首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sub-Plinian to Plinian eruptions of basic magma present a challenge to modeling volcanic behavior because many models rely on magma becoming viscous enough during ascent to behave brittlely and cause fragmentation. Such models are unable, however, to strain low viscosity magma fast enough for it to behave brittlely. That assumes that such magmas actually have low viscosities, but the rare Plinian eruptions of basic magma may in fact result from them being anomalously viscous. Here, we examine two such eruptions, the 122 B.C. eruption of hawaiitic basalt from Mt. Etna and the late Pleistocene eruption of basaltic andesite from Masaya Caldera, to test whether they were anomalously viscous. We carried out hydrothermal experiments on both magmas and analyzed glass inclusions in plagioclase phenocrysts from each to determine their most likely pre-eruptive temperatures and water contents. We find that the hawaiite was last stored at 1,000–1,020°C, whereas the basaltic andesite was last stored at 1,010–1,060°C, and that both were water saturated with ∼3.0 wt.% water dissolved in them. Such water contents are not high enough to trigger Plinian explosive behavior, as much more hydrous basic magmas erupt less violently. In addition, despite being relatively cool, the viscosities of both magmas would range from ∼102.2–2.5 Pa s before erupting to ∼104 Pa s when essentially degassed, all of which are too fluid to cause brittle disruption. Without invoking special external forces to explain all such eruptions, one of the more plausible explanations is that when the bubble content reaches some critical value the fragile foam-like magma disrupts. The rarity of Plinian eruptions of basic magma may be because such magmas must ascend fast enough to retain their bubbles.  相似文献   

2.
Origin of andesite and its bearing on the Island arc structure   总被引:1,自引:0,他引:1  
The hypothesis that andesite magmas originate from basalt magmas through fractionation is supported for the following reasons: 1) A close association of andesite and dacite with basalt in many volcanoes and a complete gradation in chemistry and mineralogy throughout this suite. 2) Formation of andesite magmas from basalt magmas by differentiation in situ of some intrusive and extrusive bodies. 3) Agreement between the calculated compositions of solid materials to be subtracted from basalt magmas to yield andesite magmas and the observed mineralogy of phenocrysts in these rocks. 4) Higher alkali contents in andesite and dacite associated with high-alumina basalt than in those associated with tholeiite. 5) A complete gradation from the high iron concentration trend of basalt magma fractionation (Skaergaard) to the low or noniron concentration trend (the calc-alkali series) which can be ascribed to the difference of the stage of magnetite crystallization. 6) Similarity between the orogenic rock suite and plateau basalts in the preferential eruption of magmas of middle fractionation stage, givin rise to the great volume of andesite in the orogenic belts and iron-rich basalt in the plateau lavas. Petrological and seismic refraction studies suggest that a great volume of gabbroic materials are present in the lower crust underneath the volcanic belts as a complementary material for the andesite lavas. The island arc structure would develop by repeated eruption of andesite on the surface and by thickening of the oceanic crust underneath the arc due to the addition of gabbroic materials. The suitable portion of the lower crust may be subjected to partial melting to produce granitic magma in the later stage of development of the arc, successively changing it to a part of the adjacent continent.  相似文献   

3.
Volcanic rocks from subduction zones are widely believed to originate by partial melting of mantle lherzolite modified by the addition of a fluid or melt extracted from the down-going slab. U-series disequilibrium in such magmas is commonly attributed to this particular melting process. A detailed study of U-series isotopes in the 650 y. B.P. eruptive sequence of Mt. Pelée (Martinique) shows that plinian products are in radioactive equilibrium, whereas dome-forming products of the same eruption are characterized by 238U-230Th disequilibrium. The same features apply to other plinian and dome-forming products of this volcano and systematically correspond to different eruptive styles. We attribute these characteristics to variable superficial interaction of magmas with the hydrothermal system during the final stages of eruption rather than to deep magma genesis processes. This conclusion might be generally applicable to arc magmas.  相似文献   

4.
The six eruption episodes of the 10 ka Pahoka–Mangamate (PM) sequence (see companion paper) occurred over a ?200–400-year period from a 15-km-long zone of multiple vents within the Tongariro Volcanic Centre (TgVC), located at the southern end of the Taupo Volcanic Zone (TVZ). Most TgVC eruptives are plagioclase-dominant pyroxene andesites and dacites, with strongly porphyritic textures indicating their derivation from magmas that ascended slowly and stagnated at shallow depths. In contrast, the PM pyroclastic eruptives show petrographic features (presence of phenocrystic and groundmass hornblende, and the coexistence of olivine and augite without plagioclase during crystallisation of phenocrysts and microphenocrysts) which suggest that their crystallisation occurred at depth. Depths exceeding 8 km are indicated for the dacitic magmas, and >20 km for the andesitic and basaltic andesitic magmas. Other petrographic features (aphyric nature, lack of reaction rims around hornblende, and the common occurrence of skeletal microphenocrystic to groundmass olivine in the andesites and basaltic andesites) suggest the PM magmas ascended rapidly immediately prior to their eruption, without any significant stagnation at shallow depths in the crust. The PM eruptives show three distinct linear trends in many oxide–oxide diagrams, suggesting geochemical division of the six episodes into three chronologically-sequential groups, early, middle and late. Disequilibrium features on a variety of scales (banded pumice, heterogeneous glassy matrix and presence of reversely zoned phenocrysts) suggest that each group contains the mixing products of two end-member magmas. Both of these end-member magmas are clearly different in each of the three groups, showing that the PM magma system was completely renewed at least three times during the eruption sequence. Minor compositional diversity within the eruptives of each group also allows the PM magmas to be distinguished in terms of their source vents. Because petrography suggests that the PM magmas did not stagnate at shallow levels during their ascent, the minor diversity in magmas from different vents indicates that magmas ascended from depth through separate conduits/dikes to erupt at different vents either simultaneously or sequentially. These unique modes of magma transport and eruption support the inferred simultaneous or sequential tapping of small separate magma bodies by regional rifting in the southern Taupo Volcanic Zone during the PM eruption sequence (see companion paper).  相似文献   

5.
Igneous plutons frequently show chemical zoning. The most commonly documented zoning is with the lighter, more silicic, rocks in the centre of the body and the denser, more basic, rocks in the external zone (normal zoning). Less commonly, some plutons show reverse zoning so that the more basic rocks occupy the centre. Widespread evidence shows that zoning in many plutons is the result of interaction between basic and silicic melts.

This work studies, by means of finite difference numerical models, pluton zoning which is due to internal circulation in diapirs comprising two magmas of different composition. Diapirs are modelled here as buoyant isothermal spheres composed of two Newtonian fluids rising through a Newtonian ambient fluid. Ratios of viscosities and densities of the two fluids were varied and the results demonstrated two different styles of internal circulation in rising spheres. The first style, termed “coupled circulation”, is characterised by continuous overturning of both the fluids in a single cell, evolving through both normal and reverse compositional zoning. The overturns stir the fluids and enhance both magma mingling and mixing. Coupled circulation develops in spheres comprising fluids of similar densities and viscosities. As these properties become increasingly different the internal circulation tends to decouple. “Decoupled circulation”, is characterised by circulation of the fluids in two separate cells. Decoupling stops the overturns between the two magmas so that the diapir preserves a reverse zoning throughout its rise, with the denser fluid occupying the central zone. There is less possibility of magma mingling in diapirs undergoing decoupled circulation. Thus, pairs of magmas of similar properties, such as andesite and rhyolite, are most likely to develop coupled circulation leading to both normal and reverse zoning in diapirs; whereas magmas of very different properties, such as basalt and rhyolite, are most likely to decouple resulting in reverse zonation.

The models indicate that reverse zoning would be the most common internal pluton geometry if zoning were controlled by internal circulation alone. Model diapirs which rise along channels of warm, low viscosity wall-rock (hot Stokes' models) or low viscosity shear zones show an increased tendency towards coupled circulation and more intense mechanical stirring of the magmas.  相似文献   


6.
The Puu Oo eruption in the middle of Kilauea volcano's east rift zone provides an excellent opportunity to utilize petrologic constraints to interpret rift-zone processes. Emplacement of a dike began 24 hours before the start of the eruption on 3 January 1983. Seismic and geodetic evidence indicates that the dike collided with a magma body in the rift zone. Most of the lava produced during the initial episode of the Puu Oo eruption is of hybrid composition, with petrographic and geochemical evidence of mixing magmas of highly evllved and more mafic compositions. Some olivine and plagioclase grains in the hybrid lavas show reverse zoning. Whole-rock compositional variations are linear even for normally compatible elements like Ni and Cr. Leastsquares mixing calculations yield good residuals for major and trace element analyses for magma mixing. Crystal fractionation calculations yield unsatisfactory residuals. The highly evolved magma is similar in composition to the lava from the 1977 eruption and, at one point, vents for these two eruptions are only 200 m apart. Possibly both the 1977 lava and the highly evolved component of the episode 1 Puu Oo lava were derived from a common body of rift-zone-stored magma. The more mafic mixing component may be represented by the most mafic lava from the January 1983 eruption; it shows no evidence of magma mixing. The dike that was intruded just prior to the start of the Puu Oo eruption may have acted as a hydraulic plunger causing mixing of the two rift-zone-stored magmas.  相似文献   

7.
The liquid being sampled from a draining reservoir of density-stratified fluid, such as an erupting zoned magma chamber, is derived from a relatively thin withdrawal layer adjacent to the level of the chamber outlet. This is a consequence of the buoyancy force associated with the density gradient inhibiting vertical motion so that the opportunity for widely separated density levels (compositions) to be tapped and mingled syneruptively is suppressed.Density gradients in zoned chambers of 0.02 – 10 kgm−3/m are suggested by data from caldera-forming eruptions. Viscosity gradients can be specified for a given density gradient using calculated relationships between viscosity and density. Published compositional and geothermometric data are used to show that zoned high-silica rhyolites decrease in viscosity upward because of the roofward concentration of dissolved volatiles. Other zoned calc-alkaline magmas increase in viscosity upward because of decreasing temperature and concentration of network modifying cations.A method is developed of calculating the scale of the withdrawal layer thickness, δ, for given kinematic viscosity, eruption rate, and density and viscosity gradients. The method is systematized by the identification of specific flow regimes describing the action of either viscous or inertial forces in balancing the buoyancy force. Thin withdrawal layers are favoured by small eruption rates, small viscosity, and by large density gradients. For particularly steep density gradients, however, the consequently large viscosity gradient plays a role in determining the withdrawal layer thickness. Withdrawal layer thicknesses of the order of 100 m are calculated for typical pyroclastic eruptions of zoned acid magma, and are mostly independent of the viscosity gradient.The vertical scale at which a zoned chamber is instantaneously being tapped during an eruption is equal to the scale of the withdrawal layer thickness. Thus, an eruption that causes collapse of a caldera block through a height that is less than that of the withdrawal layer scale will produce magmas from deeper levels than that to which the chamber roof sinks. In this case the eruption is said to oversample the chamber with respect to the amount of caldera collapse and will produce an essentially constant range of compositions throughout. Alternatively, if the caldera collapse distance is much greater than δ then the selective withdrawal process leads to successive levels of the chamber being “skimmed off” (on a scale δ). This allows the compositional stratigraphy of the chamber to be inverted by the eruptive process, with little opportunity for syneruptive mixing between diverse magma compositions. The geological record shows that most calderas associated with zoned magmas collapsed through vertical distances in excess of 100 m (the characteristic estimate for δ) and, in agreement with our modelling of selective withdrawal, show smooth correlations between composition, or temperature, and the order of eruption.  相似文献   

8.
Magma mixing and magma plumbing systems in island arcs   总被引:3,自引:0,他引:3  
Petrographic features of mixed rocks in island arcs, especially those originating by the mixing of magmas with a large compositional and temperature difference, such as basalt and dacite, suggest that the whole mixing process from their first contact to the final cooling (= eruption) has occurred continuously and in a relatively short time period. This period is probably less than several months, considerably shorter than the whole volcanic history. There may also be a prolonged quiescent interval, lasting longer than several days, between the magmas' contact and the mechanical mixing. This interval will allow the basic magma to cool and produce a semi-solidified boundary which is later disrupted by flow movements to produce basic inclusions.Mixing of magmas of contrasting chemical composition need not be the inevitable consequence of the contact of the magmas. It is, however, made more probable by forced convection caused by motive force such as the injection of a basic magma into an acidic magma chamber. A short interval between their initial contact and the final eruption requires that the acid magma chamber has a small volume, of the same order or less than that the introduced basic magma.The volcanic activity of Myoko volcano, central Japan, of the last 100,000 years shows alternate eruptions of hybrid andesite by mixing of basaltic and dacitic magmas, and non-mixed basalt to basaltic andesite. There was a repose period of 20,000 to 30,000 years between eruptions. The acidic chamber, eventually producing the mixed andesite activity, is formed during the repose period by the « in situ » solidification of the original basic magma against its wall. The volume of the chamber is very small, probably about 10–2 km3. Basaltic magma with constant chemical composition is supplied to the shallow chamber from another deep seated basaltic chamber. The volume of the shallow magma chamber may be critical to the characteristics of volcanic activity and its products.  相似文献   

9.
A new model is presented which simulates the dispersal and deposition of material from a Hawaiian eruption column. The model treats the Hawaiian column as a coarse-grained Plinian column and uses a modified version of the Wilson and Walker [Wilson, L., Walker, G.P.L., 1987. Explosive volcanic eruptions: VI. Ejecta dispersal in Plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys. J. R. Astron. Soc. 89, 657–679.] Plinian pyroclast dispersal model to simulate the fall out of material during a Hawaiian eruption. The model results are found to be in good agreement with independent estimates of various parameters made for the 1959 Kilauea Iki eruption of Kilauea volcano. The close agreement between the model results and these independent estimates shows that, dynamically, Hawaiian eruptions are indistinguishable from Plinian eruptions. The major differences in the styles and deposits of these two types of eruptions are accounted for by differences in the mass fluxes and gas contents of the erupting magmas and, most fundamentally, by differences in the grainsize distribution of the erupted clasts. Plume heights predicted by the model are greater than those found for previous models of Hawaiian eruptions. This is because previous models did not allow for the progressive fall out of particles from the plume and, more importantly, made no correction for the velocity disequilibrium between gas and clasts when the grainsize distribution is coarse.  相似文献   

10.
Glassy lava fragments were collected in pushcores or using a small suction-sampler from over 450 sites along the Juan de Fuca Ridge, Blanco Transform Fault, Gorda Ridge, northern East Pacific Rise, southern East Pacific Rise, Fiji back-arc basin, and near-ridge seamounts in the Vance, President Jackson, Taney, and a seamount off southern California. The samples consist of angular glass fragments, limu o Pele, Pele's hair, and other fluidal fragments formed during pyroclastic eruptions. Since many of the sites are deeper than the critical point of seawater, fragmentation cannot be hydrovolcanic and caused by expansion of seawater to steam. The glass fragments have a wide range of MORB compositions, ranging from fractionated to primitive and from depleted to enriched. Enriched magmas, which have higher volatile contents, may form more abundant pyroclasts than depleted magmas. Eruptions with high effusion rates produce sheet flows and abundant pyroclasts whereas those with low effusion rates produce pillow ridges and few pyroclasts. This relation suggests that high effusion and conduit rise rates are coupled to high magmatic gas contents. The eruptions are mainly effusive with a minor strombolian bubble burst component. We propose that the gas phase is an added component of variable amounts of magmatic foam from the top of the magma reservoir. As the mixture of resident magma and foam rises in the conduit, the larger bubbles in the foam rise more quickly and sweep up the smaller bubbles nucleating and growing from the resident magma. On eruption, the process of bubble coalescence is more complete for the slower rising, gas-poor lavas that erupt as pillow lavas whereas the limu o Pele associated with sheet flow eruptions commonly contain several percent vesicles that avoided coalescence during ascent. The spatter erupted at the vent is quench granulated in seawater above the vent, reducing the pyroclast grainsize. The granulated spatter and limu o Pele fragments are then entrained in a rising plume of seawater heated by the eruption, which disperses them to distances as great as 5 km from the vent.  相似文献   

11.
Eruptions from the top of a dyke containing two layers of magma can selectively withdraw the upper layer, leaving the dense lower layer undisturbed. Alternatively, if the upper layer is thinner than some critical depth, d, then both layers will be tapped simultaneously. Laboratory experiments yield an equation giving the draw-up depth, d, as a function of dyke geometry, eruption rate, and magma properties. This equation is valid for low to moderate Reynolds numbers and applies to dykes which are much longer than the draw-up depth. Short dykes will yield larger draw-up depths than are predicted by the equation. A large draw-up depth is favoured when the eruption rate, upper layer magma viscosity, or dyke length/breadth ratio is large or the density difference is small. Calculations show that rhyolite-capped dykes can contain several hundred metres thickness of rhyolite when a lower layer is first tapped. Draw-up depths in a dyke are as much as an order of magnitude greater than those for an identical eruption from a large cylindrical chamber tapped by a central vent. Nonetheless, for low effusion rate eruptions from small dykes, as at Inyo Domes, California, relatively small draw-up heights are calculated (e.g. 70 m). This is compatible with the small amounts of mixed magmas found at the transition between the two rhyolite magmas erupted there [11].  相似文献   

12.
Systematic analyses of the major-element chemistry of products of several eruptions during syn-and post-caldera stages of Izu-Oshima volcano were compiled. Comparisons of the products of large-scale eruptions in 1338?, 1421? and 1777–1778, of intermediate-scale eruptions in 1950–1951 and 1986, and of small-scale eruptions in 1954, 1964 and 1974 clearly show the existence of two types of magmas. One is “plagioclase-controlled” and the other is “differentiated” magma (multimineral-controlled); i.e. the bulk chemistry of the first magma type is controlled by plagioclase addition or removal, while that of the second type is controlled by fractionation of plagioclase, orthopyroxene, clinopyroxene, and titanomagnetite. Eruptions of Izu-Oshima volcano have occurred at the summit and along the flanks. Summit eruptions tap only plagioclase-controlled magmas, while flank eruptions supply both magma types. It is considered unlikely that both magma types would coexist in the same magma chamber based on the petrology. In the case of the 1986 eruption, the flank magma was isolated sometime in the past from the summit magma chamber or central conduit, and formed small magma pockets, where further differentiation occurred due to relatively rapid cooling. In a period of quiescence prior to the 1986 eruption, new magma was supplied to the summit magma chamber, and the summit eruption began. The dike intrusion or fracturing around the small magma pockets triggered the flank eruption of the differentiated magma. This model can be applied to the large-scale flank eruption in 1338(?) which erupted differentiated magmas. In 1421(?), the flank eruption tapped plagioclase-controlled magma. In this case, the isolated magmas from the summit magma chamber directly penetrated the flank without differentiation.  相似文献   

13.
During the 1929 activity of Hokkaido-Komagatake volcano, the Plinian eruption of a phenocryst-rich andesite was preceded by a small eruption of more mafic magma formed by magma mixing. A similar eruption sequence has been reported for some other eruptions (Pallister et al. 1996; Venezky and Rutherford 1997), suggesting that eruption of a mixed magma is a precursor of phenocryst-rich magmas. For the purpose of understanding the tapping processes of the phenocryst-rich magma chamber, we investigated the temporal variation in the erupted magma and estimated the viscosity and density of the end-member and mixed magmas with constraints drawn from petrography. For the precursory mixed magma we estimate 33dž vol.% phenocrysts, andesitic-dacitic melt composition, 3 wt.% H2O content, and temperature of 1040°C. In comparison, for the climactic, silicic end-member magma we estimate 48Dž vol.% phenocryst, high-silica rhyolitic melt, 3 wt.% H2O, and temperature of 950°C, respectively. The mafic end-member magma, which was not erupted, is thought to be an almost aphyric basaltic-andesitic magma, based on mass balance calculation of the phenocryst content. The proportion of the mafic end-member magma component in the mixed magma was calculated to be 20-40 wt.%. On the basis of these data, we estimate magma viscosities of 103.9, 106.9, and 102.0 Pa s for the mixed, silicic end-member, and mafic end-member magmas, respectively. The calculated density differences among these magmas are inconsequential when possible errors are considered. We calculate the minimum excess pressure required for dike propagation to be 31 MPa for the silicic end-member magma and 8 MPa for the mixed magma, using the estimated viscosity and dike propagation model of Rubin (1995). If we assume that excess pressure is limited by the wall rock strength of the magma chamber, excess pressure retainable in the magma chamber is less than ca. 20 MPa. This suggests that the mixed magma was able to ascend to the surface without freezing, whereas the viscous silicic end-member magma could not. The formation and precursory eruption of the mixed magma are, therefore, effective and necessary initiation processes for the phenocryst-rich, viscous magma eruption.  相似文献   

14.
Compositional heterogeneity (56–64 wt% SiO2 whole-rock) in samples of tephra and lava from the 1986 eruption of Augustine Volcano, Alaska, raises questions about the physical nature of magma storage and interaction beneath this young and frequently active volcano. To determine conditions of magma storage and evolutionary histories of compositionally distinct magmas, we investigate physical and chemical characteristics of andesitic and dacitic magmas feeding the 1986 eruption. We calculate equilibrium temperatures and oxygen fugacities from Fe-Ti oxide compositions and find a continuous range in temperature from 877 to 947°C and high oxygen fugacities (ΔNNO=1–2) for all magmas. Melt inclusions in pyroxene phenocrysts analyzed by Fourier-transform infrared spectroscopy and electron probe microanalysis are dacitic to rhyolitic and have water contents ranging from <1 to ∼7 wt%. Matrix glass compositions are rhyolitic and remarkably similar (∼75.9–76.6 wt% SiO2) in all samples. All samples have ∼25% phenocrysts, but lower-silica samples have much higher microlite contents than higher-silica samples. Continuous ranges in temperature and whole-rock composition, as well as linear trends in Harker diagrams and disequilibrium mineral textures, indicate that the 1986 magmas are the product of mixing between dacitic magma and a hotter, more mafic magma. The dacitic endmember is probably residual magma from the previous (1976) eruption of Augustine, and we interpret the mafic endmember to have been intruded from depth. Mixing appears to have continued as magmas ascended towards the vent. We suggest that the physical structure of the magma storage system beneath Augustine contributed to the sustained compositional heterogeneity of this eruption, which is best explained by magma storage and interaction in a vertically extensive system of interconnected dikes rather than a single coherent magma chamber and/or conduit. The typically short repose period (∼10 years) between Augustine's recent eruptive pulses may also inhibit homogenization, as short repose periods and chemically heterogeneous magmas are observed at several volcanoes in the Cook Inlet region of Alaska.  相似文献   

15.
Fluid motions are important in virtually all volcanic processes. Attempts to understand the mechanism of volcanic activity or the origin of magmas generally require knowledge of fluid dynamics. The use of fluid dynamics is illustrated by considering the Reynolds numbers of some volcanic fluid flow systems. The physics of high Reynolds number buoyant plumes is found to be important in situations ranging from the rise of eruption columns in the atmosphere to the replenishment of basaltic magma chambers. Application of theoretical and experimental work on plumes enables eruption rates to be deduced from eruption column heights and new hypotheses on the origin of some magmatic ores to be put forward. The influence of Reynolds number on the behaviour of lava is also discussed with application to the origin of Archaean komatiite lavas. Komatiite lavas are argued to have flowed in a turbulent manner whereas modern basalt lavas nearly always flow by laminar shear. The turbulent character of komatiites seems to provide an explanation for the origin of associated nickel-sulfide mineralization in komaiites by melting and assimilation of sulfide-rich sediment. This hypothesis depends on komatiite flow having had a high Reynolds number.  相似文献   

16.
 New and detailed petrographic observations, mineral compositional data, and whole-rock vs glass compositional trends document magma mixing in lavas erupted from Kilauea's lower east rift zone in 1960. Evidence includes the occurrence of heterogeneous phenocryst assemblages, including resorbed and reversely zoned minerals in the lavas inferred to be hybrids. Calculations suggest that this mixing, which is shown to have taken place within magma reservoirs recharged at the end of the 1955 eruption, involved introduction of four different magmas. These magmas originated beneath Kilauea's summit and moved into the rift reservoirs beginning 10 days after the eruption began. We used microprobe analyses of glass to calculate temperatures of liquids erupted in 1955 and 1960. We then used the calculated proportions of stored and recharge components to estimate the temperature of the recharge components, and found those temperatures to be consistent with the temperature of the same magmas as they appeared at Kilauea's summit. Our studies reinforce conclusions reached in previous studies of Kilauea's magmatic plumbing. We infer that magma enters shallow storage beneath Kilauea's summit and also moves laterally into the fluid core of the East rift zone. During this process, if magmas of distinctive chemistry are present, they retain their chemical identity and the amount of cooling is comparable for magma transported either upward or laterally to eruption sites. Intrusions within a few kilometers of the surface cool and crystallize to produce fractionated magma. Magma mixing occurs both within bodies of previously fractionated magma and when new magma intersects a preexisting reservoir. Magma is otherwise prevented from mixing, either by wall-rock septa or by differing thermal and density characteristics of the successive magma batches. Received: July 10, 1995 / Accepted: October 10, 1995  相似文献   

17.
After the major 1991–1993 eruption, Mt. Etna resumed flank activity in July 2001 through a complex system of eruptive fissures cutting the NE and the S flanks of the volcano and feeding effusive activity, fire fountains, Strombolian and minor phreatomagmatic explosions. Throughout the eruption, magmas with different petrography and composition were erupted. The vents higher than 2,600 m a.s.l. (hereafter Upper vents, UV) erupted porphyritic, plagioclase-rich trachybasalt, typical of present-day summit and flank activity. Differently, the vents located at 2,550 and 2,100 m a.s.l. (hereafter Lower vents, LV) produced slightly more primitive trachybasalt dominated by large clinopyroxene, olivine and uncommon minerals for Etna such as amphibole, apatite and orthopyroxene and containing siliceous and cognate xenoliths. Petrologic investigations carried out on samples collected throughout the eruption provided insights into one of the most intriguing aspects of the 2001 activity, namely the coeval occurrence of distinct magmas. We interpret this evidence as the result of a complex plumbing system. It consists in two separate magma storage systems: a shallow one feeding the activity of the UV and a deeper and more complex storage related to the activity of LV. In this deep storage zone, which is thermally and compositionally zoned, the favourable conditions allow the crystallization of amphibole and the occurrence of cognate xenoliths representing wall cumulates. Throughout 2001 eruption, UV and LV magmas remain clearly distinct and ascended following different paths, ruling out the occurrence of mixing processes between them. Furthermore, integrating the 2001 eruption in the framework of summit activity occurring since 1995, we propose that the 2001 magma feeding the vents lower than 2,600 m a.s.l. is a precursor of a refilling event, which reached its peak during the 2002–2003 Etna flank eruption.  相似文献   

18.
Size distributions of plagioclase crystals in series of recent porphyritic dacite lavas from Kameni volcano, Greece, can be modelled by mixing two populations of crystals, each with overlapping linear crystal size distributions (CSD)—termed microlites and megacrysts. The magmas bearing the microlites and megacrysts started to crystallise 6–13 and 24–96 years, respectively, before each eruption. The dates of initiation of crystallisation of the megacrysts indicate that they are left-overs of earlier injections of new magma into a shallow chamber: some magma remains after each eruption and continues to crystallise. New magma with few or no crystals is then introduced and the microlites crystallise from the mixed magma. Eruption followed 6–13 years after mixing. Such a model would suggest that some porphyritic magmas are products of a shallow magma chamber that is never completely emptied, just topped up from time to time.  相似文献   

19.
Extrusive carbonatites are described from the Miocene alkaline complex of the Kaiserstuhl, Rhinegraben, Western Germany. Agglutinated carbonatitic lapilli form pyroclastic rocks in which all components show forms acquired when a highly fluid melt was sprayed into the air by an explosive eruption: droplets, spherical and elliptical lapilli, rods, dumbbell and pear-shaped forms.Complete morphological analogies suggest a mechanism similar to the formation of “Pele's tears”, basaltic droplets formed by the eruption of the most fluid Hawaiian basaltic magmas. Evidence is provided by this example that CaCO3-carbonatitic magmas can exist in nature under surface conditions displaying extremely low viscosity.  相似文献   

20.
The explosive behavior and the rheology of lavas in basaltic volcanoes, usually driven by differentiation, can also be significantly affected by the kinetics of magma degassing in the upper portion of the feeding system. The complex eruption of 2001 at Mt. Etna, Italy, was marked by two crucial phenomena that occurred at the Laghetto vent on the southern flank of the volcano: 1) intense explosive activity and 2) at the end of the eruption, emission of a lava flow with higher viscosity than flows previously emitted from the same vent. Here, we investigate the hypothesis that these events were driven by the injection of volatile-rich magma into the feeding system. The input and mixing of this magma into a reservoir containing more evolved magma had the twofold effect of increasing 1) the overall concentration of volatiles and 2) their exsolution with consequent efficient vesiculation and degassing. This led to an explosive stage of the eruption, which produced a ~75-m-high cinder cone. Efficient volatile loss and the consequent increase of the liquidus temperature brought about the nucleation of Fe-oxides and other anhydrous crystalline phases, which significantly increased the magma viscosity in the upper part of the conduit, leading to the emission of a high viscosity lava flow that ended the eruption. The 2001 eruption has offered the opportunity to investigate the important role that input of volatile-rich magma may exert in controlling not only the geochemical features of erupted lavas but also the eruption dynamics. These results present a new idea for interpreting similar eruptions in other basaltic volcanoes and explaining eruptions with uncommonly high explosivity when only basic magmas are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号