首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N. Birdi 《GeoJournal》1997,41(2):181-191
The water problem in Malta reflects to a significant extent water problems in the rest of the Mediterranean region. Rising water demands have resulted in increasing levels of production. Groundwater resources have been exploited beyond their sustainable yield resulting in water shortages, and salinity levels in groundwater, and ultimately tapwater, have risen to unacceptable levels for human health, and in some cases agriculture and industry. Increasing levels of pollution, mainly from agro-chemicals, have also caused a deterioration in groundwater quality, resulting in unacceptable concentrations of nitrate compounds in tapwater for certain settlments. The competition for good quality water often leads to conflict between consumers and between consumers and the Government. To try and curb groundwater extraction and the poor quality of tapwater, the Maltese Government has resorted to large scale desalination by Reverse Osmosis. Unfortunately the nature of the distribution system is such that there is an inequity in the quantity and quality of water supplied. Certain settlements receive little or no water, usually of relatively poor quality, for long periods, while others receive large amounts, usually of the relatively good quality Reverse Osmosis water. These problems and their causes are discussed and solutions are briefly considered.  相似文献   

2.
In light of the increasing deterioration of groundwater supplies in Rajasthan, India, rainwater harvesting practices in southern Rajasthan were studied to determine the effects of artificially recharged groundwater on the supply and quality of local groundwater. A physical and geochemical investigation utilizing environmental tracers (δ18O and Cl), groundwater level and groundwater quality measurements, and geological surveys was conducted with two objectives: (1) to quantify the proportion of artificially recharged groundwater in wells located near rainwater harvesting structures and (2) to examine potential effects of artificial recharge on the quality of groundwater in these wells. A geochemical mixing model revealed that the proportion of artificial recharge in these wells ranged from 0 to 75%. Groundwater tracer, water table, and geological data provided evidence of complex groundwater flow and were used to explain the spatial distribution of artificial recharge. Furthermore, wells receiving artificial recharge had improved groundwater quality. Statistical analysis revealed a significant difference between the water quality in these wells and wells determined not to receive artificial recharge, for electrical conductivity and SO 4 . The findings from this study provide quantitative evidence that rainwater harvesting structures in southern Rajasthan influence the groundwater supply and quality of nearby wells by artificially recharging local groundwater.  相似文献   

3.
Gadolinium chelates have been used since 1988 as contrast agents in magnetic resonance imaging (MRI), and produce positive anthropogenic Gd anomalies in rare earth element (REE) patterns of river and lake waters. These Gd compounds are not removed in wastewater treatment plants (WWTP) due to their high stabilities, and are transferred to surface waters with the clearwater discharge from WWTP. Through natural and induced bank filtration, the anthropogenic Gd is also transported into groundwater. To date, there are no related acute health risks known, but the potential long-term effects of exposure to low doses have not been studied.Here REE data is presented for tap water from the City of Berlin, Germany, a metropolitan area that is known for its anthropogenic Gd-rich rivers and groundwater. Natural and induced bank filtration play important roles in Berlin’s freshwater resource management. Therefore, the extent to which municipal tap water that is used as drinking water is affected by anthropogenic Gd was investigated. Large positive Gd anomalies were found in tap water samples from the western districts of Berlin, indicating the presence of up to 18 ng/L of anthropogenic Gd on top of a geogenic background of 0.54 ng/L. In marked contrast, the amount of anthropogenic Gd in tap water from the eastern districts of Berlin is negligible to minor (maximum of 0.18 ng/L on top of a geogenic background of 0.26 ng/L). This strong regional difference likely results from the specific historical situation of Berlin, where before the re-unification of Germany in 1990, natural and induced bank filtration were necessities in isolated West Berlin, but unimportant in East Berlin, a situation that has seen little change during the past 20 years. Thus, drinking water resources in the western part of Berlin are more strongly affected by anthropogenic Gd than those in the eastern part. The high anthropogenic Gd concentrations found in some tap waters in Berlin clearly show that the Gd initially used as contrast agent is removed neither during natural nor artificial water treatment. This is further evidence for the high stability and long environmental half-lives of these compounds. Considering that the amount of anthropogenic Gd in the Havel River in Berlin has increased more than 4-fold over the past 15 years and that water migration from the Havel River to the groundwater wells take years to decades, the amounts of anthropogenic Gd in West Berlin tap water will increase further over the next few years. Due to its presence in tap water that is consumed as drinking water, millions of people are exposed to low doses of these anthropogenic Gd chelates. Additional data for the City of London, UK, for example, indicate that this is not a local phenomenon confined to the City of Berlin, but rather a common feature of tap water in metropolitan areas and megacities in countries with highly developed health care systems. Hence, the REE distribution in tap waters used for human consumption should be monitored, especially since the anthropogenic Gd chelates can also be used as tracers for emerging microcontaminants such as steroids, pharmaceuticals and personal care products.  相似文献   

4.
This paper provides a review of the water environment problems faced in China and a comparison with the European experience in dealing with such issues, with an attempt to emphasize the challenges in China. The paper also summarizes various studies in China to highlight the severity of water pollution problems faced by regulators, polluters and the general public. China’s water situation can be characterized by insufficient quantities of water, uneven distribution of water spatially and temporally, as well as poor water quality. Water pollution in China has spread from point source to non-point source, from fresh water to coastal water, and from surface water to groundwater. From the management and technological experience from EU, including water framework directive, water price system, desalination and groundwater recharge technologies, and from the analysis of water environment problems and management system in two regions, we could come to the conclusion that water price, water market and water tax could be introduced to China for water environment regulations. Moreover, it is necessary to establish a reliable risk assessment system for water quality, human health and ecological safety.  相似文献   

5.
The natural and pumping-induced controls on groundwater salinization in the coastal aquifers of North Carolina, USA, and the implications for the performance of a reverse osmosis (RO) desalination plant have been investigated. Since installation of the well field in the Yorktown aquifer in Kill Devil Hills of Dare County during the late 1980s, the groundwater level has declined and salinity of groundwater has increased from ??1,000 to ??2,500 mg/L. Geochemical and boron isotope analyses suggest that the salinity increase is derived from an upflow of underlying saline groundwater and not from modern seawater intrusion. In the groundwater of four wells supplying the plant, elevated boron and arsenic concentrations were observed (1.3?C1.4 mg/L and 8?C53 ??g/L, respectively). Major ions are effectively rejected by the RO membrane (96?C99% removal), while boron and arsenic are not removed as effectively (16?C42% and 54?C75%, respectively). In coming decades, the expected rise of salinity will be associated with higher boron content in the groundwater and consequently also in the RO-produced water. In contrast, there is no expectation of an increase in the arsenic content of the salinized groundwater due to the lack of increase of arsenic with depth and salinity in Yorktown aquifer groundwater.  相似文献   

6.
The co-location of desalination plants with existing or proposed power plants can bring forth economic and ecological advantages in terms of reducing the costs of water intake and reducing fish impingement. However, fossil fuel-based power plants are a source of ozone precursors and the added strain of power needed for the energy intensive desalination process increases these pollutants into the atmosphere. Furthermore, withdrawal from brackish water sources puts a stress on slowly replenishing aquifers. Additionally, the resulting concentrate is highly saline and disposal into ecologically sensitive bays and estuaries may be problematic. Balancing these limitations with the need for freshwater is of great importance for sustainability of water scarce arid and semi-arid regions and also requires a holistic multimedia impact evaluation. Therefore, an integrated system of systems approach is adopted in this study and a decision support system that integrates the flow of water, concentrate and resulting pollutants through two engineered (power plant and desalination plant) as well as three natural systems (coastal bay, aquifer and the atmosphere) is developed to study the co-location of a power plant and a desalination plant near the City of Corpus Christi in South Texas. The objective of the model is to minimize the amount of groundwater extraction and minimize the amount of water extracted from the bay to emphasize water and ecosystem conservation, respectively. These objectives, in turn, are subject to various other constraints including (1) conservation of mass; (2) air quality regulations; (3) salinity regulation policies; (4) groundwater management constraints; (5) water demand requirements; and (6) energy demand constraints. The results indicate that when conservation of the aquifer is weighted more, less water is pulled from the aquifer until later time periods. The salinity of the bay increases and creates a need for a greater amount of power necessary to process the saline water which, in turn, enhances the atmospheric loading of ozone precursors. Therefore, the conservation of groundwater scenario is limited by the air quality standards. Alternatively, when the goal is to conserve the ecological integrity of the bay while meeting freshwater demands, the model is bound by the prescribed drawdown constraint that limits the amount of water that can be extracted from the aquifer. The results from the study indicate that blending saline bay water with brackish groundwater and using cleaner burning fossil fuels that have limited air quality impacts will enhance the performance of the co-located power and desalination operations. The results of the study highlight the need for an integrated multimedia evaluation in assessing the feasibility of desalination in areas with marginal air quality.  相似文献   

7.
为查明神东矿区地下水质量状况和补给来源,分析测试了不同含水层(第四系松散层、白垩系洛河组、侏罗系直罗组和延安组含水层)的一般化学指标、毒理学指标和环境同位素(D、18O、3H)的值,利用环境同位素(D、18O、3H)分析该区地下水的补给来源和更新能力,利用单指标综合评价和影响因素识别相结合的方法研究了区内地下水的质量现状和影响因素,采用四步法计算出毒理学指标的饮水途径健康风险值。结果表明:(1)第四系松散层地下水、白垩系洛河组地下水和侏罗系风化带水主要为现代大气降水补给,更新快。侏罗系深层基岩裂隙水主要为晚更新世冰期降水补给,与现代降水基本无水力联系;(2)侏罗系延安组地下水水质较差,Ⅳ-Ⅴ类水所占比例较高,达到47.9%,其他含水层地下水水质较好。总体上,对Ⅳ-Ⅴ类水单指标贡献率较大的指标为钠氟化物TDS氯化物硫酸盐;(3)毒理学指标中氟化物的健康风险值最大,其他毒理学指标健康风险基本都在可接受范围内。因此,氟化物应作为水污染监测和防治中的优先控制物。本次研究成果将为矿区水源地的选择和污染物防控提供科学依据。  相似文献   

8.
Groundwater quality assessment in urban environment   总被引:1,自引:1,他引:0  
The assessment of environmental effects generated by urban areas (with various activities as agriculture, industry, human activities) on groundwater quality became essential for the use and conservation of the water resources. The main objective was to apply a water quality index to the groundwater sources using the specific methodology, establishing the suitability for drinking for groundwater. Water resources were monitored in October 2011, the samples were collected from 22 points for groundwater, and more parameters were analyzed: pH, electrical conductivity, turbidity, oxygen regime, hardness, alkalinity, nutrients regime (nitrates, ammonium, phosphates) which were considered important and utilized for water quality index computation that reveal poor quality for groundwater. The oxidability should be included in computation formula and the final results used for water management, taking into consideration the limits of the current model. Multivariate statistical analysis was used to indicate the influence of urban area on the quality of groundwater resources. Results of the analysis highlight an influence of geology and a contamination of agricultural origin.  相似文献   

9.
Groundwater quality is of vital importance in groundwater safety especially for the purpose of water supply, its management becomes more and more necessary as groundwater contamination has threaten its safe use in China. The article analyzed the contamination sources of groundwater and impact of contamination on human health and water supply, the knowledge gaps were pointed and recommendations were made for groundwater quality management in China.  相似文献   

10.
Identification of damages/changes that are affecting the underground water quality due to the effect of anthropogenic activities is often done after environmental problems have become evident or water portability being strongly affected. Two main applications of electrical resistivity tomography (ERT) methods have been addressed covering characterization of leachate movement from a composting area of a Sugar Mill in Southern India. Good correlation has been obtained between ERT and groundwater quality assessments as well as from groundwater monitoring data sets. The study helped in conceptualization of hydrogeologic framework in basaltic terrain. Impacts on groundwater regime associated with urbanization and industrialization can easily be assessed through the variation of resistivity in the inverse resistivity pseudo-section model of the ERT investigations. Assessment of groundwater potential in an upcoming Urban Node, Greater Hyderabad city has been illustrated in the second example. Identification of good thickness of weathered regolith for location of water harvesting through Green Fingers evolved. The small infrastructure would help carrying of enhanced surface runoff as well as to sustain groundwater yield in the urban node and thereby ensuring sustainable groundwater resource exploitation. The above studies have illustrated immense potential of the ERT tools in the assessment of groundwater contamination as well as groundwater potential.  相似文献   

11.
通过对地下水特征的分析认为:延吉市南部丘陵地带白垩系龙井组多旋回碎屑沉积岩风化孔隙、裂隙水,水质良好、水量中等、水质甘甜爽口、含有丰富的对人体有益的微量元素,具有良好的矿泉水开发前景。开发利用地下水资源时应采取:严格控制开采量、建立长期动态观测站、定期采取水样检测、设立卫生环境保护区等保护措施。  相似文献   

12.
现代黄河三角洲滨海湿地生态水文环境脆弱性   总被引:1,自引:0,他引:1       下载免费PDF全文
受大气降水、黄河水位断流、风暴潮和人类工程活动等因素影响,现代黄河三角洲滨海湿地生态水文环境极其脆弱和敏感。本文运用地下水数值模拟方法,通过构建滨海湿地水文模型,以氯离子作为模拟因子,预测滨海湿地地下水趋势性变化。计算结果显示,湿地水位和盐度对湿地生长和发育起控制作用;黄河持续断流和强烈风暴潮对湿地水质影响明显;当风暴潮引起增水幅度超过正常潮高的2.4m,会造成沿海低地特别是北部未受防潮大坝保护的滨海湿地淹没。  相似文献   

13.
With burgeoning population, the groundwater demands of any area increased by many fold and therefore, it is essential to assess the groundwater potential to choose suitable sites for further groundwater development. Present study determines the groundwater potential of different parts of Gandhinagar region located at Gandhinagar district, Gujarat, India. Here, excluding city dwellers, all villagers are mostly dependent on groundwater for drinking and domestic purposes. With increasing population, there is a rise in daily human consumption and hence reduction in groundwater quantity.Various types of industries of Gandhinagar such as textile industries, food processing industries, ceramic industries etc. also require groundwater. Industrial discharges deteriorate the water quality of this region. Therefore, water level monitoring and quality assessment of groundwater in regular intervals is essential. The groundwater potential zoning is an indicator, which gives the overall idea about the groundwater condition. Overlay analysis in GIS using multiple criteria such as WQI, hydraulic conductivity, groundwater velocity, and depth to piezometric surface discloses that there are five groundwater potential zones in Gandhinagar region. This study reveals that majority of the study area is covered with medium potential zone. Different management plans such as treated surface water supply, reduction in tubewell operation time, development of rooftop rainwater harvesting system and artificial recharge system etc. are recommended for different potential zones for sustainable development of groundwater of Gandhinagar region.  相似文献   

14.
This article reviews and discusses environmental aspects related to vertical upward and downward groundwater flow. Flow systems are an important tool to understand groundwater functioning as related to the environment, in terms of obtaining indicators of human impact and solving specific questions about a groundwater-environment system that has been influenced by anthropogenic means. This involves two broad processes. First, groundwater changes due to activities of man in the surrounding environment as a result of: (1) alteration of recharge by modification of native vegetation and original soil cover; (2) reduction of groundwater discharge to coastal areas and to inland water bodies producing desiccation of wetlands, lakes and springs; (3) groundwater contamination from sewage looses and uncontrolled waste disposal locations, and (4) up-welling of undesirable water quality induced by extraction. Second, environmental alterations due to changes in the groundwater regime produce: (1) increase in soil erosion through the disappearance of vegetation due to water-table decline, (2) water-table rise due to unplanned artificial recharge resulting from water imports to a catchment, (3) decline in water levels for improper extraction regime, (4) soil subsidence due to extraction mismanagement, and (5) disappearance of phreatofites caused by excessive extraction. Unless further understanding between groundwater and the other components of the environment is sought, the relationship between people and its environment will be subject to some of these effects, potentially endangering adequate human development and sustainable water management.  相似文献   

15.
This paper presents a method combining single-indicator comprehensive evaluation and influence factor identification to measure groundwater quality. This method not only reflects groundwater quality classification with clear physical significance, but also divides the possibilities of man-made pollution in regional groundwater. The paper selects 6 063 representative groundwater wells in the North China Plain to evaluate 49 groundwater inorganic and organic index and comes to a conclusion: Controlled by geological environment and hydrogeological conditions, the groundwater quality in the North China Plain deteriorates from the bottom of maintain to coastal area, with Class I to III groundwater decreasing from 49% to 3.9% while Class V groundwater increasing from 21% to 86.9%; the quality of deep groundwater is better than that of shallow groundwater; the contribution rate of manganese, total hardness, total dissolved solids and iodide in shallow groundwater to over-III type water exceeds 50%; the contribution rate of nitrite in pollution index reaches 20%; while heavy metal and organic indexes have limited impact on regional groundwater quality. The North China Plain is an important economic area in China. Over decades, it has witnessed intense human activities, and water resource quantity demanded has been far greater than quantity supplied. Due to scarce surface water resource, groundwater becomes the pillar supporting regional economic development. This has led to increasing groundwater exploitation and development. According to statistics, the exploitation degree of shallow groundwater reaches 105% in the North China Plain and 118% in the Hebei Plain; the exploitation degree of deep groundwater reaches 143% in the North China Plain and 163% in the Hebei Plain. The serious over-exploitation of groundwater brings various geological environmental problems, with the worsening of groundwater quality being a typical one. Besides impact brought by human activities, the poor quality of natural water in the North China Plain is also an important factor. Therefore, to understand the current regional groundwater quality situation and to master influence factors and influence degree can provide reliable scientific protection for regional economic development.  相似文献   

16.
This paper presents a method combining single-indicator comprehensive evaluation and influence factor identification to measure groundwater quality. This method not only reflects groundwater quality classification with clear physical significance, but also divides the possibilities of man-made pollution in regional groundwater. The paper selects 6 063 representative groundwater wells in the North China Plain to evaluate 49 groundwater inorganic and organic index and comes to a conclusion: Controlled by geological environment and hydrogeological conditions, the groundwater quality in the North China Plain deteriorates from the bottom of maintain to coastal area, with Class I to III groundwater decreasing from 49% to 3.9% while Class V groundwater increasing from 21% to 86.9%; the quality of deep groundwater is better than that of shallow groundwater; the contribution rate of manganese, total hardness, total dissolved solids and iodide in shallow groundwater to over-III type water exceeds 50%; the contribution rate of nitrite in pollution index reaches 20%; while heavy metal and organic indexes have limited impact on regional groundwater quality. The North China Plain is an important economic area in China. Over decades, it has witnessed intense human activities, and water resource quantity demanded has been far greater than quantity supplied. Due to scarce surface water resource, groundwater becomes the pillar supporting regional economic development. This has led to increasing groundwater exploitation and development. According to statistics, the exploitation degree of shallow groundwater reaches 105% in the North China Plain and 118% in the Hebei Plain; the exploitation degree of deep groundwater reaches 143% in the North China Plain and 163% in the Hebei Plain. The serious over-exploitation of groundwater brings various geological environmental problems, with the worsening of groundwater quality being a typical one. Besides impact brought by human activities, the poor quality of natural water in the North China Plain is also an important factor. Therefore, to understand the current regional groundwater quality situation and to master influence factors and influence degree can provide reliable scientific protection for regional economic development.  相似文献   

17.
鄱阳湖平原地下水重金属含量特征与健康风险评估   总被引:1,自引:0,他引:1  
鄱阳湖平原作为长江中下游平原的重要组成部分,随着城镇化进程的快速推进,由于工矿业污染物、农村生活污水和农业生产废水向地下水的过量排放,农村地下水污染程度和范围不断扩大,为了解鄱阳湖平原地下水重金属污染状况,本研究在大量的水文地质调查和水化学样品测试基础上,分析该区地下水中重金属Cu、As、Cr、Hg、Pb、Cd含量特征,利用美国环境保护署(USEPA)的健康风险评价模型对鄱阳湖平原地下水重金属进行健康风险评价。研究区171个地下水样品中Cd、Cu、Hg、As、Pb、Cr等6种重金属元素含量变化幅度大,其中Hg、Cd和As平均值超过《地下水环境质量标准》(GB/T14848—2017)Ⅲ类标准,结果表明鄱阳湖平原地下水水质受人为影响大,局部地下水存在严重的污染。致癌物健康风险评价结果显示,Cr、As和Cd的平均个人年健康风险值均大于可接受风险值,Cr的健康风险值最大,是主要的致癌因子,As次之,Cd最低;非致癌物质健康风险结果显示,Hg、Pb和Cu的健康风险水平表现为Hg>Pb>Cu,属于可忽略风险。区域饮水途径上的健康风险主要来自致癌物质,总体上男性健康风险大于女性的健康风险。鄱阳湖平原地下水水质污染状况研究及治理监管工作提供理论依据,为其他区域地下水重金属的监测和质量控制提供参考和借鉴。  相似文献   

18.
We collected a total of 50 water samples comprising tap water, ground water, and bottled water, from various areas of Jeddah City. We collected tap water samples from 25 districts, groundwater samples from 10 wells, and 15 different brands of bottled water. The levels of 28 elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). Water certified reference material (CWW-TM-B) was used to ensure quality assurance. Recoveries ranged from 92 to 104.8% for all measured elements. Levels of major and trace elements in groundwater samples were higher than those in both bottled and tap drinking water. Only four elements (Al, Cs, U, and Zn) were shown to be higher in tap water samples than other samples type. However, their values were far below the guideline values. All mean concentrations of Na, K, Mg, and Ca in well water samples were significantly (p < 0.05) higher than those in both bottled and tap drinking water. In addition, only Al and Zn in tap water samples were significantly (p < 0.05) higher than those in both bottled and well drinking water. Most of the other elements were higher in well water samples compared to other sources. The results from this study will be used to increase public awareness about the safety of drinking water. It will also be useful for increasing awareness of health issues related to drinking water and to water used for other purposes.  相似文献   

19.
In this paper, groundwater aquifer vulnerability map has been developed by incorporating the major geological and hydro-geological factors that affect and control the groundwater contamination using GIS based DRASTIC model. This work demonstrates the potential of GIS to derive a map by overlying various spatially referenced digital data layers that portrays cumulative aquifer sensitivity ratings across the Kathmandu Valley, Nepal, providing a relative indication of groundwater vulnerability to contamination. In fact, the groundwater is the major natural resources in Kathmandu for drinking purpose. The decline in groundwater levels due to the over exploitation and thus extracted water from shallow aquifer has been contaminated by the infiltration of pollutants from polluted river and land surface is continuous and serious. As the demand for water for human and industrial use has escalated and at the same time, the engineering and environmental costs are much higher for new water supplies than maintaining the existing sources already in use. Management of groundwater source and protecting its quality is therefore essential to increase efficient use of existing water supplies. Aquifer vulnerability maps developed in this study are valuable tools for environmental planning and predictive groundwater management. Further, a sensitivity analysis has been performed to evaluate the influence of single parameters on aquifer vulnerability assessment such that some subjectivity can be reduced to some extent and then new weights have been computed for each DRASTIC parameters.  相似文献   

20.
地下水质量和污染问题已成为制约城市发展的重要因素。该文对厦门市平原区地下水的有机和无机化学组分进行了系统全面的分析,根据"地下水标准"和"矿泉水标准"对地下水质量进行了综合评价。研究表明:厦门市地下水质量总体一般,可以直接饮用的水占22.9%,经过适当处理可以饮用的水占59.8%,不能饮用的占17.3%。有益人体健康的H2SiO3、Sr微量组分在地下水中含量普遍较高。在采集的87组样品中,有17组高H2SiO3或Sr元素地下水优于"地下水标准"Ⅲ类水标准和"矿泉水标准"相关标准,为兼有饮用和医疗价值的优质天然矿泉水。影响地下水质量的主要因子为pH值和Mn、Fe等与原生地质环境有关的无机组分,以及由人类活动引起污染的无机组分NO3-、Pb和有机组分二氯甲烷等。基于"优质优用,按需开采"的原则,从居民饮水安全的角度,对厦门市地下水开发利用提出科学有序开采优质矿泉水、适度开采水质优良水、应急利用原生水质较差水的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号