首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen and plant macrofossils were analysed at Sägistalsee (1935 m asl), a small lake near timber-line in the Swiss Northern Alps. Open forests with Pinus cembra and Abies alba covered the catchment during the early Holocene (9000–6300 cal. BP), suggesting subcontinental climate conditions. After the expansion of Picea abies between 6300 and 6000 cal. BP the subalpine forest became denser and the tree-line reached its maximum elevation at around 2260 m asl. Charcoal fragments in the macrofossil record indicate the beginning of Late-Neolithic human impact at ca. 4400 cal. BP, followed by a extensive deforestation and lowering of the forest-limit in the catchment of Sägistalsee at 3700 cal. BP (Bronze Age). Continuous human activity, combined with a more oceanic climate during the later Holocene, led to the local extinction of Pinus cembra and Abies alba and favoured the mass expansion of Picea and Alnus viridis in the subalpine area of the Northern Alps. The periods before 6300 and after 3700 cal. BP are characterised by high erosion activity in the lake's catchment, whereas during the phase of dense Picea-Pinus cembra-Abies forests (6300–3700 cal. BP) soils were stable and sediment-accumulation rates in the lake were low. Due to decreasing land-use at higher altitudes during the Roman occupation and the Migration period, forests spread beween ca. 2000 and 1500 cal. BP, before human impact increased again in the early Middle Ages. Recent reforestation due to land-use changes in the 20th century is recorded in the top sediments. Pollen-inferred July temperature and annual precipitation suggest a trend to cooler and more oceanic climate starting at about 5500 cal. BP.  相似文献   

2.
Multi-proxy palaeoecological and palaeolimnological studies of the sedimentary record of Sägistalsee, a small lake at the present-day timberline in the Swiss Alps, reveal distinct changes in its catchment vegetation in relation to Holocene climate change and human impact. Four phases of catchment vegetation type were defined based on plant macrofossil analyses: open Betula-Pinus cembra woodland, Abies alba-Pinus cembra woodland, Picea abies forest, and cultural pasture. The expansion of spruce 6300 cal. BP had a major impact on all abiotic proxies, whereas the reaction of the biotic proxies to this catchment change was lagged by several centuries. During the Bronze Age (ca. 4000 cal. BP) the spruce forest was cleared and the catchment began to be used as grazing pastures. Changes in sedimentology, geochemistry, and magnetic parameters closely reflect the changes in catchment vegetation. The catchment vegetation types explain a statistically significant amount of the variance in the chironomid, cladoceran, sedimentological, and magnetic data but not in the geochemical data. The strong catchment-lake interaction masks any biotic responses to millennium-scale climatic oscillations.  相似文献   

3.
华北平原晚冰期以来气候环境演变研究对该地区社会发展、灾害风险评估和科学应对未来全球增温背景下极端降水和洪涝事件具有重要意义。本文以华北平原中部白洋淀地区高阳剖面(BG-2019)为研究对象,通过高精度AMS14C、OSL定年技术和高分辨率孢粉组合、粒度组分分析,恢复和重建了白洋淀地区晚冰期以来(距今13710 a—今)区域植被演替和气候环境变化历史。结果显示:BG-2019剖面在距今10270~13710 a和距今4630~5400 a发育湖相沉积,距今3470~3700 a发育沼泽相沉积;距今7130~8000 a发育河流—入湖三角洲相沉积,距今3700~4630 a和距今3230~3470 a发育河流相沉积;距今8000~10270 a和距今5400~7130 a存在明显的沉积间断/地层缺失;表明采样剖面所在位置缺乏连续的湖相地层。晚冰期白洋淀为局地小湖沼;中全新世湖沼较发育、范围广,但也不是连续广袤的湖相沉积;晚全新世湖泊范围收缩。晚冰期和全新世白洋淀流域植被景观存在显著差异;晚冰期气候寒冷干燥,平原发育以蒿属、藜亚科、禾本科和菊科等为主的草地,周围山地森林覆盖度低;中全新世气候温暖湿润,平原大部仍发育以蒿属、藜亚科和禾本科为主的草地,湖区水蕨和水生植物繁盛,周围山地生长松属、栎属为主的针阔混交林,森林覆盖度增高;晚全新世气候温和偏干,平原仍是以蒿属、藜亚科和禾本科等为主的草地,西部山地生长以松属为主的针阔混交林,森林覆盖度较高。  相似文献   

4.
A palynological investigation was conducted on two cores with Holocene sediments collected from the northeastern littoral part of the border Lake Doirani in northern Greece. The radiocarbon dates indicated that the analyzed sediments accumulated during the last 5000 yrs. The pollen-stratigraphic record revealed the environmental changes in the catchment area, starting from a natural undisturbed landscape to one modified by increasing anthropogenic influences. The tree vegetation dominated by Quercus woods in the lowlands and byPinus, Abies, and Fagus at higher altitudes, lasted for the period 2900 - 830 cal. B.C. Subsequently it was replaced by xerothermic herb and tree vegetation as a result of intensive human activity - and farming and stock-breeding. The accumulation of sediments with more sand and gravel in historical time was the result of increased erosion.  相似文献   

5.
A stratigraphic diatom sequence is presented for the period from 13,870-9,170 cal BP from Kråkenes Lake, western Norway. Changes in species assemblages are discussed with reference to the changing environmental conditions in the Allerød, Younger Dryas, and the early Holocene and to the development of the aquatic ecosystem. The site is sensitive to acidification, and diatom-based transfer functions are applied to estimate the past pH status. The combination of rapid sediment accumulation together with an excellent calibrated radiocarbon chronology means that the rate of inferred pH change and associated increase in [H+] can be assessed and compared with recent, anthropogenically acidified situations.The Allerød diatom assemblages are dominated by benthic taxa particularly Fragilaria species, indicating an unproductive, alkaline, turbid, and immature system. Diatoms are absent in the early part of the Younger Dryas, but subsequently a sparse planktonic flora develops reflecting decreased turbidity and/or increased nutrient supply. A clear sequence of diatom assemblages is seen in the early Holocene. A short-lived peak of Stephanodiscus species indicating a period of increased nutrient availability occurred at ca. 11,500 cal BP. Throughout the early Holocene, acid-tolerant species increasingly replaced less acidophilous, circumneutral taxa.The lake became slightly more acid during the Allerød, but this was statistically insignificant in a trend test involving regression of pH or [H+] in relation to age. Diatom-inferred pH declined rapidly during the early Holocene period investigated (9,175-11,525 cal BP) with a statistically significant overall rate of 0.024 pH units per 100 yrs. This consisted of an older (ca. 11,525-10,255 cal BP) phase, where pH fell more rapidly at up to 0.095 pH units per 100 yrs; and a younger phase after ca. 10,500 cal BP where the pH fall was extremely slow (0.008 pH units per 100 yrs) and was not statistically significant.In the Allerød a combination of low catchment productivity together with disturbance, weathering, and minerogenic inwash ensured that the base-cation status remained relatively high. In the Holocene the catchment soils stabilised and base cations were sequestered by terrestrial vegetation and soil. This resulted in reduced base-cation leaching and this, together with the production of organic acids caused the lake to acidify, reaching an equilibrium by ca. 10,000 cal BP.  相似文献   

6.
A combination of pollen and macrofossil analyses from six lakes at altitudes between 370 and 999 m above sea level (a.s.l.) in the Torneträsk area reflect the Holocene vegetation history. The main field study area has been the Abisko valley at altitudes around 400 m a.s.l. The largest lake, Vuolep Njakajaure has annually laminated (varved) sediments. The chronology and sedimentation rates in the pollen-influx calculations are based on varve yrs in this lake and on radiocarbon dated terrestrial plant macrofossils in the other lakes. A strong increase of mountain birch (Betula pubescens ssp. tortuosa) during the early Holocene with a tree-line c. 300 m above the present, indicates that the summer temperature was c. 1.5 °C higher than today, assuming that the land uplift has been 100 m since then. Scattered stands of pine (Pinus sylvestris) may have been growing in the area immediately after the deglaciation but a forest consisting of pine and mountain birch expanded first at low elevations and reached the eastern parts of the Torneträsk area at c. 8300 cal BP and the western parts at c. 7600 cal BP. The highest pine-birch forest limit was not reached until 6300 cal BP (110 m above present pine limit). Warm and dry conditions during the pine forest maximum led to lowering of the water level documented in Lake Badsjön in the Abisko valley about 1-1.5 m lower than today. Pine and mountain birch were growing at the maximum altitude until c. 4500 cal BP. Assuming that land uplift has been in the range of 20-40 m since the mid-Holocene, this implies that the temperature was then c. 1.5-2 °C higher than today. Rising lake-levels and lowering limits of pine and mountain birch since c. 4500 cal BP indicate a more humid and cool climate during the late Holocene.  相似文献   

7.
8.
In the Solway Firth — Morecambe Bay region of Great Britain there is evidence for heightened hillslope instability during the late Holocene (after 3000 cal. BP). Little or no hillslope geomorphic activity has been identified occurring during the early Holocene, but there is abundant evidence for late Holocene hillslope erosion (gullying) and associated alluvial fan and valley floor deposition. Interpretation of the regional radiocarbon chronology available from organic matter buried beneath alluvial fan units suggests much of this geomorphic activity can be attributed to four phases of more extensive gullying identified after 2500–2200, 1300–1000, 1000–800 and 500 cal. BP. Both climate and human impact models can be evoked to explain the crossing of geomorphic thresholds: and palaeoecological data on climatic change (bog surface wetness) and human impact (pollen), together with archaeological and documentary evidence of landscape history, provide a context for addressing the causes of late Holocene geomorphic instability. High magnitude storm events are the primary agent responsible for gully incision, but neither such events nor cooler/wetter climatic episodes appear to have produced gully systems in the region before 3000 cal. BP. Increased gullying after 2500–2200 cal. BP coincides with population expansion during Iron Age and Romano-British times. The widespread and extensive gullying after 1300–1000 cal. BP and after 1000–800 cal. BP coincides with periods of population expansion and a growing rural economy identified during Norse times, 9–10th centuries AD, and during the Medieval Period, 12–13th centuries AD. These periods were separated by a downturn associated with the ‘harrying of the north’ AD 1069 to 1070. The gullying episode after 500 cal. BP also coincides with increased anthropogenic pressure on the uplands, with population growth and agricultural expansion after AD 1500 following 150 years of malaise caused by livestock and human (the Black Death) plagues, poor harvests and conflicts on the Scottish/English border. The increased susceptibility to erosion of gullies is a response to increased anthropogenic pressure on upland hillslopes during the late Holocene, and the role of this pressure appears crucial in priming hillslopes before subsequent major storm events. In particular, the cycles of expansion and contraction in both population and agriculture appear to have affected the susceptibility of the upland landscape to erosion, and the hillslope gullying record in the region, therefore, contributes to understanding of the timing and spatial pattern of human exploitation of the upland landscape.  相似文献   

9.
Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last 2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.  相似文献   

10.
Pollen analysis of 3.25 m of late glacial and Holocene sediments gives a mid‐altitude (600 m) record of vegetation development after the last or Margaret Glaciation. Alpine herbfield, coniferous heath and Nothofagus gunnli scrub developed on the moraines until 11,400 BP. Wet montane forest and heath then developed with Phyllocladus aspleniifolius, Nothofagus cunninghamii and Eucalyptus until c. 10,000 BP. After 10,000 BP a mosaic of N. cunninghamii rainforest, Myrtaceae and Proteaceae scrub and Sprengelia incarnata heath occurred. The development of the vegetation from alpine communities to temperate rainforest, which is near its limit at 600 m, occurred under the influence of improving climatic conditions with rapid upslope migration or local expansion of taxa during the late glacial. Temperatures were warm enough for the development of rainforest at 600 m by 10,000 BP, if not earlier. The development of a mosaic of rainforest, scrub and heath vegetation rather than extensive rainforest after 10,000 BP reflects the influence of poor soils, bad drainage and fires. Comparison with similar pollen diagrams from western Tasmania suggests that the development of pollen/vegetation associations was time transgressive with altitude during the late glacial when climatic influences and migration rates were important, and that the mosaic of vegetation communities became more complex during the Holocene because of adjustment to or control by local ecological factors.  相似文献   

11.
Knowledge of natural variability in aquatic ecosystems is vital for assessing the nature and amplitude of human-induced change, and for predicting future anthropogenic impacts. Distinguishing between naturally and anthropogenically caused variability in lake sediment records can be problematic, however, because both drivers can produce similar ecological effects. Standard sediment-based approaches for reconstructing past environmental changes tend to focus on qualitative and quantitative variations in palaeoenvironmental indicators, with little significance attached to their complete absence. We used multiple variables in radiometrically dated sediment cores collected from two sites in Lough Mask, a lake in western Ireland. Results suggest that the Lough Mask sediment record has been a sensitive recorder of past climate variability, especially changing precipitation, since the middle Holocene. Variations in the presence of aquatic siliceous microfossils and calcareous macrofossils, and changing sediment lithology and geochemistry, indicate a quasi-cyclic response to oscillations in climate conditions that correspond generally with palaeoclimate findings from elsewhere in NW Europe, including other sites in Ireland. We conclude that during much of the middle to late Holocene, prolonged periods of relatively high rainfall in the catchment reduced nutrient inputs to the lake, particularly silica and calcite. Diatom productivity consequently declined, whereas dissolution of frustules was enhanced. During relatively dry climate periods, availability of these nutrients increased, diatom productivity was higher, and dissolution was reduced. Relatively early human impacts are evident in the sediment record beginning ca. 1,000?BP. The results highlight the aquatic and taphonomic effects of complex interactions among past variations in catchment conditions, climate and water chemistry. The complexity of these interactions and their effects, mediated through the characteristics of Lough Mask and its catchment, pose problems for conventional interpretation of palaeolimnological data and their use in computer-based simulations of future changes in stresses on aquatic ecosystems and their consequent impacts.  相似文献   

12.
The development of Soppensee (Central Switzerland, 596 m a.s.l.) has been reconstructed using algal remains such as diatoms, chlorophytes and fossil pigments, as well as the pollen and spores of macrophytes. Sediment accumulation in Soppensee began at the end of the last glacial period, approximately 15,000 yrs ago. During the Oldest Dryas biozone (> 12,700 radiocarbon yrs B.P.) the lake had low primary productivity. After reforestation with birch and later pine, around 12,700 B.P., phases of summer anoxia occurred in the lake. These anoxic conditions were most probably caused by additional carbon input from the catchment, as well as longer phases of stratification due to reduced wind exposure caused by the sheltering effect of increased tree cover. From the Younger Dryas biozone (10,800 to 10,000 radiocarbon yrs B.P.) onwards, Soppensee became meromictic for several millennia.The fossil diatom assemblages are dominated by planktonic alkaliphilous to alkalibiontic species with mainly meso- to eutrophic preferences. Diatom-inferred total phosphorus reconstructions suggest meso- to eutrophic conditions throughout the Holocene. Eutrophic conditions are also suggested by the presence of pigments of cyanobacteria, including Oscillatoria species. First human activity in the catchment is evidenced ca. 5000 radiocarbon yrs B.P. by the occurrence of cereal pollen. Diatom-inferred total phosphorus concentrations also increased slightly during the Neolithic period.According to the fossil pigment record, meromictic conditions ended during the Iron Age. Deep-water anoxia, however, persisted at least during the stratification period. During the Middle Ages massive deforestation in the catchment and around the lake changed the limnological conditions drastically. The lack of forest increased the wind fetch and, therefore, also the mixing of the lake, while soil erosion and retting of hemp supplied additional nutrients. Because of intensive agriculture in its catchment, Soppensee has become hypertrophic and diatom assemblages have consequently changed completely in the last 50 yrs.  相似文献   

13.
Lacustrine records from the northern margin of the East Asian monsoon generate a conflicting picture of Holocene monsoonal precipitation change. To seek an integrated view of East Asian monsoon variability during the Holocene, an 8.5-m-long sediment core recovered in the depocenter of Dali Lake in central-eastern Inner Mongolia was analyzed at 1-cm intervals for total organic and inorganic carbon concentrations. The data indicate that Dali Lake reached its highest level during the early Holocene (11,500–7,600 cal yr BP). The middle Holocene (7,600–3,450 cal yr BP) was characterized by dramatic fluctuations in the lake level with three intervals of lower lake stands occurring 6,600–5,850, 5,100–4,850 and 4,450–3,750 cal yr BP, respectively. During the late Holocene (3,450 cal yr BP to present), the lake displayed a general shrinking trend with the lowest levels at three episodes of 3,150–2,650, 1,650–1,150 and 550–200 cal yr BP. We infer that the expansion of the lake during the early Holocene would have resulted from the input of the snow/ice melt, rather than the monsoonal precipitation, in response to the increase in summer solar radiation in the Northern Hemisphere. We also interpret the rise in the lake level since ca. 7,600 cal yr BP as closely related to increased monsoonal precipitation over the lake region resulting from increased temperature and size of the Western Pacific Warm Pool and a westward shifted and strengthened Kuroshio Current in the western Pacific. Moreover, high variability of the East Asian monsoon climate since 7,600 cal yr BP, marked by large fluctuations in the lake level, might have been directly associated with variations in the intensity and frequency of the El Niño-Southern Oscillation (ENSO) events.  相似文献   

14.
Charcoal preserved in lake sediments is commonly used to reconstruct past trends in fire occurrence. However, interpretation of the charcoal record is often complicated, as changes in charcoal influx could represent natural shifts in fire regimes associated with changes in climate, changes in vegetation, or changes in patterns of anthropogenic burning. Here we examine sedimentary charcoal records from three lakes on the Caribbean islands of Hispaniola and Puerto Rico: Laguna Saladilla in the Dominican Republic, Lake Miragoane in Haiti, and Laguna Tortuguero in Puerto Rico. All records are based on microscopic charcoal fragments quantified from pollen slides and cover the last 7,000 or more years of the Holocene. We compare charcoal influx values to archeological and palynological evidence of human activity and explore the role of increasing winter insolation over the Holocene in driving increased charcoal deposition beginning ca. 6,000–5,000 cal yr BP. An increase in charcoal influx at Laguna Tortuguero at ca. 5,200 cal yr BP, previously interpreted as a signal of human settlement predating archeological evidence, may instead reflect insolation-driven shifts in winter drying that led to more frequent and possibly more intense natural fires. Decreased charcoal influx around 3,200 cal yr BP may signal human modification of the environment that altered fire frequency and/or intensity. Comparing the records from these three lowland Caribbean sites highlights possible intervals of synchronous, climate-driven burning as distinct from more localized anthropogenic burning.  相似文献   

15.
Lacustrine sediments in north-eastern Germany have rarely been used as archives to address the effects of climate change and human impact on both lake ecosystem and landscape evolution for this region. Sacrower See, a hardwater lake located in Brandenburg, provides a unique sediment record covering the past 13,000 years which was used to reconstruct climatic and anthropogenic forcing on lacustrine sedimentation. Time control is provided by 12 AMS 14C dates of terrestrial plant remains, the Laacher See Tephra, and the onset of varve formation in AD 1870 (80 cal. BP). Geochemical (including XRF logging of major elements, CNS analyses as well as δ13Corg and δ15N measurements) and pollen analyses allowed detecting detailed environmental changes in the sediment record. During the Younger Dryas cold phase increased soil erosion and hypolimnetic oxygen depletion enhanced the nutrient supply to the lake water causing eutrophic conditions. The beginning of the Holocene is characterized by large changes in C/N ratios, total sulphur, δ13C of bulk organic matter as well as in K, Si, and Ti, reflecting the response of the lake’s catchment to climatic warming. Reforestation reduced the influx of detrital particles and terrestrial organic matter. The first, rather weak evidence of human impact is documented only in the pollen record at 5,500 cal. BP. However, until 3,200 cal. BP sedimentological and geochemical parameters indicate relatively stable environmental conditions. During periods of intense human impact at around 3,200, 2,800, and 900 cal. BP peaks in Ti and K represent phases of increased soil erosion due to forest clearing during the Bronze Age, Iron Age, and Medieval Times, respectively. In general, greater variation is observed in most variables during these perturbations, indicating less stable environmental conditions. The steady rise of biogenic silica accumulation rates during the Holocene reflects an increasing productivity of Sacrower See until diatoms were outcompeted by other algae during the last centuries. The applied multi-proxy approach fosters the interpretation of the sediment record to reveal a consistent picture of environmental change including environmental factors controlling lake ontogeny and the effects of human impact.  相似文献   

16.
We studied mineral magnetic properties of a 6-m-long, late Pleistocene through Holocene sediment sequence from Lake Aibi in Dzungaria (Zunggary, Junggar), northern Xinjiang, China. Results were used to infer environmental changes and are compared with previously studied cores from Lake Manas. Both water bodies occupy the deepest parts of the Dzungarian Basin and are remnants of large Holocene lakes. During the Late Pleistocene, the magnetic mineralogy in both lakes was dominated by detrital, iron oxide minerals. Oxic conditions, which dominated during sedimentation and early diagenesis, persisted over the Pleistocene–Holocene transition. Later, during the middle Holocene, lake bottom conditions enabled authigenic formation of iron sulphide minerals such as pyrite (FeS2) in Lake Aibi, and pyrite and greigite (Fe3S4) in Lake Manas. This iron sulphide mineralogy suggests increased biological activity in stagnant, anoxic bottom waters. Anoxic bottom conditions started about 9.8 cal kyr BP in Lake Manas and at about 7.2 cal kyr BP in Lake Aibi. A short dry event recorded in Lake Manas between 6.8 and 5.2 cal kyr BP is not clearly observed in Lake Aibi. In the late Holocene, i.e. the last 2.8 cal kyr, sediments of both lakes are again characterised by iron oxides, suggesting well-mixed, shallow water bodies. For this recent period, it seems that the detrital material in the two lakes had a common origin. Magnetic properties of sediments in Lakes Aibi and Manas show broadly similar environmental evolution during the late Pleistocene and Holocene. Nevertheless, despite the close proximity of the two lakes (~200 km) in the same basin, they display some different magnetic properties and record environmental changes at different times.  相似文献   

17.
A sediment record is used, in combination with shallow landslide soil redistribution and sediment-yield modelling, to reconstruct the incidence of high-magnitude/low-frequency landslide events in the upper part of a catchment and the history of a wetland in the lower part. Eleven sediment cores were obtained from a dune-impounded wetland at Te Henga, west Auckland, northern New Zealand. Sediment stratigraphy and chronology were interpreted by radiocarbon dating, foraminiferal analysis, and provisional tephrochronology. Gradual impoundment of the wetland began c. 6000 cal yr BP, coinciding with the start of a gentle sea-level fall, but complete damming and initial sedimentation did not begin until c. 1000 cal yr BP. After damming, four well-defined sediment pulses occurred and these are preserved in the form of distinct clay layers in most of the sediment cores. For interpreting the sediment pulses, a physically based landslide model was used to determine spatially distributed relative landslide hazard, applicable at the catchment scale. An empirical landslide-soil redistribution component was added and proved able to determine the volumes and spatial pattern of eroded and deposited soil material, sediment delivery ratio and the impact on total catchment sediment yield. Sediment volumes were calculated from the wetland cores and corresponding landslide scenarios are defined through back-analysis of modelled sediment yield output. In general, at least four major high-magnitude landslide events, both natural and intensified by forest clearance activities, occurred in the catchment upstream of Te Henga Wetland during the last c. 1000 years. The spatial distribution of modelled critical rainfall values for the catchment can be interpreted as an expression of shallow landslide hazard. The magnitude of the sediment pulses represented in the wetland can be back-calculated to critical rainfall thresholds representing a shallow landslide model scenario.  相似文献   

18.
Foy Lake in northwestern Montana provides a record of annual-to-decadal-scale landscape change. Sedimentary charcoal and pollen analyses were used to document fire and vegetation changes over the last 3800 years, which were then compared to similar records from AD 1880 to 2000. The long-term record at Foy Lake suggests shifts between forest and steppe as well as changes in fire regime that are likely the result of climate change. Fire activity (inferred from the frequency of charcoal peaks) averaged 18 fire episodes/1000 years from 3800 to 2125 cal year BP, and increased from 16 fire episodes/1000 years at 2125 cal year BP to 22 episodes/1000 years at 750 cal year BP, a period when the pollen data suggest that steppe vegetation yielded to increasing patches of forest cover. Between 2125 and 750 cal year BP, increased forest cover produced more background charcoal than before and after this period, when vegetation was dominated by steppe. Between 750 and 75 cal year BP steppe has expanded and fire episode frequency averaged 33 episodes/1000 years, increasing to a maximum of 40 episodes/1000 years at ca. 300 cal year BP and then decreasing to present levels. Since AD 1880, the pollen record indicates an increase in shrubs and grasses from AD 1895 to 1960 as a result of vegetation changes associated with timber harvesting and livestock grazing. No fires have been documented in the Foy Lake watershed since AD 1880. Charcoal from the extralocal fires of AD 1910, burning over 4,111,249 ha in Idaho, Montana, and Wyoming, however, is present in Foy Lake. Between AD 1970 and 2000, increased arboreal pollen in the record is consistent with observations that the forest has become more closed. The activities of Euro–Americans have led to a decline in forest cover between AD 1880 and 1970, followed by a recent increase as trees are now growing in areas previously occupied by steppe. Euro–Americans are likely the cause of a reduction in fire activity in watershed since AD 1880.  相似文献   

19.
选用甘青地区达连海、青海湖、苏家湾、大地湾4个典型高分辨率的钻孔资料进行对比分析,阐明了该地区末次冰消期以来气候变化规律与主要气候事件,初步探讨了该地区植被纬向时空演化规律。结果显示末次冰消期大致开始于15.2~14.6 ka BP之间,冰消期期间该地区气候表现为冷暖波动频繁,气候不稳定,植被类型由东向西为草原-荒漠化草原。全新世早期阶段10.4~8.2 ka BP气候表现为温干,植被类型由东向西为疏林草原-草原。全新世中期8.2~4.3 ka BP气候温暖湿润,植被发育良好,由东向西出现森林-森林草原植被。4.3 ka BP以后该地区气候总体向凉干方向发展,3.9~3.4 ka BP期间陇中地区气候波动较显著,植被类型草原-森林草原交替出现。晚全新世后期2.3~0 ka BP气候冷干,从东到西发育草原-荒漠化草原植被。  相似文献   

20.
A continuous, 1,420-cm sediment record from Lake Pupuke, Auckland, New Zealand (37°S) was analysed for diatom taxonomy, concentration and flux. A New Zealand freshwater diatom transfer function was applied to infer past pH, electrical conductivity, dissolved reactive phosphorus and chlorophyll a. A precise, mixed-effect regression model of age versus depth was constructed from 11 tephra and 13 radiocarbon dates, with a basal age of 48.2?cal kyr BP. Diatom-inferred changes in paleolimnology and climate corroborate earlier inferences from geochemical analyses (Stephens et al. 2012), with respect to the timing of marked climate changes in the Last Glacial Coldest Phase (LGCP; 28.8?C18.0?cal kyr BP), the Last Glacial Interglacial Transition (LGIT; 18.0 to ca. 12?C10?cal kyr BP) and the Holocene, the onset of which is difficult to discern from LGIT amelioration, but which includes an early climatic optimum (10.2?C8.0?cal kyr BP). The LGCP is readily defined by a reduction in lake level and effective precipitation, whereas the LGIT represents a period of rising lake level, with greater biomass during the Holocene. There was limited change in diatom assemblage structure, influx or inferred water quality during a Late Glacial Reversal (LGR; 14.5?C13.8?cal kyr BP), associated with heightened erosional influx. In contrast, an LGIT peak in paleoproductivity is recorded by increased diatom influx from 13.8 to 12.8?cal kyr BP. Changes in sediment influx and biomass record complex millennial-scale events attuned to the Antarctic Cold Reversal (ACR; 14.5?C12.8?cal kyr BP). Additional millennial-scale environmental change is apparent in the Holocene, with marked changes in lake circulation beginning at 7.6?cal kyr BP, including the onset of seasonal thermal stratification and rapid species turnover at 5.7?cal kyr BP. The most rapid diatom community turnover accompanied widely varying nutrient availability and greater seasonality during the last 3.3?cal kyr. Rising seasonality appears to have been linked to strengthened Southern Westerlies at their northern margins during the middle and late Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号