首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data on the global magnetic field (GMF) of the Sun as a star for 1968–1999 are used to determine the correlation of the GMF with the radial component of the interplanetary magnetic field (IMF) |B r|; all data were averaged over a half year. The time variations in the GMF |H| are better correlated with variations in |B r|; than the results of extrapolating the field from the “source surface” to the Earth’s orbit in a potential model based on magnetic synoptic maps of the photosphere. Possible origins for the higher correlation between the GMF and IMF are discussed. For both the GMF and IMF, the source surface actually corresponds to the quiet photosphere—i.e., background fields and coronal holes—rather than to a spherical surface artificially placed ≈2.5 R from the center of the Sun, as assumed in potential models (R is the solar radius). The mean effective strength of the photospheric field is about 1.9 G. There is a nearly linear dependence between |H| and |B r|. The strong correlation between variations in |H| and |B r| casts doubt on the validity of correcting solar magnetic fields using the so-called “saturation” factor δ?1 (for magnetograph measurements in the λ 525.0 nm FeI line).  相似文献   

2.
The signature of the interplanetary magnetic field componentB y andB z and their effects on the low lattitude field are studied for Alibag station. It has been found that the direction and magnitude of theB y component of IMF have their signatures on the low latitude geomagnetic field, varying with the time of the day and season.  相似文献   

3.
Measurements of the mean magnetic field of the Sun as a star (the line-of-sight component of the magnetic field of the visible hemisphere for a given day) carried out at six observatories are used to compile a catalog of the mean magnetic field for 1968–2006 (containing about 18 000 daily values). The cataloged data are compared with direct daily measurements of the absolute line-of-sight field made at the Kitt Peak Observatory in 2003–2006 (original data with a resolution of 1″ averaged over the solar disk). The true absolute mean field strength averaged over the visible solar hemisphere is determined for 1968–2006 to be B 0 = 7.7 ± 0.2 G. This figure exceeds previous estimates by almost a factor of four. B 0 exhibits no appreciable slow trend over the entire 39-year interval, but varies substantially with the cycle. The period of this variation is 10.5 ± 0.7 yr, and its harmonic amplitude is 1.7 G. The magnetic flux of spots and active regions makes B 0 almost twice the field strength in the “normal” photosphere at the solar minimum, i.e., for the “quiet” Sun.  相似文献   

4.
Magnetic Hα synoptic maps of the Sun for 1915–1999 are analyzed and the intensities of spherical harmonics of the large-scale solar magnetic field computed. The possibility of using these Hα maps as a database for investigations of long-term variations of solar activity is demonstrated. As an example, the magnetic-field polarity distribution for the Hα maps and the analogous polarity distribution for the magnetographic maps of the Stanford observatory for 1975–1999 are compared. An activity index A(t) is introduced for the large-scale magnetic field, which is the sum of the magnetic-moment intensities for the dipole and octupole components. The 11-year cycle of the large-scale solar magnetic field leads the 11-year sunspot cycle by, on average, 5.5 years. It is concluded that the observed weak large-scale solar magnetic field is not the product of the decay of strong active-region fields. Based on the new data, the level of the current (23rd) solar-activity cycle and some aspects of solar-cycle theory are discussed.  相似文献   

5.
Results of the analysis of spacecraft measurements at 1–5.4 AU are presented within the scope of the large-scale interplanetary magnetic field (IMF) structure investigation. The work is focused on revealing of the radial IMF component (B r ) variations with heliocentric distance and latitude as seen by Ulysses. It was found out that |B r | decreases as ~r ?5/3 in the ecliptic plane vicinity (±10° of latitude), which is consistent with the previous results obtained on the basis of the analysis of in-ecliptic measurements from five spacecraft. The difference between the experimentally found (r ?5/3) and commonly used (r ?2) radial dependence of B r may lead to mistakes in the IMF recalculations from point to point in the heliosphere. This can be one of the main sources of the “magnetic flux excess” effect, which is exceeding of the distantly measured magnetic flux over the values obtained through the measurements at the Earth orbit. It is shown that the radial IMF component can be considered as independent of heliolatitude in a rough approximation only. More detailed analysis demonstrates an expressed |B r | (as well as the IMF strength) increase in the latitudinal vicinity of ±30° relative to the ecliptic plane. Also, a slight increase of the both parameters is observed in the polar solar wind. The comparison of the B r distributions confirms that, at the same radial distance, B r values are higher at low than at high latitudes. The analysis of the latitudinal and radial dependences of the B r distribution’s bimodality is performed. The B r bimodality is more expressed at high than in the low-latitude solar wind, and it is observed at greater radial distances at high latitudes. The investigation has not revealed any dependence between B r and the solar wind speed V. The two-peak distribution of the solar wind speed as measured by Ulysses is a consequence of a strong latitudinal and solar cycle dependence of V. It is shown that the solar wind speed in high latitudes (above ±40°) anti-correlates with a solar activity: V is maximum during solar-cycle minima and minimum at the maximum of solar activity.  相似文献   

6.
It is shown that, when all components of the large-scale solar magnetic field are longitudinally averaged, the N polarity and the eastward transverse component of the B φ field associated with both local and large-scale fields over the Northern hemisphere are somewhat stronger and occupy a smaller area during odd cycles than does the field of opposite polarity. This behavior is reversed for even cycles or the Southern hemisphere. The regular Hale law is a particular form of the above rule. The nature of this asymmetry seems to be rooted in the dynamo mechanism itself, and should be important for fields on any scale.  相似文献   

7.
New polarization observations of the subdwarf Bal 09 are analyzed. Bal 09 belongs to the group of hybrid sdB stars, which display both short- and long-period pulsations. Explaining certain properties of Bal 09 that were previously unknown in relation to subdwarfs (variations of the amplitude of the fundamental pulsation mode, rotational splitting of line multiplets and variation of this splitting) requires invoking information about the magnetic field of the star. According to estimates made in 2010, the longitudinal component of the magnetic field of Bal 09 is 34±63 G. This value is significantly lower than the fields found earlier for six other hot subdwarfs. New observational data for the longitudinal magnetic field of Bal 09 was obtained on July 27, 2012, using the main stellar spectrograph of the 6-m telescope of the Special Astrophysical Observatory (SAO). The longitudinal component of the magnetic field 〈B z 〉 was found via a regression analysis. When applied to the star HD 210762 with a zero total magnetic field, this method yielded the value 〈B z 〉 = ?12 ± 9 G. The observations also included measurements of 〈B z 〉 for the well-studied magnetic star γ Equ, which is used at the SAO for calibration and testing of the polarimetric instruments. The estimate obtained for γ Equ is 〈B z 〉 = ?546±16G, consistentwith the general variations of the longitudinal magnetic-field component of this star. This new study, based on data obtained on July 27, 2012, leads to a similar estimate of the longitudinal magnetic field, 〈B z 〉 = ?23±53 G. This estimate of 〈B z 〉 was obtained for the full analyzed spectral range (4400–4958 Å). The corresponding “limited” solution yielded ?32±63 G. The regression analysis for the individual spectral sub-bands and for bands containing characteristic spectral features, did not provide firm evidence of the presence of a magnetic field, with a strength exceeding the error in 〈B z 〉. The data analysis leads to the conclusion that the errors of the measurements made in 2010 and 2012 are in good agreement. This testifies to the reliability of the method applied and of the resulting observational material. In addition, the estimates are in good agreement among themselves and with estimates obtained earlier, in 2010. The results unambiguously confirm the earlier conclusion that the subdwarf Bal 09 does not have magnetic field with a strength comparable to those detected earlier for six sdB and sdO stars. Estimates of 〈B z 〉 for hot subdwarfs that have appeared in the literature since the 2010 study also provide trustworthy evidence for the absence of magnetic fields ~ 1 kG in these objects.  相似文献   

8.
Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima are interpreted as the effects of changes in the general topology of the global solar magnetic field. The streamer axis is located on the neutral surface of the radial magnetic field B r = 0, and the neutral surfaces deviate toward the field null points. The magnetic configuration with a null point (line) located at the equator is typical for the solar minima, while the null points are located on the rotational axis of the Sun at the solar maxima.  相似文献   

9.
Analysis of long-term measurements of solar magnetic fields and the flux of UV radiation from the Sun indicates a cause-effect relationship between activity complexs, their residual magnetic fields, and coronal holes. A comparison of the background magnetic fields of the Sun and the evolution of former activity complexes reveals unipolar magnetic regions that form after the decay of these complexes. The latitude and time evolution of unipolar magnetic regions in solar cycles 21–24 is studied. A North-South asymmetry in solar activity is manifest in the distribution of unipolar regions migrating toward higher latitudes. It is shown that, when residual magnetic fields of the opposite polarity reach the polar regions, this leads to a sign change of the polar magnetic field and a decrease in the area of polar coronal holes, or even their complete disappearance. These interactions can explain the triple sign change of the polar magnetic field of the Sun in cycle 21 and the short-term polarity reversals observed in 2010 and 2011.  相似文献   

10.
The paper continues investigations of MHD turbulence in active solar regions. The statistical distributions of the increments (structure functions) of the turbulent field are studied analytically in the context of a refined Kolmogorov theory of turbulence. Since photospheric transport of the B z component of the magnetic field is quite similar to that of a scalar field in a turbulent flow, the theory of transport of a passive scalar can be applied. This approach enables us to show that the structure functions are determined by the competition between the dissipation of the magnetic and kinetic energies and to obtain a number of relations between the structure-function parameters and energy characteristics of the MHD turbulence. Taking into account general conclusions that can be drawn on the basis of the refined Kolmogorov turbulence theory, the structure functions of the B z field are calculated for eight active regions (from measurements of SOHO/MDI and the Huairou Solar Observing Station, China). These calculations show that the behavior of the structure functions is different for the B z field of each active region. The energy-dissipation index of the fluctuation spectrum (which is uniquely determined by the structure functions) is closely related to the level of flare activity: the more activity, the less steep the dissipation spectrum for a given active region. This provides a means to test and, consequently, forecast the flare activity of active regions.  相似文献   

11.
SOHO-MDI daily magnetic field synoptic data (a 14-year series of daily maps of the solar magnetic field intensity B available at the site ) have been used to analyze the dynamics of the photospheric magnetic field in the vicinity of the solar equator. The standard deviation s B of the field B calculated over areas of tens of square degrees on the solar disk was taken as a basic index. An 11-year variation similar to that observed at higher latitudes is observed in the vicinity of the equator, and is similar for weak and strong fields; i.e., the solar cycle exists in the sunspot-free zone. New qualitative data support the idea that the weak background magnetic field increases toward the solar limb. This angular dependence suggests the existence of a transverse component of the background field. The magnetic fields in the vicinity of the equator were significantly different in the initial phases of Cycles 23 and 24. Annual variations of s B were observed near the center of the solar disk. These variations are due to two factors: the annual variation of the distance from the equator to the disk center and the increase of s B with with distance from the equator. Reliable detection of these variations is an evidence of high accuracy of the s B estimates.  相似文献   

12.
The distributions of dominant magnetic polarities in synoptic maps of photospheric magnetic fields and their extrapolations to the corona based on Stanford Observatory data are studied. Both dipolar and quadrupolar magnetic patterns are detected in the distributions of dominant polarities in the near-equatorial region of the photosphere for activity cycles 21, 22, and 23. The field in these patterns often has opposite signs on opposite sides of the equator, with this sign changing from cycle to cycle. A longitude-time analysis of variations of the mean solar magnetic field shows that the contribution of the large-scale magnetic patterns to the total field does not exceed 20 µT. The most stable magnetic structures at a quasi-source surface in the solar corona are separated by approximately 180° in heliographic longitude and are close to dipolar. The nature and behavior of these large-scale magnetic patterns are interpreted as a superposition of cyclic dynamo modes and the nonaxially symmetric relic field of the Sun. The contribution of the relic field to the mean solar magnetic field appears as a weak but stable rotational modulation whose amplitude does not exceed 8 µT.  相似文献   

13.
We have analyzed polarization observations of the subdwarf Bal 09, which is one of a group of hybrid sdB stars that display simultaneously both short- and long-period pulsations. Certain properties previously unknown for subdwarfs have been established for Bal 09, such as variations of the pulsation amplitude of the main oscillation mode, rotational splitting of multiplets, and variations of this splitting. Information about the stellar magnetic field must be considered if we wish to explain these properties. New observational data enabling estimation of the longitudinal magnetic field of Bal 09 have been obtained on the main stellar spectrograph of the 6-m telescope of the Special Astrophysical Observatory. Studies of the longitudinal component of the magnetic field 〈B z 〉 were carried out using a regression analysis. This method simultaneously yields estimates of the uncertainty in 〈B z 〉. Test measurements of 〈B z 〉 were carried out using the same method. For the star HD 158974, which has zero total magnetic field, the estimated longitudinal magnetic field is 〈B z 〉 = −4 ± 5 G. The standard magnetic field for the Ap star α 2CVn was measured to be −363 ± 17 G, in very good agreement with measurements in the literature. The estimated longitudinal magnetic field for Bal 09 is 34 ± 63G—appreciably lower than values established earlier for six subdwarfs, ≈1.5 kG. The results of the regression analysis for both individual spectral subranges and for intervals containing characteristic spectral features did not indicate reliable detections of a magnetic field exceeding the uncertainties in 〈B z 〉. The uncertainty in 〈B z 〉, which was 60–80 G for the entire spectral range and 140–200 G for selected spectral intervals, leads to an estimated upper limit on the longitudinal magnetic field 〈B z 〉 for Bal 09. This estimate for 〈B z 〉 can place observational constraints on theoretical explanations for the amplitude variations of the pulsations, rotational splitting of multiplets, and possible variations of the internal structure of the star.  相似文献   

14.
The solar cycle can be described as a complex interaction of large-scale/global and local magnetic fields. In general, this approach agrees with the traditional dynamo scheme, although there are numerous discrepancies in the details. Integrated magnetic indices introduced earlier are studied over long time intervals, and the epochs of the main reference points of the solar cycles are refined. A hypothesis proposed earlier concerning global magnetometry and the natural scale of the cycles is verified. Variations of the heliospheric magnetic field are determined by both the integrated photospheric i(B r )ph and source surface i(B r )ss indices, however, their roles are different. Local fields contribute significantly to the photospheric index determining the total increase in the heliospheric magnetic field. The i(B r )ss index (especially the partial index ZO, which is related to the quasi-dipolar field) determines narrow extrema. These integrated indices supply us with a “passport” for reference points, making it possible to identify them precisely. A prominent dip in the integrated indices is clearly visible at the cycle maximum, resulting in the typical double-peak form (the Gnevyshev dip), with the succeeding maximum always being higher than the preceding maximum. At the source surface, this secondary maximum significantly exceeds the primary maximum. Using these index data, we can estimate the progression expected for the 23rd cycle and predict the dates of the ends of the 23rd and 24th cycles (the middle of 2007 and December 2018, respectively).  相似文献   

15.
The large-scale stream structure of the solar wind near the Sun and its evolution during the 11-year solar activity cycle are investigated. The study is based on observations of scattering of the radiation from compact natural radio sources at radial distances R≤14R S (R S is the solar radius). Regular observations were conducted in 1981–1998 on the RT-22 and DKR-1000 radio telescopes of the Russian Academy of Sciences at Pushchino, at λ=1.35 cm and 2.7 m, respectively. The radial dependences of the interplanetary scintillations m(R) and the scattering angle 2?(R) are considered together with the structure of large-scale magnetic fields in the solar corona at R=2.5R S. The entire range of variations in the level of scattering and the associated heliolatitude flow structures in the subsonic solar wind forms over the 11-year solar cycle, as a direct result of the large-scale structure of the evolving magnetic fields at the source of the solar-wind streamlines.  相似文献   

16.
Observations of the total magnetic field in the active region NOAA 6757 have been used to study the turbulence regime from 2.5 h before the onset of a 2B/X1.5 flare until two minutes after its maximum. The curvature of the exponent ζ(q) for the structure functions of the B z field increases monotonically before the flare (i.e., the multifractal character of the B z field becomes more complex) but straightens at the flare maximum and coincides with a linear Kolmogorov dependence (implying a monofractal structure for the B z field). The observed deviations of ζ(q) from a Kolmogorov line can be used for short-term forecasting of strong flares. Analysis of the power spectra of the B z field and the dissipation of magnetic-energy fluctuations shows that the beginning of the flare is associated with the onset of a new turbulence regime, which is closer to a classical Kolmogorov regime. The scaling parameter (cancellation index) of the current helicity of the magnetic field, k h , remains at a high level right up until the last recording of the field just before the flare but decreases considerably at the flare maximum. The variations detected in the statistical characteristics of the turbulence can be explained by the formation and amplification of small-scale flux tubes with strong fields before the flare. The dissipation of magnetic energy before the flare is primarily due to reconnection at tangential discontinuities of the field, while the dissipation after the flare maximum is due to the anomalous plasma resistance. Thus, the flare represents an avalanche dissipation of tangential discontinuities.  相似文献   

17.
Quasi-biennial oscillations (QBOs) can clearly be distinguished in uniform series of data on the solar magnetic-field polarity derived from Hα observations in 1915–1999. These have been proven to represent oscillations of the global magnetic field of the Sun. This is verified by spectral analyses executed using various methods: the QBOs are clearly visible in low harmonics (l=1–3), but abruptly disappear for l=4 and higher. First and foremost, the QBOs are displayed in variations of the sector structure of the large-scale magnetic field, demonstrating that they correspond to variations of the horizontal multipoles.  相似文献   

18.
Cosmogenic radionuclides with distinctive half-lives from chondritic falls were used as natural detectors of galactic cosmic rays (GCR). A unique series of uniform data was obtained for variations in the integral gradients of GCR with a rigidity of R > 0.5 GV in 1955–2000 on heliocentric distances of 1.5–3.3 AU and heliographic latitudes between 23° S and 16° N. Correlation analysis was performed for the variations in GCR gradients and variations in solar activity (number of sunspots, SS, and intensity of the green coronal line, GCL), the intensity of the interplanetary magnetic field (IMF), and the inclination of the heliospheric current sheet (HCS). Distribution and variations of GCR were analyzed in 11-year solar cycles and during a change in 22-year magnetic cycles. The detected dependencies of GCR gradients on the intensity of IMF and HCS inclination provided insight into the differences in the processes of structural transformation of IMF during changes between various phases of solar and magnetic cycles. The investigated relationships lead to the conclusion that a change of secular solar cycles occurred during solar cycle 20; moreover, there is probably still an increase in the 600-year solar cycle, which can be among the major reasons for the observed global warming.  相似文献   

19.
For many years, information on the solar mean magnetic field (SMMF) of the Sun—an important heliophysical and astrophysical parameter—was restricted to magnetographic measurements in only one spectral line, FeI λ525.02 nm. More informative observations of the Stokes-meter parameters of the SMMF were first initiated on a regular basis at the Sayan Solar Observatory. The availability of I and V data obtained simultaneously in several spectral lines has made it possible to study fundamentally new physical problems. In this paper, based on a comparison of SMMF observations in several spectral lines, we find high correlations in the data and important systematic differences in the magnetic-field strength B, which we interpret as a manifestation of kilogauss magnetic fields in fine-structure magnetic elements. Results of theoretical modeling of the SMMF strength ratios for the FeI λ525.02 nm-FeI λ524.70 nm and FeI λ630.15 nm-FeI λ630.25 nm lines are presented. The asymmetries of the V profiles of four lines near the FeI λ525.02 nm line are examined; these lines are important diagnostics for studies of small-scale dynamical processes. The Sayan Solar Observatory SMMF measurements are in good consistency with the Wilcox Solar Observatory data for 2003: for a comparison of N = 137 pairs of points in the two data sets, the correlation coefficient ρ is 0.92 for the linear regression between the datasets BWSO = 0.03(±0.05) + 0.93(±0.03)BSSO.  相似文献   

20.
It is shown that the storm sudden commencement (SSC) inH field at low latitude station consists of only a positive excursion when the interplanetary shock due to the solar plasma impinging on the magnetosphere is associated with a southward excursion of the interplanetary magnetic field (IMF). When the signature of SSC at low latitude station consists of a preliminary negative excursion preceding the main positive excursion of theH field, the solar plasma causing the compression is associated with a northward excursion of the IMF. It is suggested that the signature of SSC(H) at equatorial stations is the result of combined effect of the compression of magnetosphere by the solar plasma as well as due to the electric field effects associated with the velocity of the solar plasma (v) interacting with the northward component (Bz) of the interplanetary field (i.e.,E =−v x Bz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号