellerman bombs are bright emission features observed in the wings of Hα, usually in the vicinity of magnetic concentrations. Here we show that they can also be detected in the Ca II infrared triplet lines, which are easier to interpret and therefore allow for more detailed diagnostics. We present full Stokes observations of the 849.8 and 854.2 nm lines acquired with the new spectro-polarimeter SPINOR. The data show no significant linear polarization at the level of 3 × 10−4. The circular polarization profiles exhibit measureable signals with a very intricate pattern of peaks. A non-LTE analysis of the spectral profiles emerging from these features reveals the presence of strong downflows (∼10 {km s−1}) in a hot layer between the upper photosphere and the lower chromosphere. Visiting Astronomers, National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation. The National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation, USA.  相似文献   

13.
We present hydrogen Balmer-α spectra of comet C/1995 O1(Hale–Bopp) recorded on 5 nights from 1997 February 1 to April 19 by ahigh-resolution (Δ v = 5 km s-1) Fabry–Pérot spectrometer for a4'.1 (∼2.7 × 105 km) FOV centered 5' sunwardof the nucleus. The Hα line profile is an important diagnostic ofphotolytic heating in cometary atmospheres. Extraction of the spectrafrom the Fabry–Pérot ring images was complicated by obscuration of the telescope FOV due to Hale–Bopp's low elevation, but the measuredH-α line widths of 11–13 km s-1 (FWHM) are insensitive to the spectral extraction technique. The line widths are consistent withestimates derived from a successful model of Hale–Bopp's hydrogenLyman-α coma assuming the inner coma is opaque to Hα. Wediscuss methods for improving the spectral extraction technique andderiving a precise instrument profile which will allow the detailedshape of the line profile to constrain coma models.  相似文献   

14.
In recent high-resolution observations of complex active regions, long-lasting and well-defined regions of strong flows were identified in major flares and associated with bright kernels of visible, near-infrared, and X-ray radiation. These flows, which occurred in the proximity of the magnetic neutral line, significantly contributed to the generation of magnetic shear. Signatures of these shear flows are strongly curved penumbral filaments, which are almost tangential to sunspot umbrae rather than exhibiting the typical radial filamentary structure. Solar active region NOAA 10756 was a moderately complex β δ sunspot group, which provided an opportunity to extend previous studies of such shear flows to quieter settings. We conclude that shear flows are a common phenomenon in complex active regions and δ spots. However, they are not necessarily a prerequisite condition for flaring. Indeed, in the present observations, the photospheric shear flows along the magnetic neutral line are not related to any change of the local magnetic shear. We present high-resolution observations of NOAA 10756 obtained with the 65-cm vacuum reflector at Big Bear Solar Observatory (BBSO). Time series of speckle-reconstructed white-light images and two-dimensional spectroscopic data were combined to study the temporal evolution of the three-dimensional vector flow field in the β δ sunspot group. An hour-long data set of consistent high quality was obtained, which had a cadence of better than 30 seconds and subarcsecond spatial resolution.  相似文献   

15.
Joint vector magnetograph observations were carried out at Big Bear Solar Observatory (BBSO), Huairou Solar Observing Station (Huairou), and Mees Solar Observatory (MSO) in late September 1989. Comparisons of vector magnetograms obtained at the three stations show a high degree of consistency in the morphology of both longitudinal and transverse fields. Quantitative comparisons show the presence of noise, cross-talk between longitudinal field and transverse field, Faraday rotation and signal saturation effects in the magnetograms. We have tried to establish how the scatter in measurements from different instruments is apportioned between these sources of error.  相似文献   

16.
A high resolution spectrum of a sunspot umbra is used for identification of rotational lines due to (0, 0) band of the A 2Π–X 2Σ+ system and (0, 0), (1, 1), and (2, 2) bands of the B 2Σ+X 2Σ+ system of the molecule SrF. The published sunspot umbral spectrum obtained with Fourier Transform Spectrometer and solar telescope of National Solar Observatory/National Optical Astronomy Observatory at Kitt Peak was used for the study. The new identification of more than 200 SrF lines in the umbral spectrum confirms that this molecule accounts for the majority of lines in the spectral range 15050 to 15360 cm−1 and 17240 to 17300 cm−1. Equivalent widths have been measured for well-resolved lines of these bands and the effective rotational temperatures have been estimated for which the presence is confirmed.  相似文献   

17.
Zhang  Jun  Wang  Jingxiu  Lee  Chik-Yin  Wang  Haimin 《Solar physics》2000,194(1):59-72
High-resolution H filtergrams and deep magnetograms were obtained from the Big Bear Solar Observatory (BBSO) and Huairou Solar Observation Station (HSOS) during 17–24 October 1997. The three days (17, 18, and 19) with the best image quality were selected for this initial research. We have found that macrospicules are triggered by interaction either between intranetwork and network elements or among several network magnetic elements. We present a model to explain the spatial relationship between macrospicules and magnetic fields.  相似文献   

18.
Goode  P.R.  Wang  H.  Marquette  W.H.  Denker  C. 《Solar physics》2000,195(2):421-431
In principle, the optical transfer function can be described by a single parameter, the Fried parameter r 0, which reveals the net effect of the turbulence along the line of sight. We present measurements of the Fried parameter obtained from the spectral ratio technique and compare them to data from solar scintillometry and from angle-of-arrival fluctuations. The measurements were performed at the Big Bear Solar Observatory (BBSO) in 1997 and 1998 – before and after a series of steps were taken to reduce dome seeing. The results show that the dome seeing was considerably reduced and now approaches the seeing conditions measured outside the dome. The Fried parameter as measured by the spectral ratio technique now frequently exceeds r 0=10 cm at our lake site observatory. Accounting for the remaining dome and window seeing, the scintillometer and the angle-of-arrival data imply the potential for an r 0>20 cm for BBSO during days of good seeing.  相似文献   

19.
In this article, an automated solar flare detection method applied to both full-disk and local high-resolution H\(\upalpha\) images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of H\(\upalpha\) solar flares.  相似文献   

20.
The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen’s University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k × 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 – 15 e s−1 pixel−1), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号