首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the distribution of Cl, F, Li, and Be in pumices, obsidians, and crystallized dome rocks at Chaitén volcano in 2008?C2009 in order to explore the behavior of these elements during explosive and effusive volcanic activity. Electron and ion microprobe analyses of matrix and inclusion glasses from pumice, obsidian, and microlite-rich dome rock indicate that Cl and other elements were lost primarily during crystallization of the rhyolitic dome after it had approached the surface. Glass in pumice and microlite-free obsidian has 888?±?121?ppm Cl, whereas residual glass in evolved microlite-rich dome rock generally retains less Cl (as low as <100?ppm). Estimated Cl losses were likely >0.7?Mt Cl, with a potential maximum of 1.8?Mt for the entire 0.8-km3 dome. Elemental variations reflect an integrated bulk distribution ratio for Cl?>?1.7 (1.7 times more Cl was degassed or incorporated into crystals than remained in the melt). Because Cl is lost dominantly as the very last H2O is degassed, and Cl is minimally (if at all) partitioned into microlites, the integrated vapor/melt distribution ratio for Cl exceeds 200 (200 times more Cl in the evolved vapor than in the melt). Cl is likely lost as HCl, which is readily partitioned into magmatic vapor at low pressure. Cl loss is accelerated by the change in the composition of the residual melt due to microlite growth. Cl loss also may be affected by open-system gas fluxing. Integrated vapor-melt distribution ratios for Li, F, and Be all exceed 1,000. On degassing, an unknown fraction of these volatiles could be immediately dissolved in rainwater.  相似文献   

2.
An approximately 20-m-thick alkali basalt flow on the Penghu Islands contains ∼20 cm thick, horizontally continuous (>50 m), vesicular layers separated by ∼1.5 m of massive basalt in its upper 8.5 m. The three layers contain ocelli-like "vesicles" filled with nepheline and igneous carbonate. They are coarse grained and enriched in incompatible elements relative to the massive basalt with which they form sharp contacts. These vesicular layers (segregation veins) formed when residual liquid in the underlying crystal mush was forced (gas filter pressing) or siphoned into three thermally induced horizontal cracks that opened successively in the advancing crystal mush of the flow's upper crust. Most vesicular layer trace elements can be modelled by residual melt extraction after 25–40% fractional crystallization of massive basalt underlying each layer. Sulphur, Cl, As, Zn, Pb, K, Na, Rb, and Sr show large concentration changes between the top, middle, and bottom layers, with each vesicular and underlying massive basalt forming a chemically distinct "pair." The large changes between layers are difficult to account for by crystal fractionation alone, because other incompatible elements (e.g., La, Sm, Yb, Zr, Nb) and the major elements change little. The association of these elements (S, Cl, etc.) with "fluids" in various geologic environments suggests that volatiles influenced differentiation, perhaps by moving alkali, alkaline earth, and chalcophile elements as magma-dissolved volatile complexes. Volatiles may have also led to large grain sizes in the segregation veins by lowering melt viscosities and raising diffusion rates. The chemical variability between layers indicates that a convection and concentration mechanism acted within the flow. The specific process cannot be determined, but different rates of vesicle plume rise (through the flow) and/or accumulation in the upper crust's crystal mush might account for the chemical pairing and extreme variations in Cl, S, As, and C. This study emphasizes the importance of sampling vesicular rocks in flows. It also suggests that volatiles play important physical and chemical roles in rapidly differentiating mafic magmas in processes decoupled from crystal fractionation. Received: 11 November 1996 / Accepted: 20 September 1998  相似文献   

3.
The average chemical compositions of the continental crust and the oceanic crust (represented by MORB), normalized to primitive mantle values and plotted as functions of the apparent bulk partition coefficient of each element, form surprisingly simple, complementary concentration patterns. In the continental crust, the maximum concentrations are on the order of 50 to 100 times the primitive-mantle values, and these are attained by the most highly incompatible elements Cs, Rb, Ba, and Th. In the average oceanic crust, the maximum concentrations are only about 10 times the primitive mantle values, and they are attained by the moderately incompatible elements Na, Ti, Zr, Hf, Y and the intermediate to heavy REE.This relationship is explained by a simple, two-stage model of extracting first continental and then oceanic crust from the initially primitive mantle. This model reproduces the characteristic concentration maximum in MORB. It yields quantitative constraints about the effective aggregate melt fractions extracted during both stages. These amount to about 1.5% for the continental crust and about 8–10% for the oceanic crust.The comparatively low degrees of melting inferred for average MORB are consistent with the correlation of Na2O concentration with depth of extrusion [1], and with the normalized concentrations of Ca, Sc, and Al ( 3) in MORB, which are much lower than those of Zr, Hf, and the HREE ( 10). Ca, Al and Sc are compatible with clinopyroxene and are preferentially retained in the residual mantle by this mineral. This is possible only if the aggregate melt fraction is low enough for the clinopyroxene not to be consumed.A sequence of increasing compatibility of lithophile elements may be defined in two independent ways: (1) the order of decreasing normalized concentrations in the continental crust; or (2) by concentration correlations in oceanic basalts. The results are surprisingly similar except for Nb, Ta, and Pb, which yield inconsistent bulk partition coefficients as well as anomalous concentrations and standard deviations.The anomalies can be explained if Nb and Ta have relatively large partition coefficients during continental crust production and smaller coefficients during oceanic crust production. In contrast, Pb has a very small coefficient during continental crust production and a larger coefficient during oceanic crust production. This is the reason why these elements are useful in geochemical discrimination diagrams for distinguishing MORB and OIB on the one hand from island arc and most intracontinental volcanics on the other.The results are consistent with the crust-mantle differentiation model proposed previously [2]. Nb and Ta are preferentially retained and enriched in the residual mantle during formation of continental crust. After separation of the bulk of the continental crust, the residual portion of the mantle was rehomogenized, and the present-day internal heterogeneities between MORB and OIB sources were generated subsequently by processes involving only oceanic crust and mantle. During this second stage, Nb and Ta are highly incompatible, and their abundances are anomalously high in both OIB and MORB.The anomalous behavior of Pb causes the so-called “lead paradox”, namely the elevated U/Pb and Th/Pb ratios (inferred from Pb isotopes) in the present-day, depleted mantle, even though U and Th are more incompatible than Pb in oceanic basalts. This is explained if Pb is in fact more incompatible than U and Th during formation of the continental crust, and less incompatible than U and Th during formation of oceanic crust.  相似文献   

4.
Internal differentiation processes in a solidifying lava flow were investigated for the Kutsugata lava flow from Rishiri Volcano in northern Japan. In a representative 6-m thick lava flow that was investigated in detail in this study, segregation products darker than the host lavas manifested mainly in the form of pipes (vesicle cylinders) and layers (vesicle sheets), occurring around 0.5–2.3 m and 2.0–4.0 m above the base, respectively. Both the cylinders and sheets are significantly richer in incompatible elements such as TiO2 and K2O than the host lavas, which suggest that these products essentially represent residual melt produced during solidification of the lava flow. Field observation and the geochemical features of the lavas suggest that the vesicle cylinders grew upward from near the base of the flow by continuous feeding of residual melt from the neighboring host lavas to the heads of the cylinders. On the other hand, the vesicle sheets were produced in situ in the solidifying lava flow as fracture veins caused by horizontal compression. The vesicle cylinders have a remarkably higher MgO content (up to 8 wt.%) than the host lava (< 6 wt.%), whereas the vesicle sheets display MgO depletion (as low as 3.5 wt.%). The relatively high MgO content of the vesicle cylinders cannot be explained solely by the mechanical mixing of olivine phenocrysts with the residual melt. It is suggested that the vesicle cylinders were produced by the extraction of olivine-bearing interstitial melt from an augite-plagioclase network in the host lava, whereas the vesicle sheets were formed by the migration of the residual melt from a crystal network consisting of plagioclase, augite, and olivine in the host lava into platy fractures. We infer that this selective crystal fractionation for forming the vesicle cylinders resulted from processes in which abundant vesicles rejected from the upward-migrating floor solidification front prevented olivine crystals from being incorporated into the crystal network in the host lava. The vesicle cylinders are considered to have formed in ∼ 1 day after the lava flow came to rest, while relatively large vesicle sheets (> 1 cm thick) appeared much later (after ∼ 9 days). The formation of these segregation products was essentially complete within 20 days after the lava emplacement.  相似文献   

5.
Although trace element modeling has been used to great advantage for petrogenetic interpretations of basaltic systems, similar studies on igneous rocks of granitic composition have been fewer. In general the mineral/melt distribution coefficients for rare earth elements (REE) in granitic melts are equal to or greater than those for similar minerals in the basaltic system. Thus the effects of these minerals on the REE patterns of granitic melts during partial melting or differentiation are exaggerated as compared to basaltic systems, making detection of residual phases easier. For the K/Rb ratio, if neither a K-feldspar component nor biotitephlogopite is present in the residue, it is difficult to reduce the K/Rb ratio of the melt relative to the parent by a factor of two by either differentiation or partial melting.The petrogenesis of four distinctly different rocks are received: (1) an Archean tonalite presumably derived by partial melting of an Archean tholeiite at mantle depths, leaving a garnet plus clinopyroxene residue; (2) an Archean quartz monzonite presumably derived by partial melting of a short-lived graywacke-argillite sequence at crustal depths; (3) a dacite from Saipan presumably derived by differentiation from a basaltic parent; and (4) a trachyte from Ross Island, Antarctica, presumably derived by differentiation from a basanitoid parent and contaminated by continental crustal components.  相似文献   

6.
SEONG HEE  CHOI  JONG IK  LEE  CHUNG-HWA  PARK  JACQUES  MOUTTE 《Island Arc》2002,11(4):221-235
Abstract   Ultramafic xenoliths in alkali basalts from Jeju Island, Korea, are mostly spinel lherzolites with subordinate amounts of spinel harzburgites and pyroxenites. The compositions of major oxides and compatible to moderately incompatible elements of the Jeju peridotite xenoliths suggest that they are residues after various extents of melting. The estimated degrees of partial melting from compositionally homogeneous and unfractionated mantle to form the residual xenoliths reach 30%. However, their complex patterns of chondrite-normalized rare earth element, from light rare earth element (LREE)-depleted through spoon-shaped to LREE-enriched, reflect an additional process. Metasomatism by a small amount of melt/fluid enriched in LREE followed the former melt removal, which resulted in the enrichment of the incompatible trace elements. Sr and Nd isotopic ratios of the Jeju xenoliths display a wide scatter from depleted mid-oceanic ridge basalt (MORB)-like to near bulk-earth estimates along the MORB–oceanic island basalt (OIB) mantle array. The varieties in modal proportions of minerals, (La/Yb)N ratio and Sr-Nd isotopes for the xenoliths demonstrate that the lithospheric mantle beneath Jeju Island is heterogeneous. The heterogeneity is a probable result of its long-term growth and enrichment history.  相似文献   

7.
Deeply subducted carbonate rocks from the Kokchetav massif (Northern Kazakhstan) recrystallised within the diamond stability field (P = 4.5–6.0 GPa; T  1000 °C) and preserve evidence for ultra high-pressure carbonate and silicate melts. The carbonate rocks consist of garnet and K-bearing clinopyroxene embedded in a dolomite or magnesian calcite matrix. Polycrystalline magnesian calcite and polyphase carbonate–silicate inclusions occurring in garnet and clinopyroxene show textural features of former melt inclusions. The trace element composition of such carbonate inclusions is enriched in Ba and light rare earth elements and depleted in heavy rare earth elements with respect to the matrix carbonates providing further evidence that the inclusions represent trapped carbonate melt. Polyphase inclusions in garnet and clinopyroxene within a magnesian calcite marble, consisting mainly of a tight intergrowth of biotite + K-feldspar and biotite + zoisite + titanite, are interpreted to represent two different types of K-rich silicate melts. Both melt types show high contents of large ion lithophile elements but contrasting contents of rare earth elements. The Ca-rich inclusions display high REE contents similar to the carbonate inclusions and show a general trace element characteristic compatible with a hydrous granitic origin. Low SiO2 content in the silicate melts indicates that they represent residual melts after extensive interaction with carbonates. These observations suggest that hydrous granitic melts derived from the adjacent metapelites reacted with dolomite at ultra high-pressure conditions to form garnet, clinopyroxene – a hydrous carbonate melt – and residual silicate melts. Silicate and carbonate melt inclusions contain diamond, providing evidence that such an interaction promotes diamond growth. The finding of carbonate melts in deeply subducted crust might have important consequences for recycling of trace elements and especially C from the slab to the mantle wedge.  相似文献   

8.
9.
The Bouzentès lava flow is a 20-m-thick alkali basalt flow emplaced during the last stage of formation of the Cantal stratovolcano at 4.2 Ma. Its upper part has 1- to 20-cm-thick vesicle-rich segregation sheets which recur every 0.1–2 m. These horizontal veins are hawaiitic in composition. They are characterized by hypertrophic development of their minerals (‘pegmatoids’) and by glassy phonolitic segregation vesicles. Internal differentiation within the Bouzentès lava flow was triggered by an unusually high water content, as suggested by pre-emptive iddingsite alteration of olivine phenocrysts. The proposed model of formation of the segregation sheets includes the upward motion of diapirs of residual melt plus addition of vapor from the bottom of the central liquid lens to the base of the upper solidified crust of the cooling lava flow. Olivine settling appears to have been inhibited or at least retarded by upward migration of melt plus vesicles. Most of the features observed in Bouzentès recall the internal differentiation processes usually described within thick Hawaiian lava lakes. The segregation vesicles are believed to result from an increase of gas solubility in residual melt during the crystallization process.  相似文献   

10.
Using constraints from an extensive database of geological and geochemical observations along with results from fluid mechanical studies of convection in magma chambers, we identify the main physical processes at work during the solidification of the 1959 Kilauea Iki lava lakes. In turn, we investigate their quantitative influence on the crystallization and chemical differentiation of the magma, and on the development of the internal structure of the lava lake. In contrast to previous studies, vigorous stirring in the magma, driven predominately by the descent of dense crystal-laden thermal plumes from the roof solidification front and the ascent of buoyant compositional plumes due to the in situ growth of olivine crystals at the floor, is predicted to have been an inevitable consequence of very strong cooling at the roof and floor. The flow is expected to have caused extensive but imperfect mixing over most of the cooling history of the magma, producing minor compositional stratification at the roof and thermal stratification at the floor. The efficient stirring of the large roof cooling is expected to have resulted in significant internal nucleation of olivine crystals, which ultimately settled to the floor. Additional forcing due to either crystal sedimentation or the ascent of gas bubbles is not expected to have increased significantly the amount of mixing. In addition to convection in the magma, circulation driven by the convection of buoyant interstitial melt in highly permeable crystal-melt mushes forming the roof and the floor of the lava lake is envisaged to have produced a net upward flow of evolved magma from the floor during solidification. In the floor zone, mush convection may have caused the formation of axisymmetric chimneys through which evolved magma drained from deep within the floor into the overlying magma and potentially the roof. We hypothesize that the highly evolved, pipe-like ‘vertical olivine-rich bodies’ (VORBs) [Bull. Volcanol. 43 (1980) 675] observed in the floor zone, of the lake are fossil chimneys. In the roof zone, buoyant residual liquid both produced at the roof solidification front and gained from the floor as a result of incomplete convective mixing is envisaged to have percolated or ‘leaked‘ into the overlying highly-permeable cumulate, displacing less buoyant interstitial melt downward. The results from Rayleigh fractionation-type models formulated using boundary conditions based on a quantitative understanding of the convection in the magma indicate that most of the incompatible element variation over the height of the lake can be explained as a consequence of a combination of crystal settling and the extensive but imperfect convective mixing of buoyant residual liquid released from the floor solidification front. The remaining chemical variation is understood in terms of the additional influences of mush convection in the roof and floor on the vertical distribution of incompatible elements. Although cooling was concentrated at the roof of the lake, the floor zone is found to be thicker than the roof zone, implying that it grew more quickly. The large growth rate of the floor is explained as a consequence of a combination of the substantial sedimentation of olivine crystals and more rapid in situ crystallization due to both a higher liquidus temperature and enhanced cooling resulting from imperfect thermal and chemical mixing.  相似文献   

11.
12.
The existence of Archaean komatiites with eruption temperatures greater than 1650°C requires that the mantle be vertically differentiated by the time of komatiite eruption. If in the unlikely event that undifferentiated mantle had survived primordial planetary differentiation and had been hot enough to deliver 1650°C komatiite, it would have been extensively molten to depths of ~250 km, resulting in rapid, profound, vertical differentiation anyway. During primordial differentiation (or Archaean komatiite petrogenesis) the high density and compressibility of ultrabasic melt allowed storage of a global melt layer beneath a buoyant residue of dunite and/or harzburgite. This refractory cap segregated by extraction of melt both upwards and downwards from the depth at which the density contrast between crystals and liquid vanishes. Eruption of komatiite from the melt layer by corrosion of the cap was the Archaean earth's principal means of dissipating excess heat. This subterranean magma ocean precluded vertical homogenization of the Archaean mantle by convection but effectively absorbed lateral mantle heterogeneities and imposed the relative uniformity of maximum eruption temperature and MgO contents (~32%) seen in primitive Archaean komatiites on all continents.Verification of the postulated density relations of liquids and crystals to 100 kbar becomes a pressing concern in view of the expected consequences these relations may have had.  相似文献   

13.
High-TiO2, quartz-normative (HTQ) tholeiite sheets of Early Jurassic age have intruded mainly Late Triassic sedimentary rocks in several early Mesozoic basins in the eastern United States. Field observations, petrographic study, geochemical analyses and stable isotope data from three HTQ sheet systems in the Culpeper basin of Virginia and Maryland and the Gettysburg basin of Pennsylvania were used to develop a general model of magmatic differentiation and magmatic-hydrothermal interaction for HTQ sheets. The three sheet systems have remarkably similar major-oxide and trace-element compositions. Cumulus and evolved diabase in comagmatic sheets separated by tens of kilometers are related by igneous differentiation. Differentiated diabase in all three sheets have petrographic and geochemical signatures and fluid inclusions indicating hydrothermal alteration beginning near magmatic temperatures and continuing to relatively low temperatures. Sulfur and oxygen isotope data are consistent with a magmatic origin for the hydrothermal fluid.The three sheet systems examined apparently all had a similar style of crystal-liquid fractionation that requires significant lateral migration of residual magmatic liquid. The proposed magmatic model for HTQ sheets suggests that bronzite-laden magma was intruded in an upper crustal magma chamber, with bronzite phenocrysts collecting in the lower part of the magma chamber near the feeder dike. Early crystallization of augite and Ca-poor pyroxene before significant plagioclase crystallization resulted in density-driven migration of lighter residual magmatic liquids along lateral and vertical pressure gradients towards the upper part of the sheet. The influence of water on the physical properties of the residual liquid, including density, viscosity and liquidus temperature, may have facilitated the lateral movement more than 15 km up dip in the sheets. Exsolution of a Cl- and S-rich metal-bearing aqueous fluid from residual magma resulted in concentration and redistribution of incompatible and aqueoussoluble elements in late-stage differentiated rocks. This proposed hydrothermal mechanism has important economic implications as it exerts a strong control on the final distribution of noble metals in these types of diabase sheets.  相似文献   

14.
The fractionated rare earth distribution in the continents requires that a small melt fraction ( 1%) separates at some stage in their development, either in the crust or in the mantle, and carries with it the continental budget of those elements. It is proposed that the very small melt fractions which control the continent's fractionated trace element budget are generated in response to lithospheric extension, plumes or aqueous fluids beneath island arcs, and emplaced into the deeper parts of the continental lithosphere. This budget is subsequently inherited by granite melts which only separate on relevant geological time scales when melt fractions reach 10% or more. The residence times of trace incompatible and major elements in the continents might be quite different.  相似文献   

15.
Depletion of Nb relative to K and La is characteristic of lavas in subduction-related magmatic arcs, as distinct from mid-ocean ridge basalts. Nb depletion is also characteristic of the continental crust. This and other geochemical similarities between the continental crust and high-Mg# andesite magmas found in arcs suggests that the continental crust may have formed by accretion of andesites. Previous studies have shown that the major element characteristics of high-Mg# andesites may be produced by melt/rock reaction in the upper mantle. In this paper, new data on partitioning of K, Nb, La and Ce between garnet, orthopyroxene and clinopyroxene in mantle xenoliths, and on partitioning of Nb and La between orthopyroxene and liquid, show that garnet and orthopyroxene have Nb crystal/liquid distribution coefficients which are much larger than those of K and La. Similar fractionations of Nb from K and La are expected in spinel and olivine. For this reason, reactions between migrating melt and large masses of mantle peridotite can produce substantial depletion of Nb in derivative liquids. Modeling shows that reaction between ascending, mantle-derived melts and mantle peridotite is a viable mechanism for producing the trace element characteristics of high-Mg# andesite magmas and the continental crust.

Alternatively, small-degree melts of metabasalt and/or metasediment in the subducting slab may leave rutile in their residue, and will thus have large Nb depletions relative to K and La [1]. Slab melts are too rich in light rare earth elements and other incompatible elements, and too poor in compatible elements, to be parental to arc magmas. However, ascending slab melts may be modified by reaction with the mantle. Our new data permit modeling of the trace element effects of reaction between small-degree melts of the slab and mantle peridotite. Modeling shows that this type of reaction is also a viable mechanism for producing the trace element characteristics of high-Mg# andesites and the continental crust. These findings, in combination with previous results, suggest that melt/rock reaction in the upper mantle has been an important process in forming the continental crust and mantle lithosphere.  相似文献   


16.
Distribution of radioactive elements in the Quaternary alkaline volcanites of Northern Latium has been studied and conclusions of volcanological interest, both as to differentiation of magma in the more superficial levels of the crust and as to the relationship between volcanic eruption and concentration of particular elements, have been drawn. The following principal results are emphasized:
  1. i)
    There are two well defined types of distribution of U and Th corresponding to fractional crystallization differentiation and to pneumatolytic (gaseous transfer) differentiation. From the volcanological viewpoint, this double distribution mirrors the hypomagma or pyromagma conditions of the melt, thus allowing the physico-chemical characters of the magma to be defined, in respect to the different magma chambers considered and to the different levels of the same magma chamber, before an eruption.  相似文献   

17.
This paper is concerned with the petrology and geochemistry of rocks found in the Karymskii Volcanic Center (KVC), which is the largest volcanic center in the Eastern volcanic belt of Kamchatka. The KVC has been built in a rhythmic manner since the Late Pliocene, forming successive differentiated rock complexes. The pattern of variation for major and minor elements in the KVC volcanic rocks can be explained by the fractionation of mineral phases from the parent melt. The process involved enrichment of the residual melts with alkalis and lithophile elements (Rb, Ba, Sr, Pb, Th, U, REE), as well as depletion in coherent elements (Ni, Cr, Sc, Ti). A geochemical study of the KVC volcanic rocks shows that these are typical island arc formations. The relationships between incompatible elements suggest a two-component magma generation system: a depleted mantle source (N-MORB) and suprasubduction fluids (an island arc component). The melt may have been contaminated by a metasomatically altered substratum in the top of the intermediate chamber with added crystalline cumulus phases (and melts) of the earlier magma generation phases in the KVC.  相似文献   

18.
Fuego volcano in Guatemala erupted in 1974 in a basaltic sub-Plinian event, which has been well documented and studied. In 1999, after a period of quiescence lasting 20 years, Fuego erupted again, this time less violently, but with persistent low-level activity. This study investigates the link between these episodes. Previous melt inclusion studies have shown magma erupted in 1974 to have been a volatile-rich hybrid tapped from a vertically extensive system. By contrast, magma erupted in 1999 and 2003 is similar in composition to that erupted in 1974, but melt inclusions are more evolved. Although melt inclusions from the later period are CO2 rich (up to ∼1,500 ppm), they have low H2O concentration (max 1.5 wt.%, compared to ∼6 wt.% in 1974). These melt inclusions have a modified H2O concentration due to diffusive re-equilibration at shallow pressures. Despite this diffusive exchange, both eruptions show evidence of recent mingling of the same low and higher K melts, one of which was slightly cooler than the other and as a result traversed the amphibole stability field. (210Pb/226Ra) data on selected bulk rock samples from 1974 suggest that whereas the cooler, more evolved end-member may have been degassing since the last major eruption in the 1930s, the warmer end-member intruded at most a decade prior to the 1974 eruption. The two end-members are thus batches of the same magma emplaced shallowly ∼30 years apart during which time the older batch was cooled and differentiated before mixing with the younger influx. The presence of the same two melts in the later eruptions suggests that magma in 1999 and 2003 is partly residual from 1974. The current eruptive activity is clearing the system of this residual magma prior to an expected new magma batch.  相似文献   

19.
Melting phase relations of an augite-olivine high-magnesian andesite and an augite-olivine basalt from the Miocene Setouchi volcanic belt in southwest Japan have been studied under water-saturated, water-undersaturated and under anhydrous conditions. Both the andesite and the basalt are characterized by low FeO*/MgO ratios (0.86 and 0.76 in weight, respectively) and qualify as primary magmas derived from the upper mantle.The andesite melt coexists with olivine, orthopyroxene and clinopyroxene at 15 kbar and 1030°C under water-saturated conditions, and at 10 kbar and 1070°C under water-undersaturated conditions (7 wt.% H2O in the melt). The basalt-melt also coexists with the above three phases at 11 kbar and 1305°C under anhydrous conditions, and at 15 kbar and 1205°C in the presence of 4 wt.% water.Present studies indicate that high-magnesian andesite magmas may be produced even under water-undersaturated conditions by partial melting of mantle peridotite. It is suggested that two types of high-magnesian andesites in the Setouchi volcanic belt (augite-olivine and bronzite-olivine andesites) were produced by different degrees of partial melting; augite-olivine andesite magmas, whose mantle residual is lherzolite, were formed by lower degrees of partial melting than bronzite-olivine andesite magmas, which coexist with harzburgite. The basalt magmas, which were often extruded in close proximity to the high-magnesian andesite magmas, are not partial melting products of a mantle peridotite which had previously melted to yield high-magnesian andesite magmas.  相似文献   

20.
A well drilled for geothermal power near Salton Sea in Imperial Valley, Calif., is 5,232 feet deep; it is the deepest well in the world (1962) in a high-temperature hot spring area. In the lower half of the hole temperatures are too high to measure with available equipment, but are at loast 270°C, and may be as much as 370°C. For comparison, maximum temperature heretofore reported at depth (1962) for hot spring areas is 295°C. The well taps a very saline brine of Na-Ca-K-Cl type (about 185,000 ppm Cl) with exceptionally high potassium, and with the highest content of minor alkali elements known for natural waters; Fe, Mn, Zn, Pb, Cu, Ag, and some other metals are also exceptionally high. This brine may be connate, but present evidence favors a source in the magma chamber at depth that supplied late Quaternary rhyolite domes of the area. If the latter is correct, the brine is an undiluted magmatic water that is residual from the separation of a more volatile phase high in CO2, H2S, and with some alkali halides. Elsewhere, the hypothesized volatile phase may account for near-surface hot spring activity of most thermal areas of volcanic association. The residual brine of high salinity may ordinarily remain relatively deep in the volcanic systems because of high specific gravity and low content of volatiles, seldom appearing at the surface except in a greatly diluted form. The hot springs of Arima, Japan, may be a rare example of this type of magmatic water discharging at the surface in moderate concentration (Cl as much as 42,000 ppm). Independent evidence from fluid inclusions in minerals of high-temperature base-metal deposits also favors the existence of magmatic water high in Na, Ca, and Cl, and low in CO2 and other volatile components. During a three-month production test several tons of material precipitated in the horizontal discharge pipe from the well. Amorphous silica with iron and manganese, and bornite are the dominant recognized components. This material contains the astonishingly high contents of about 20 percent copper, 2 percent silver, and notable sulfur, arsenic, bismuth, lead, antimony, and some other minor elements. Total quantities of all elements in the original whole brine are not yet known, but calculated amounts corresponding to 1 to 3 ppm of copper and 0.1 to 0.3 ppm of silver were precipitated from the brine to form the pipe deposits. The brine, therefore, may be man’s first sample of an « active » ore solution. Equally fascinating to many geologists is the possibility that in the lower part of the hole temperatures are so high and pressures are sufficient for young sedimentary rocks to be undergoing transformation into rocks with mineral assemblages of the greenschist facies of metamorphism. Drill cores from 4,400 to 5,000 feet in depth contain chlorite, albite, K-feldspar, epidote, mica, and quartz, with some indication of increase in metamorphic grade downward. Regional geological and geophysical studies favor a depth of about 20,000 feet to pre-Tertiary basement rocks in the general area. A shallow basement or local upfaulting of old metamorphic rocks are not likely possibilities for the thermal area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号