首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
We present a new method for centroid moment tensor (CMT) inversion, in which we employ the Green's function computed for aspherical earth models using the Direct Solution Method. We apply this method to CMT inversion of low-frequency seismic spectra for the 1994 Bolivia and 1996 Flores Sea deep earthquakes. The estimated centroid locations agree well with those obtained by multiple-shock analyses using body-wave data. This shows that it is possible to obtain reliable CMT solutions by analyses of low-frequency seismic spectra using accurate Green's functions computed for present 3-D earth models.  相似文献   

3.
4.
Summary. A previous formulation (Lu, Felsen & Kamel) of source-excited wave propagation in a multiwave layer is here extended to multiple layers, each of which may propagate different multiple wave species, and to simultaneous excitation and detection at arbitrarily specified multiple levels. Field variables are arranged so as to reveal 'interesting'layers requiring access (for example, those containing a source and/or receiver) but to hide in collective form all other 'uninteresting'layers. An ordering of wave constituents into array vectors provides not only a physically appealing view of the wave phenomena pertaining to array-type source and receiver arrangements but may also furnish numerical advantages. The variety of alternative representations in Lu et al. can be brought to bear directly on the present formulation which is thereby endowed with substantial versatility, especially that embodied within the hybrid ray-mode format.  相似文献   

5.
6.
When discussing error estimates of the point-source mechanism and the source time function obtained by the two-step procedure by Šílený, Panza & Campus (1992), the authors insist that in the first step—inversion of seismograms (after Sipkin 1982) to get the moment tensor rate functions (MTRFs)—a homogeneous variance for all the data is needed to keep the advantageous symmetry of the normal equations. We show that this is too strong a requirement and can be dropped.  相似文献   

7.
8.
9.
We invert surface-wave and geodetic data for the spatio-temporal complexity of slip during the M w =8.1 Chile 1995 event by simulated annealing. This quasi-global inversion method allows for a wide exploration of model space, and retains the non-linearity of the source tomography problem. Complex source spectra are obtained from 5 to 45 mHz from first- and second-orbit fundamental-mode Rayleigh waves using an empirical Green's function cross-correlation technique. Coseismic displacement vectors were measured at 10 GPS sites near Antofagasta. They are part of a French-Chilean experiment which monitors the Northern Chile seismic gap. The spectra, together with the geodetic data, are inverted for the moment distribution on a 2-D dipping fault, under the physical constraints of slip positivity and causality. Marginal a posteriori distributions of the model parameters are obtained from several independently inverted solutions. In general, features of the slip model are well resolved. Data are well fitted by a purely unilateral southward rupture with a nearly uniform velocity around 2.5–3.0 km s−1, and a total duration of 65 s. Several regions of moment release were imaged, one near the hypocentre, a major one 80 km south of it and a minor one 160 km south of it. The major patch of moment release seemed to have propagated to relatively shallow depths near the trench, 100 km SSW of the epicentre. The region of major slip is located updip of the 1987, M w =7.5 earthquake, suggesting a causal relationship. Most of the slip occurred updip of the hypocentre (36 km), but the entire coupled plate interface (20–40 km) ruptured during the Chile 1995 event.  相似文献   

10.
11.
12.
The VLF-R (very low frequency-resistivity) data, i.e. the apparent resistivity ( ρ a ) and phase ( φ ) data, were inverted individually and jointly using the VFSA (very fast simulated annealing) global inversion approach. Global inversion results for synthetic data without and with various amounts of random and normally distributed Gaussian noise reveal that the inversion of neither the ρ a nor φ data alone yields the true parameters of the structures. However, the joint inversion of the ρ a and φ data yields very good estimates of the model parameters. Five models, representing typical subsurface structures in the shield areas, are studied here. Various models achieved after 10 VFSA runs were used to compute the mean model and the corresponding covariance and correlation matrices, which were used to estimate the uncertainties in the mean model parameters and correlations between the model parameters. We observe that these correlations follow the physics associated with the problem. VLF-R field data due to a nearly vertical contact structure and a very thick dyke-like structure were also inverted to demonstrate the efficacy of the approach in the delineation of the parameters of 2-D structures.  相似文献   

13.
14.
Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay)   总被引:1,自引:0,他引:1  
Two great Mongolian earthquakes, Tsetserleg and Bolnay, occurred on 1905 July 9 and 23. We determined the source history of these events using body waveform inversion. The Tsetserleg rupture (azimuth N60°) correspond to a N60° oriented branch of the long EW oriented Bolnay fault.
Historical seismograms recorded by Wiechert instruments are digitized and corrected for the geometrical deformation due to the recording system. We use predictive filters to recover the signals lost at the minute marks.
The total rupture length for the Tsetserleg earthquake may reach up to 190 km, in order to explain the width of the recorded body waves. This implies adding 60 km to the previously mapped fault. The rupture propagation is mainly eastward. It starts at the southwest of the central subsegment, showing a left lateral strike-slip with a reverse component. The total duration of the modelled source function is 65 s. The seismic moment deduced from the inversion is 1021 N m, giving a magnitude   M w = 8  .
The nucleation of the Bolnay earthquake was at the intersection between the main fault (375 km left lateral strike-slip) and the Teregtiin fault (N160°, 80 km long right lateral strike-slip with a vertical component near the main fault). The rupture was bilateral along the main fault: 100 km to the west and 275 km to east. It also propagated 80 km to the southeast along the Teregtiin fault. The source duration was 115 s. The moment magnitude Mw varies between 8.3 and 8.5.
The nucleation and rupture depths remain uncertain. We tested three cases: (1) nucleation and rupture depth limited to the seismogenic zone; (2) nucleation in the seismogenic zone and rupture propagation going to the base of the crust and (3) nucleation within the crust–upper mantle interface and rupture propagation within the upper mantle.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号