首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blueschists and eclogites located in the Tasmanides of eastern Australia preserve evidence of contrasting modes of exhumation. A review of structural, metamorphic, geochronological and geochemical data indicates that these HP metamorphic rocks can be sub-divided into three main groups: (i) eclogite–blueschists with calc-alkaline and tholeiitic affinities contained within thick sedimentary sequences (called continental HP rocks); (ii) moderate-pressure (< 9 kbar) blueschist of arc to MORB-type composition within sedimentary or serpentinite mélange zones (called accretionary HP rocks) and (iii) eclogites of MORB-type composition with or without a pervasive blueschist overprint contained within serpentinite (called exotic HP rocks). Three different modes of exhumation can be ascribed to the different rock types, namely: (i) exhumation influenced by the buoyancy of continental slabs; (ii) exhumation of accretionary HP rocks by corner flow and/or extensional collapse in the accretionary wedge or (iii) discontinuous exhumation of eclogites triggered by slab rollback and trench retreat. We suggest that a dominant west-dipping, eastward migrating subduction zone can explain the distribution and formation of HP metamorphic rocks in the Tasmanides.Thermobarometric and geochronological data from eclogites and blueschists in the Peel–Manning Fault System (New England Orogen) also provide evidence for discontinuous exhumation of subducted oceanic rocks. These data indicate that eclogites were exhumed from depths of ~ 70 km to ~ 30 km during the Ordovician (490–470 Ma), with terminal exhumation and exposure along the Peel–Manning Fault system probably occurring during the Permian. Based on these timing constraints, we suggest a model where HP rocks reside between depth-dependant exhumation circuits for considerable lengths of time.  相似文献   

2.
《Gondwana Research》2000,3(1):33-38
Eclogite pods and layers of eclogites in mafic blueschists are the most prominent witnesses of eclogite facies metamorphism in the southern Tianshan high-pressure belt of Western China. The P-T evolution was deciphered in order to understand the geotectonic framework of these rocks. Geothermobarometric evaluation for matrix assemblages reveals peak metamorphic condition between 14 and 21 kbar at 500 to 600°C. Prograde growth zoning and mineral inclusions in garnet are evidence for a clockwise P-T path. The presence of intimate eclogite/metabasic blueschist interlayering and the high P-T estimates suggest that the eclogite-facies rocks from the southern Tianshan high-pressure belt formed in a tectonic regime similar to the Franciscan type. Therefore the southern Tianshan high-pressure belt is most important in order to resolve the Paleozoic tectonic evolution of central Asia.  相似文献   

3.
西南天山高压-超高压变质带是世界上少有的经历深俯冲的增生杂岩带,是古天山洋向北俯冲的结果。针对该俯冲杂岩带内部结构的研究目前仍存在争论。本文以木扎尔特地区一条长约4 km的南北向剖面为例,对西南天山高压-超高压变质带的野外特征、矿物学和变质演化研究进行了综述。目前的研究表明,木扎尔特地区存在超高压和高压两类硬柱石榴辉岩,但绝大部分都经历了强烈的退变质和变形改造,被蓝片岩相或绿片岩相矿物组合取代。这些变基性岩在空间上构成北部和南部两个榴辉岩带,二者为构造接触。木扎尔特超高压硬柱石榴辉岩与其围岩经历相似的峰期压力,构成西南天山超高压带的西端。与东侧阿克牙孜地区超高压榴辉岩相比,它们在变形特征、岩石组合和变质演化方面表现出一定的独特性,很可能说明深俯冲板片在折返过程中沿构造带走向存在差异变质-变形演化。这些基础研究对全面认识冷俯冲增生杂岩带的变质演化及其俯冲和折返的地球动力学机制具有重要意义。  相似文献   

4.
Lawsonite eclogite pods ranging in size from 3 cm to 6 m occur in lawsonite blueschist and eclogite facies metasedimentary and metabasaltic rocks in the Sivrihisar Massif, Turkey. Some pods have a core of lawsonite eclogite surrounded by alternating, centimeter-scale layers of lawsonite blueschist, eclogite, and transitional eclogite–blueschist, all with similar basaltic bulk composition. These pods also contain texturally late lawsonite-rich veins and layers. Most eclogites and blueschists within the pods lack reaction textures, but some blueschists near pod margins contain texturally complex garnet as well as glaucophane rims on omphacite, suggesting retrogression of eclogite to blueschist. Phase diagrams (pseudosections) calculated for the lawsonite eclogite core of a meter-scale pod indicate that the eclogite equilibrated at ∼22–24 kbar, ∼520°C. Lawsonite eclogite and blueschist at the tectonized margin of the same pod equilibrated at similar temperatures and slightly lower pressures. The composite eclogite–blueschist pod is foliated, lineated, and folded. An earlier generation of lineated omphacite in the pod core has a different spatial orientation than the lineation at the pod margin, although electron backscattered diffraction data show that core and rim omphacite have similar lattice preferred orientation patterns. Petrologic and structural data are consistent with mechanical formation of pods by folding and dissection of eclogite layers at high-P, and localized retrogression at pod margins during initial stages of exhumation at PT conditions >425°C, 16 kbar.  相似文献   

5.
The Qilian–Qaidam orogenic belt at the northern edge of the Tibetan Plateau has received increasing attention as it recorded a complete history from continental breakup to opening and closure of ocean basin, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. Determining a geochronological framework of the initiation and termination of the fossil Qilian Ocean subduction in the North Qilian orogenic belt plays an essential role in understanding the whole tectonic process. Dating the high-pressure metamorphic rocks in the North Qilian orogenic belt, such as blueschist and eclogite, is the key in this respect. A blueschist from the southern North Qilian orogenic belt was investigated with a combined metamorphic PT and U–Pb, Lu–Hf, and Sm–Nd multichronometric approaches. Pseudosection modeling indicates that the blueschist was metamorphosed under peak PT conditions of 1.4–1.6 GPa and 530–550 °C. Zircon U–Pb ages show no constraints on the metamorphism due to the lack of metamorphic growth of zircon. Lu–Hf and Sm–Nd ages of 466.3 ± 2.0 Ma and 462.2 ± 5.6 Ma were obtained for the blueschist, which is generally consistent with the U–Pb zircon ages of 467–489 Ma for adjacent eclogites. Lutetium and Sm zoning profiles in garnet indicate that the Lu–Hf and Sm–Nd ages are biased toward the formation of the garnet inner rim. The ages are thus interpreted to reflect the time of blueschist-facies metamorphism. Previous 40Ar/39Ar ages of phengitic muscovite from blueschist/eclogite in this area likely represent a cooling age due to the higher peak metamorphic temperature than the argon retention temperature. The differences of peak metamorphic conditions and metamorphic ages between the eclogites and adjacent blueschists indicate that this region likely comprises different tectonic slices, which had distinct PT histories and underwent high-pressure metamorphism at different times. The initial opening of the Qilian Ocean could trace back to the early Paleozoic, and the ultimate closure of the Qilian Ocean was no earlier than c. 466 Ma.  相似文献   

6.
The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope‐rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post‐peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15–20 kbar at ~600 °C. The pre‐peak blueschist facies assemblage yields <11 kbar and 400–460 °C. The average pressure and temperature of the post‐peak amphibolite stage was 5–6 kbar, ~470 °C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran.  相似文献   

7.
We report two new eclogite localities (at Kanayamadani and Shinadani) in the high‐P (HP) metamorphic rocks of the Omi area in the western most region of Niigata Prefecture, Japan, which form part of the Hida Gaien Belt, and determine metamorphic conditions and pressure–temperature (PT) paths. The metamorphic evolution of the eclogites is characterized by a tight hairpin‐shaped PT path from prograde epidote–blueschist facies to peak eclogite facies and then retrograde blueschist facies. The prograde metamorphic stage is characterized by various amphibole (winchite, barroisite, glaucophane) inclusions in garnet, whereas the peak eclogite facies assemblage is characterized by omphacite, garnet, phengite and rutile. Peak PT conditions of the eclogites were estimated to be ~600°C and up to 2.0 GPa by conventional cation‐exchange thermobarometry, Ti‐in‐zircon thermometry and quartz inclusion Raman barometry respectively. However, the Raman spectra of carbonaceous material thermometry of metapelites associated with the eclogites gave lower peak temperatures, possibly due to metamorphism at different conditions before being brought together during exhumation. The blueschist facies overprint following the peak of metamorphism is recognized by the abundance of glaucophane in the matrix. Zircon grains in blueschist facies metasedimentary samples from two localities adjacent to the eclogites have distinct oscillatory‐zoned cores and overgrowth rims. Laser ablation inductively coupled plasma mass spectrometry U–Pb ages of the detrital cores yield a wide range between 3,200 and 400 Ma, with a peak at 600–400 Ma. In the early Palaeozoic, proto‐Japan was located along the continental margin of the South China craton, providing the source of the older population of detrital zircon grains (3,200–600 Ma) deposited in the trench‐fill sediments. In addition, subduction‐related magmatism c. 500–400 Ma is recorded in the crust below proto‐Japan, which might have been the source for the younger detrital zircon grains. The peak metamorphic age was constrained by SHRIMP dating of the overgrowth rims, yielding Tournaisian ages of 347 ± 4 Ma, suggesting subduction in the early Carboniferous. Our results provide clear constraints on the initiation of subduction, accretion and the development of an arc‐trench system along the active continental margin of the South China craton and help to unravel the Palaeozoic tectonic history of proto‐Japan.  相似文献   

8.
The Eclogite Zone, of the Tauern Window is an exhumed subduction channel comprising eclogites with different grades of retrogression in a matrix of high-pressure metasediments. The rocks were exposed to 600 °C and 20–25 kbars, and then retrogressed during their exhumation, first under blueschist facies and later under amphibolite facies metamorphism. To gain insights into the deformation within the subduction channel during subduction and exhumation, both fresh and retrogressed eclogites, as well as the surrounding metasediments were investigated with respect to their deformation microstructures and crystallographic preferred orientations (CPOs). Pristine and retrogressed eclogites show grain boundary migration and subgrain rotation recrystallization microstructures in omphacite. A misorientation axes analysis reveals the activity of complementary deformation mechanisms including grain boundary sliding and dislocation creep. The omphacite CPOs of the eclogites correspond to dominant SL-fabrics characteristic of plane strain deformation, though there are local variations towards flattening or constriction within the paleosubduction channel. The glaucophane CPOs in retrogressed eclogites match those of omphacite, suggesting that a constant strain geometry persisted during exhumation at blueschist facies conditions. Plastic deformation of the host high-pressure metasediments outlasted that of the eclogites, as indicated by white mica fabrics and quartz CPO. The latter is consistently asymmetric, pointing to the operation of non-coaxial deformation. The microstructures and CPO data indicate a continuous plastic deformation cycle with eclogite and blueschist facies metamorphism related to subduction and exhumation of the different rock units.  相似文献   

9.
The Nevado-Filábride complex is the lowest tectonic unit of the Betic Zone sensu stricto (ss) of the Betic Cordilleras (S.E. Spain). The upper series of this complex consists of a metamorphosed sequence intruded by basic and ultrabasic igneous rocks. High-pressure metamorphism in the eclogite and blueschist facies is recorded in the metabasites, but this was partially obliterated by further successive metamorphic stages in the almandine-amphibolite and greenschist facies.Coronitic and granoblastic eclogites appear side by side in the large stocks of basic rocks. The coronitic eclogites originate from coarse-to medium-grained olivine gabbros, and the granoblastic eclogites from fine-grained basic rocks (dolerites and porphyritic basaltic rocks). Higher chemical mobility and rate of diffusion, as well as the availability of fluids during the eclogite facies metamorphism, are responsible for the greater degree of recrystallization found in the granoblastic eclogites. The availability of fluids during this metamorphic stage was controlled by the difference in the hydration of the protolith and by variable proximity to surrounding water-rich metasediments.The minerals in the eclogites are chemically homogeneous, suggesting that they are almost completely equilibrated, even in the coronitic eclogites. The estimated equilibrium P-T conditions were found to be the same (approximately 550° C at 12 kbar pressure) in both coronitic and granoblastic eclogites, and it has, therefore, been deduced that the coronitic eclogites do not represent the first and lower-grade step of a prograde metamorphism in which the granoblastic eclogites are the higher-grade step.No relationship was found between shearing and eclogite crystallization. Nevertheless, a first fabric/foliation developed in the later blueschist facies stage, and syntectonic growth of the minerals was detected in glaucophane-bearing rocks.The further metamorphic evolution of the metabasites from high-to intermediate-pressure conditions is documented by the formation of minerals belonging to albiteepidote and almandine-amphibolite facies assemblages. The application of the amphibole zonation model, in order to deduce the P-T path, does not give realistic values.High-pressure metamorphism is related to an early subduction event in the Betic Cordilleras, with a later more-or-less isothermal uplift to shallower levels.  相似文献   

10.
张修政  董永胜  李才  解超明  王明  邓明荣  张乐 《岩石学报》2014,30(10):2821-2834
羌塘中部晚三叠世低温/高压变质带是目前青藏高原内部延伸规模最大的高压变质带,但大量关键高压变质岩石出露地区地球化学资料匮乏,严重制约了对高压变质带原岩建造以及构造演化的全面认识。本文以羌塘中西部地区尚无地球化学资料的果干加年山榴辉岩和红脊山蓝片岩为研究对象,进行了系统的地球化学以及原岩恢复工作。研究表明,果干加年山榴辉岩呈透镜状产于围岩石榴石多硅白云母片岩和少量大理岩中,其原岩为亚碱性玄武岩,具有较低的稀土总量(∑REE=51.19×10-6~59.43×10-6)和轻稀土亏损的特征[(La/Yb)N=0.59~0.70],不具有Nb、Ta、Ti的亏损,与典型的N-MORB特征一致,暗示其原岩可能来源于亏损的地幔源区,形成于洋中脊环境。红脊山地区基性蓝片岩的原岩为碱性玄武岩-亚碱性玄武岩,具有高的TiO2(2.97%~4.14%)和P2O5(0.29%~0.48%)含量,富集轻稀土元素[(La/Yb)N=6.10~11.6]和高场强元素,地球化学特征类似于OIB。但是这些基性蓝片岩与大量的陆源碎屑岩伴生产出,且具有明显的硅铝质上地壳物质混染的特征,与南羌塘地区二叠纪大陆板内基性岩墙的产出特征以及地壳混染特征一致,可能是其俯冲消减的产物。通过本文研究结果并结合区域内已识别出的E-MORB型洋壳和洋岛/海山物质深俯冲的证据,我们认为羌塘中部晚三叠世高压变质带以洋壳物质深俯冲为主,同时亦保留了部分陆壳物质俯冲的证据,暗示大洋向北俯冲消减结束之后,又牵引至少一部分南羌塘北缘陆壳物质经历了随后的俯冲过程。  相似文献   

11.
Detailed geological mapping, structural, petrological and chronological investigation allow us to place new constraints on the tectono‐thermal evolution of the North Qilian high pressure/low temperature (HP/LT) metamorphic belt. The North Qilian HP/LT metamorphic belt manly consists of eclogite, blueschist, metasedimentary rocks and serpentinite. Most of eclogites and mafic blueschists occur as lenses within metasedimentary rocks, and minor eclogites within serpentinite. Petrological and geochemistical data indicate that the protoliths of eclogite and mafic blueschist includes E‐, N‐MORB, OIB and arc basalt. Geochronology and Lu‐Hf isotope of detrital zircons from metasedimentary rocks indicate the detritus materials are derived from Qilian block and likely deposit in continental margin or fore‐arc basin. Zircon U‐Pb datings show that the protolith ages of eclogites vary between 500 Ma and 530 Ma, and the metamorphic age of eclogite between 460 and 489 Ma. The detrital zircon ages of metasedimentary rocks distribute between 532 and 2700 Ma. The structural data show that the deformation related to the subduction during prograde is recorded in eclogite blocks. In contrast, the dominant deformation structures are characterized by tight fold, sheath fold and penetrative foliation and lineation, which are recorded in various rocks, reflecting a top‐to‐the‐south shear sense and representing the deformation related to the exhumation. The petrological data suggest that the different rocks in the North Qilian HP/LT metamorphic belt equilibrated at different peak metamorphic conditions and recorded different P‐T path. Synthesizing the structural, petrological, geochemical and geochronological data suggest a subduction channel model related to oceanic subduction during Paleozoic in the North Qilian Mountains. The different HP/LT metamorphic rocks formed in different settings with various protolith ages were carried by the subducted oceanic crust into different depth in subduction channel, and experienced independent tectono‐thermal evolution inside subduction channel. The North Qilian HP/LT mélange reflects a fossil oceanic subduction channel.  相似文献   

12.
The Qinling-Dabie-Sulu high-pressure and ultra-high pressure metamorphic belt wasformed by subduction and collision between the North China and Yangtze plates. The study ofthe eclogite belt is very important in understanding the evolution of the Qinling Dabie orogen. Inthe present paper the geology, petrology, minerology and chronology of the eclogites in the Dabieand Sulu areas are described. The principal conclusions of this work are as follows: (1) Based up-on the field occurrence and the P-T conditions of the eclogites, two types of eclogite can be dis-tinguished: Type 1—the low-temperature and high-pressure eclogite in the mid-late Proterozoicmetamorphic series, and Type 2—the ultra-high pressure eclogite in the late Archaean to earlyProterozoic metamorphic complex. In the Dabie area, the ultra-high-pressure eclogite,high-pressure eclogite and epidote-blueschist units are nearly parallel to each other and stretchintermittently from north to south. (2) The P-T conditions of the high-pressure eclogites and ul-tra-high pressure eclogites have been estimated. The former are formed at 450-550℃ and1.4-1.6 GPa; while the latter at 650-870℃ and >2.7-2.9 GPa in the Dabie area and at820-1000℃ and >2.8-3.1 GPa in the Sulu area. The metamorphic temperatures of the eclogitesincrease progressively from west to east. (3) The ultra-high pressure eclogites were subjected to 5stages of metamorphism: pre-eclogite epidote amphibolite facies, peak coesite eclogite facies,post-eclogite amphibolite facies, epidote-blueschist facies or epidote amphibolite facies andgreenschist facies. The general features of the PTt path of the ultra-high pressure eclogite are:clockwise pattern, progressive metamorphism being a process of slow increasing temperature andrapid increasing pressure, and the retrogressive section with nearly isothermal decompression atthe early stage, isobaric cooling at the middle stage and nearly isothermal decompression at thelate stage. (4) At least two stages of high-pressure metamorphism occurred in the orogenic belt:the high-pressure eclogite and ultra-high pressure eclogite were formed by the subduction of theoceanic crust northward beneath the North China plate or the Dabie block during theCaledonian; while the epidote-blueschist belt came into being by subdution and collision be-tween the two continental plates during the Indosinian. (5) Due to the continuous sequentialsubduction of the cold plate, the ultra high-presssure metamorphic rocks were uplifted to thecrust by the underplating processes. They can be preserved just because of the "frozen effect" re-sulting from the continuous subduction of the cold plate. (6) The carbonates, such as magnesite,breunnerite, aragonite and dolomite, and the H_2O-bearing minerals, such as phengite, epidoteand zoisite, were stable during the high-pressure and/or ultra-high pressure metamorphism.  相似文献   

13.
Eclogites, blueschists and greenschists are found in close proximity to one another along a 1‐km coastal section where the Cyclades Blueschist Unit (CBU) is exposed on SE Syros, Greece. Here, we show that the eclogites and blueschists experienced the same metamorphic history: prograde lawsonite blueschist facies metamorphism at 1.2–1.9 GPa and 410–530°C followed, at 43–38 Ma, by peak blueschist/eclogite facies metamorphism at 1.5–2.1 GPa and 520–580°C. We explain co‐existence of eclogites and blueschists by compositional variation probably reflecting original compositional layering. It is also shown that the greenschists record retrogression at 0.34 ± 0.21 GPa and = 456 ± 68°C. This was spatially associated with a shear zone on a scales of 10–100‐m and veins on a scale of 1–10‐cm. Greenschist facies metamorphism ended at (or shortly after) 27 Ma. We thus infer a period of metamorphic quiescence after eclogite/blueschist facies metamorphism and before greenschist facies retrogression which lasted up to 11–16 million years. We suggest that this reflects an absence of metamorphic fluid flow at that time and conclude that greenschist facies retrogression only occurred when and where metamorphic fluids were present. From a tectonic perspective, our findings are consistent with studies showing that the CBU is (a) a high‐P nappe stack consisting of belts in which high‐P metamorphism and exhumation occurred at different times and (b) affected by greenschist facies metamorphism during the Oligocene, prior to the onset of regional tectonic extension.  相似文献   

14.
The Cretaceous blueschist belt, Tavşanlı Zone, representing the subducted and exhumed northern continental margin of the Anatolide–Tauride platform is exposed in Western Anatolia. The Sivrihisar area east of Tavşanlı is made up of tectonic units consisting of i) metaclastics and conformably overlying massive marbles (coherent blueschist unit), ii) blueschist-eclogite unit, iii) marble–calcschist intercalation and iv) metaperidotite slab. The metaclastics are composed of jadeite–lawsonite–glaucophane and jadeite–glaucophane–chloritoid schists, phengite phyllites, and calcschists with glaucophane–lawsonite metabasite layers. The blueschist-eclogite unit representing strongly sheared, deeply buried and imbricated tectonic slices of accreted uppermost levels of the oceanic crust with minor metamorphosed serpentinite bodies consists of lawsonite-bearing eclogitic metabasites (approximately 90% of the field), lawsonite eclogites, metagabbros, serpentinites, pelagic marbles, omphacite–glaucophane–lawsonite metapelites and metacherts. The mineral assemblage of the lawsonite eclogite (garnet + omphacite > 70%) is omphacite, garnet, lawsonite, glaucophane, phengite and rutile. Lawsonite eclogite lenses are enclosed by garnet–lawsonite blueschist envelopes.Textural evidence from lawsonite eclogites and country rocks reveals that they did not leave the stability field of lawsonite during subduction and exhumation. The widespread preservation of lawsonite in eclogitic metabasites and eclogites can be attributed to rapid subduction and subsequent exhumation in a low geothermal gradient of the oceanic crust material without experiencing a thermal relaxation. Peak PT conditions of lawsonite eclogites are estimated at 24 ± 1 kbar and 460 ± 25 °C. These PT conditions indicate a remarkably low geotherm of 6.2 °C/km corresponding to a burial depth of 74 km.  相似文献   

15.
The metamorphic sequences of the Saxonian Erzgebirge were thoroughly overprinted by a Variscan medium-pressure event under amphibolite facies conditions. However, eclogitic relics documenting an older high-pressure event are widespread. P-T conditions of the eclogite-facies metamorphism systematically decrease, over a distance of 50 km, from about >29 kbar/850°C, in the central part, to 20–24 kbar/650°C, in the westernmost part of the Erzgebirge crystalline complex. A distinct gap in P-T conditions exists between the central and the western Erzgebirge coinciding with the fault zone of the Flöha syncline. Therefore, the eclogitebearing sequences are assumed to represent at least two different nappe units. The lower-grade eclogite assemblages in the western Erzgebirge display a continuous metamorphic zonation with a gradual decrease of peak metamorphic temperatures towards the west. Assemblages formed in the stability field of coesite and thus indicating a regional ultra-high pressure metamorphism, are restricted to the central Erzgebirge, where they are widespread in the eclogites, but also present in metaacidic country rocks. The same high-temperature/high-pressure conditions, testifying to a burial of at least 100 km, were independently recorded for the ultramafic garnet pyroxenites associated with the eclogites of the central Erzgebirge. Mineral relics included in the eclogite phases and mineral assemblages formed by retrograde reactions permit reconstruction of the prograde and retrograde P-T paths in the different parts of the Erzgebirge crystalline complex.  相似文献   

16.
Known eclogite occurrences in the Sanbagawa metamorphic belt of SW Japan are dominantly in metagabbro bodies which have complex polyphase metamorphic histories. These bodies are generally described as tectonic blocks and their relationship to the Sanbagawa metamorphism is unclear. New findings of foliated eclogite in the Seba and Kotsu areas show that eclogite facies metamorphism is much more widespread than generally thought. Evidence that the foliated eclogite units originated as lavas or sediments implies that these units can be treated as a high-grade part of the subduction-related Sanbagawa metamorphism. Although separated by an along-strike distance of 80 km, the Seba and Kotsu eclogites have very similar garnet and omphacite compositions, suggesting that they were formed under similar metamorphic conditions. However, differences in the associated retrograde assemblages (epidote–amphibolite in the Seba unit and epidote–blueschist in the Kotsu unit) suggest contrasting P – T  paths. In both units, the eclogite rocks occupy the highest structural level of the Sanbagawa belt and overlie rocks metamorphosed at lower pressure. The lower boundary to the eclogite units is therefore a major tectonic discontinuity locally decorated with lenses of exotic material. These features can help trace the boundary into other areas. The previously known outcrops of eclogite show enough similarities with the newly found areas to suggest that all the eclogite facies rocks in the Sanbagawa belt constitute a single nappe that lies at the highest structural levels of the orogen.  相似文献   

17.
在一些典型碰撞造山带中,高压麻粒岩与榴辉岩在空间和时间上密切相关,它们之间的关系对揭示碰撞造山带的造山过程和造山机制具有重要意义.本文以中国西部的南阿尔金、柴北缘及中部的北秦岭造山带为例,详细陈述了这3个地区榴辉岩和相关的高压麻粒岩的野外关系、变质演化和形成时代,目的是要建立大陆碰撞造山带中榴辉岩和相关高压麻粒岩形成的地球动力学背景模式.南阿尔金榴辉岩呈近东西向分布在江尕勒萨依,玉石矿沟一带,与含夕线石副片麻岩、花岗质片麻岩和少量大理岩构成榴辉岩一片麻岩单元,榴辉岩中含有柯石英假象,其峰期变质条件为P=2.8~3.0GPa,T=730~850℃,并在抬升过程中经历了角闪岩-麻粒岩相的叠加;大量年代学研究显示其峰期变质时代为485~500Ma.南阿尔金高压麻粒岩分布在巴什瓦克地区,包括高压基性麻粒岩和高压长英质麻粒岩,它们与超基性岩构成了一个大约5km宽的构造岩石单元,与周围角闪岩相的片麻岩为韧性剪切带接触.长英质麻粒岩和基性麻粒岩的峰期组合均具有蓝晶石和三元长石(已变成条纹长石),形成的温压条件为T=930~1020℃,P=1.8~2.5GPa,并在退变质过程中经历了中压麻粒岩相变质作用叠加.锆石SHRIMP测定显示巴什瓦克高压麻粒岩的峰期变质时代为493~497Ma.都兰地区的榴辉岩分布柴北缘HP-UHP变质带的东端,在榴辉岩和围岩副片麻岩中均发现有柯石英保存,形成的峰期温压条件为T=670~730℃和P=2.7~3.25GPa,退变质阶段经过了角闪岩相的叠加;榴辉岩相变质时代为420~450Mao都兰地区的高压麻粒岩分布在阿尔茨托山西部,高压麻粒岩包括基性麻粒岩长英质麻粒岩,基性麻粒岩的峰期矿物组合为Grt+Cpx+Pl±Ky±Zo+Rt±Qtz,长英质麻粒岩的峰期矿物组合为:Grt+Kf+Ky+Pl+Qtz.峰期变质条件为T=800~925℃,P=1.4~1.85GPa,退变质阶段经历了角闪岩-绿片岩的改造,高压麻粒岩的变质时代为420~450Ma.北秦岭榴辉岩分布在官坡-双槐树一带,榴辉岩的峰期变质组合为Grt+Omp±Phe+Qtz+Rt,所计算的峰期温压条件为T=680~770℃和P=2.25~2.65GPa,年代学数据显示榴辉岩的变质时代为500Ma左右.北秦岭高压麻粒岩分布在含榴辉岩单元的南侧松树沟一带,包括高压基性麻粒岩和高压长英质麻粒岩,与超基性岩在空间上密切伴生,高压麻粒岩的峰期温压条件为T=850~925℃,P=1.45~1.80GPa,锆石U-Pb年代学研究显示其峰期变质时代为485~507Ma.以上三个实例显示,出现在同一造山带、在空间上伴生的高压麻粒岩和榴辉岩有各自不同的变质演化历史,但榴辉岩中的榴辉岩相变质时代和相邻的高压麻粒岩中的高压麻粒岩相变质作用时代相同或相近,这种成对出现的榴辉岩和高压麻粒岩代表了它们同时形成在造山带中不同的构造环境中,即榴辉岩的形成于大陆俯冲带中,而高压麻粒岩可能形成在俯冲带之上增厚的大陆地壳根部.  相似文献   

18.
《China Geology》2021,4(1):111-125
High/ultrahigh-pressure (HP/UHP) metamorphic complexes, such as eclogite and blueschist, are generally regarded as significant signature of paleo-subduction zones and paleo-suture zones. Glaucophane eclogites have been recently identified within the Lancang Group characterized by accretionary mélange in the Changning-Menglian suture zone, at Bangbing in the Shuangjiang area of southeastern Tibetan Plateau. The authors report the result of petrological, mineralogical and metamorphism investigations of these rocks, and discuss their tectonic implications. The eclogites are located within the Suyi blueschist belt and occur as tectonic lenses in coarse-grained garnet muscovite schists. The major mineral assemblage of the eclogites includes garnet, omphacite, glaucophane, phengite, clinozoisite and rutile. Eclogitic garnet contains numerous inclusions, such as omphacite, glaucophane, rutile, and quartz with radial cracks around. Glaucophane and clinozoisite in the matrix have apparent optical and compositional zonation. Four stages of metamorphic evolution can be determined: The prograde blueschist facies (M1), the peak eclogite facies (M2), the decompression blueschist facies (M3) and retrograde greenschist facies (M4). Using the Grt-Omp-Phn geothermobarometer, a peak eclogite facies metamorphic P-T condition of 3000–3270 MPa and 617–658°C was determined, which is typical of low-temperature ultrahigh-pressure metamorphism. The comparison of the geological characteristics of the Bangbing glaucophane eclogites and the Mengku lawsonite-bearing retrograde eclogites indicates that two suites of eclogites may have formed from significantly different depths or localities to create the tectonic mélange in a subduction channel during subduction of the Triassic Changning-Menglian Ocean. The discovery of the Bangbing glaucophane eclogites may represent a new oceanic HP/UHP metamorphic belt in the Changning-Menglian suture zone.©2021 China Geology Editorial Office.  相似文献   

19.
The Hong'an region in the Qinling–Dabie collisional zone in eastern China hosts a series of metamorphic rocks exposing a south-to-north distribution from blueschist/blueschist–greenschist, amphibolite, eclogite (kyanite free) and kyanite–eclogite to coesite–eclogite facies rocks that represent progressively deeper levels of the Mesozoic subduction–collision complex. The Hong'an area is interesting for three reasons: (1) it escaped the thermal and structural overprint imparted on much of the Dabie Mountains during Early Cretaceous intrusion of voluminous granites and granodiorites; (2) the high-pressure (HP) Hong'an eclogites are widely distributed, often preserve prograde crystallization histories and can be directly linked in time and space to the blueschist/blueschist–greenschist rocks exposed to the south; (3) the blueschist/blueschist–greenschist facies rocks are generally better exposed than their equivalents in the southeastern Dabie Mountains and offer some opportunity for simultaneous structural and metamorphic analysis. The Hong'an area HP rocks offer perhaps the closest approximation to a preserved snapshot of Mesozoic pressure–temperature (PT) conditions attending early subduction–exhumation in the region, and are thus essential to generating a coherent picture of the dynamics attending both metamorphism and exposure of the coeval ultrahigh-pressure (UHP) rocks. The purpose of this contribution is twofold: (1) to document previously unpublished metamorphic and structural data characterizing these HP sequences and their relative continuity in Hong'an; (2) to incorporate these data with recent geochronologic, structural and paleomagnetic information in the context of protracted, late Paleozoic through Mesozoic subduction, collision and exhumation. Metamorphism and exhumation of some of the southern Hong'an HP sequences appear to have occurred concomitant with oceanic subduction immediately to the west, and thus may have preceded widespread continental subduction/collision. Moreover, all of the HP–UHP sequences in the region were exhumed before the end of collision between the Sino-Korean and Yangtze cratons at ca. 160 Ma. Exhumation of HP–UHP rocks both before and during continental plate collision is neither novel for central China nor for other HP–UHP zones, but is important to take into account when reconstructing the evolution of such orogens.  相似文献   

20.
U–Pb geochronology for eclogites in two different areas of the Seve Nappe Complex (SNC) in Sweden confirms previous indications of discrete Ordovician high-pressure events affecting various parts of the complex. In Norrbotten, just north of the Arctic circle, eclogites from the Ts?kkok and Vaimok Lenses yield identical metamorphic zircon ages of 482 ± 1 Ma. Titanite in a metagabbro from the Vaimok Lens retains an older age of 607 ± 2 Ma, which may date a protolith coeval with mafic dikes in the overlying Sarek Lens; high-U zircon cores in one of the eclogites also indicate a similar age. Farther south, in J?mtland, the Tjeliken eclogite yields a significantly younger metamorphic age of 446 ± 1 Ma. Although they support the age discrepancy between the Norrbotten and J?mtland eclogites, the U–Pb ages of both eclogite suites are ca. 20 m.y. younger than previously reported Sm–Nd ages. The latter may either represent early prograde growth or be spuriously too old due to isotopic disequilibrium. The SNC has traditionally been taken to represent the outermost margin of Baltica, linking the Early Caledonian eclogite–forming events to subduction of Baltica below an offshore arc. Alternatively, the coincidence of these eclogite-forming events with orogenic phases recorded on the Laurentian margin may point to an origin from other regions of the Iapetus Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号