首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We present 1- to 5-μm broadband and CVF images of comet Hale-Bopp taken 1997 February 10.5 UT, 50 days before perihelion. All the images exhibit a nonspherical coma with a bright “ridge” in the direction of the dust tail approximately 10″ from the coma. Synthetic aperture spectrophotometry implies that the optically important grains are of a radius ≤0.4 μm; smallest radius for any comet seen to date. The variation of the integrated surface brightness with radial distance from the coma (ρ) in all the images closely follows the “steady state” ρ−1 model for comet dust ablation (Gehrz and Ney, 1992). The near-infrared colors taken along the dust tail are not constant implying the dust grain properties vary with coma distance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Comets, such as C/1995 O1 (Hale-Bopp), are important to studies of the origins of the solar system because they are believed to be frozen reservoirs of the most primitive pre-solar dust grains and ices. Here, we report 1.2–18.5 μm infrared (IR) spectrophotometric and polarimetric observations of comet Hale-Bopp. Our measurements of the spectral energy distribution (SED) and IR polarization near perhelion passage suggest that emission from the coma was dominated by scattering and thermal emission from sub-micron sized dust grains. Hale-Bopp's surprising brightness may have been largely a result of the properties of its coma grains rather than the size of its nucleus. The thermal emission continuum from the grains had a superheat of S = Tcolor/TBB ≥ 1.7, the peak of the 10 μm silicate emission feature was 1.7 mags above the carbon grain continuum, and the albedo (reflectivity) of the grains was ≥ 0.4 at a scattering angles, θ ≥ 135° This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
SANTOS-SANZ  P.  SABALISCK  N.  KIDGER  M. R.  LICANDRO  J.  SERRA-RICART  M.  BELLOT RUBIO  L. R.  CASAS  R.  GOMEZ  A.  SANCHEZ PORTERO  J.  OSIP  D. 《Earth, Moon, and Planets》1997,78(1-3):235-241
We present a comparison between images of comet C/1995 O1 (Hale-Bopp) obtained from 12 March to 9 May 1997, with two telescopes of the Observatorio del Teide (IAC, Tenerife, Spain) in visible (Johnson-V filter) and three near-infrared narrowband filters (Brγ (2.166 μm), CO (2.295 μm), and Kcon (2.260 μm)). No significant differences are observed between the images in the three near-infrared bands suggesting that any CO emission is very weak, or produced by an extended flat source. We do not find evidence for the existence of an additional infrared component due to emission by warm dust, or to dust grains of diverse composition and/or size. Visible and infrared images of the same rotational phase look almost identical, supporting the view that the observed jets and shells are mainly dust structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Hanner  M. S.  Gehrz  R. D.  Harker  D. E.  Hayward  T. L.  Lynch  D. K.  Mason  C. C.  Russell  R. W.  Williams  D. M.  Wooden  D. H.  Woodward  C. E. 《Earth, Moon, and Planets》1997,79(1-3):247-264
The dust coma of comet Hale-Bopp was observed in the thermal infrared over a wide range in solar heating (R = 4.9–0.9 AU) and over the full wavelength range from 3 μm to 160 μm. Unusual early activity produced an extensive coma containing small warm refractory grains; already at 4.9 AU, the 10 μm silicate emission feature was strong and the color temperature was 30% above the equilibrium blackbody temperature. Near perihelion the high color temperature, strong silicate feature, and high albedo indicated a smaller mean grain size than in other comets. The 8–13 μm spectra revealed a silicate emission feature similar in shape to that seen in P/Halley and several new and long period comets. Detailed spectral structure in the feature was consistent over time and with different instruments; the main peaks occur at 9.3, 10.0 and 11.2 μm. These peaks can be identified with olivine and pyroxene minerals, linking the comet dust to the anhydrous chondritic aggregate interplanetary dust particles. Spectra at 16–40 μm taken with the ISO SWS displayed pronounced emission peaks due to Mg-rich crystalline olivine, consistent with the 11.2 μm peak. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We present mid-infrared images and spectra of Arp 10 and Arp 118, two collisional ring galaxies observed as part of the ISOCAM GT program CAMACTIV (P.I.: I.F. Mirabel). The observations reveal the distribution of hot dust in the galaxies and enable us to probe the mechanisms responsible for the heating of the ISM. Unlike the peculiar mid-infrared colours recently discovered in the Cartwheel, the prime example of a collisional ring, Arp 10 has colours typical of those found inspiral arms of late type spirals. Similarly for Arp 118 (NGC 1144),the mid-infrared emission is associated with the regions of star formation in the ring. Moreover, a hot continuum in the 5.1–6.7 μmrange, which is a typical mid-infrared signature of an AGN, is clearly detected from the Seyfert 2 nucleus of the galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Galdemard  P.  Lagage  P. O.  Dubreuil  D.  Jouan  R.  Masse  P.  Pantin  E.  Bockelée-Morvan  D. 《Earth, Moon, and Planets》1997,78(1-3):271-277
Comet C/1995 O1 (Hale-Bopp) was observed with camiras, the Saclay mid-infrared camera, mounted on the Nordic Optical Telescope (Roque de los Muchachos, La Palma), from April 14th to April 25th, 1997. This observing run was part of the European campaign devoted to Hale-Bopp observations from the Canary Islands (PI R. West). camiras spectro-imaging capabilities, achieved with a Circular Variable Filter (of spectral resolution R ≈ 50), were used to obtain spectra of the comet in the N atmospheric window (8–13 μm) over a large field of view (52″ × 78″), at a spatial resolution of ∼1 arcsec. Data were also collected at shorter wavelengths (in the L and M bands). The silicate dust feature around 10 μm is clearly apparent in the data. The shape of the feature varies continuously according to the position in the field. A dust model developed at Saclay in the framework of β-Pictoris dust disk studies was used to interpret the observations. The presence of both olivine and pyroxene with a high degree of crystallinity is needed to account for the observations. A change in the size distribution of the grains allows to reproduce the spatial change of the silicate feature according to the position in the field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
We present a new set of diagnostics which allow us to trace and classify in a statistical manner the mid-IR emission produced by active galactic nuclei (AGN) and star-forming regions. We construct a diagram based on the strength of the unidentified infrared band (UIB)at 6.2 μm, and the intensity of the continuum at short (6 μm) and long wavelengths (15 μm). We interpret the integrated mid-IR emission in late-type galaxies as resulting from three individual contributions coming from HII regions, diffuse/photodissociation regions (PDRs), and AGN. Based on this assumption, our diagnostic diagram provides a quantitative estimate of the AGN and starburst contribution to an observed mid-IR spectrum. We show that UIB emission is very faint or absent in regions harbouring intense and hard radiation fields as in the case of AGN or ‘pure’ HII starburst regions where UIB carriers can be destroyed by photodissociation. However, contrary to starburst spectra, typical AGN spectra present a strong hot continuum below 9 μm originating from hot dust heated by the AGN radiation field. An extrapolation of this diagnostic towards other mid-IR observations should improve our knowledge of the AGN/starburst connection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A very long series of photographic observations of the comet Hale-Bopp has been made during January–April 1997 at the double astrograph (400/2000) of the Main Astronomical Observatory (Kyiv, Ukraine). Some of the cometary photos were obtained with two wide-band filter combinations. One of these combinations isolates C2 emission, another — the nearby dust continuum. The images were digitized by means of AMDPH-XY machine and then calibrated following the standard procedure. After subtraction of the dust continuum the distribution of surface brightness in the C2 emission coma of comet Hale-Bopp was studied. We found an asymmetric brightness distribution both pre- and post-perihelion. On 21.77 April 1997 a secondary brightness peak is found at the distance of 1.03 × 105 km from the nucleus. It is possible that this peak is related to the extended source of the C2 molecules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Optical spectroscopic data are presented on nova LW Serpentis 1978, obtained during its decline fromV 9.0 to ≃10.2 (compared to a value of ∼ 8.0 at recorded maximum). The spectrum and its evolution compare well with a typical nova, though the principal absorption (∼ −750 km s−l) was very weak in comparison with the diffuse-enhanced absorption (∼ −1300 km s−1). The principal absorption could be identified only in the lines of O I λλ7774, 8446, and in moderate-resolution observations of Hα. The salient features of spectral evolution follow: The near-infrared triplet of Ca n continuously weakened. O I λ8446 was always brighter than O I λ 7774, indicating continued importance of Lyman Β fluorescence. The lines due to [O I], [N II] and N n brightened considerably near the end of our observations (37 days from maximum). The Hα emission line was asymmetric all through with more emission towards the red. Its emission profile showed considerable structure. Based on the individual peaks in the Hα line profile, a kinematical model is proposed for the shell of LW Ser. The model consists of an equatorial ring, and a polar cone on the side away from the earth. The nearer polar cone did not show significant emission of Hα during our observations. The polar axis of the shell is inclined at a small angle (∼ 15‡) to the line of sight.  相似文献   

10.
We describe 5 to 18 μm broadband images and R ∼ 100 spectra of comet Hale-Bopp taken with SpectroCam-10 on the 5 m Hale telescope during six runs between 1996 June and 1997 April. Our data show the gradual warming of dust grains as the comet approached perihelion. In June, the 10 μm silicate emission feature was already stronger than observed in any other comet, and it increased to about 3 times the continuum level near perihelion. Spectral structure attributed to a crystalline olivine grain component remained relatively constant, but other features associated with pyroxenes appeared to vary with heliocentric distance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We present new observations of the molecular gas distribution in the merging system Arp 299. The first observation set was obtained with the Canada–France–Hawaii Telescope near-IR camera Redeye and the second set comes from the IRAM Plateau de Bure interferometer (combined with short spacings observed at the IRAM 30 m Telescope). In the near IR, H2 ν=1→0 S(1) and Brγ line maps are globally identical: there is bright emission not only at the two galaxy nuclei but also in numerous extranuclear star forming regions. Moreover, there is weaker emission localized in filaments between and around the two nuclei. These filaments correspond to a dust lane observed in optical images from HST. 12CO(1→0), 13CO(1→0) and HCN(1→0) maps are also presented. The structure of the12CO(1→0) map is very close to the NIR observations: the same bright galaxy nuclei and star-forming regions, the same filaments, but half of the total flux is found in weak extended emission. Strong HCN emission is observed in the nucleus A indicating the presence of a large amount of dense gas. Nucleus B1 is weak in 12CO(1→0) emission while nucleus A and star-forming regions C-C′ show more normal 13CO/12CO ratios. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Bellucci  G. 《Earth, Moon, and Planets》1997,78(1-3):305-311
Previous analysis of imaging spectroscopy data in the 0.4–1 μm spectral range of comet Hale-Bopp, have shown the presence of two regions on the sunward and antisunward sides of the nucleus exhibiting different continuum emission (Bellucci, 1998, hereafter paper I). In this work we present the modeling of the continuum emission in terms of size distribution and composition of the dust grains. The spectra are fitted by micron sized olvine grains. A mechanism to explain the spatial gradient is also proposed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We present observations of a sample of Herbig AeBe stars, as well as the FU Orionis object V1057 Cygni. Our K-band (2.2μm) observations from the Palomar Testbed Interferometer (PTI) used baselines of 110 m and 85 m, resulting in fringe spacings of ∼4 mas and 5 mas, respectively. Fringes were obtained for the first time on V1057 Cygnias well as V594 Cas. Additional measurements were made of MWC147, while upper limits to visibility-squared are obtained for MWC297, HD190073, and MWC614. These measurements are sensitive to the distribution of warm, circumstellar dust in these sources. If the circumstellar infrared emission comes from warm dust in a disk, the inclination of the disk to the line of sight implies that the observed interferometric visibilities should depend upon hour angle. Surprisingly, the observations of Millan-Gabet, Schloerb and Traub (2001)(hereafter MST) did not show significant variation with hour angle. However, limited sampling of angular frequencies on the sky was possible with the IOTA interferometer, motivating us to study a subset of their objects to further constrain these systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We present arcsec-resolution images at 8.2, 10.0 and 11.3 μm of the unusual young object WL 16 in Ophiuchus, which has an extended envelope of fluorescing hydrocarbon molecules. To the limit of achieved sensitivity, the faint 10.0-μm continuum has a surface-brightness distribution that is not distinguishable from those at 8.2 and 11.3 μm, where the luminosity is known to be dominated by the polycyclic aromatic hydrocarbon (PAH) emission features. We conclude that the 10-μm continuum either arises from non-equilibrium heating of small dust grains that are well mixed with the hydrocarbons or is quasi-continuous emission from the PAH particles themselves, rather than thermal equilibrium emission from macroscopic dust grains, and that there is no significant silicate absorption variation across the source. The extended hydrocarbon emission may trace a flattened, equatorial distribution of circumstellar material or arise in bipolar lobes. The former case is slightly favoured, based on currently available data, and would imply that WL 16 is a relatively evolved Herbig Ae star, the equatorial plane of which has been almost cleared of normal dust, leaving only fluorescing hydrocarbons and larger coagulated particles as a possibly transient fossil of the original circumstellar disc.  相似文献   

15.
Three Galactic star forming regions associated with W3(OH), S209 and S187 have been simultaneously mapped in two trans-IRAS far infrared (FIR) bands centered at ≈140 and 200μm using the TIFR 100 cm balloon borne FIR telescope. These maps show extended FIR emission with structures. The HIRES processed IRAS maps of these regions at 12, 25, 60 & 100 ìm have also been presented for comparison. Point-like sources have been extracted from the longest waveband TIFR maps and searched for associations in the other five bands. The diffuse emission from these regions have been quantified, which turns out to be a significant fraction of the total emission. The spatial distribution of cold dust (T < 30 K) for two of these sources (W3(OH) & S209), has been determined reliably from the maps in TIFR bands. The dust temperature and optical depth maps show complex morphology. In general the dust around S209 has been found to be warmer than that in W3(OH) region.  相似文献   

16.
The comet Hale-Bopp (C/1995 O1) has been observed in the infrared (1–2.5 μm) with the Nordic Optical Telescope (NOT) equipped with the Arcetri NICMOS3 camera (ARNICA). Two observational campaigns, each one lasting about one week, were made when the comet heliocentric distance was about 3 AU. The first campaign was at the end of August and the second at the end of September 1996. During both runs two major outbursts were observed, the more intense of them started the day before the beginning of the second run. In the images recorded during the first three nights (24.8–26.8 Sept.) of the second run a dust shell expanding in the northern quadrant with a projected velocity of 0.14–0.28 km/s is clearly evident. The dust production rate increased by at least a factor ≈3 at the time of the outburst. Also evident on the first night is a change in the IR color that is well correlated with the dust shell. This is an indication that the material released by the outburst has a different composition and/or size distribution than that in the “quiescent” dust coma. In this paper we present preliminary results about the evolution and the photometric characteristics of the dust shell. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The Single Aperture Far-InfraRed (SAFIR) Observatory’s science goals are driven by the fact that the earliest stages of almost all phenomena in the universe are shrouded in absorption by and emission from cool dust and gas that emits strongly in the far-infrared (40μ–200μ) and submillimeter (200μ–1 mm). In the very early universe, the warm gas of newly collapsing, unenriched galaxies will be revealed by molecular hydrogen emission lines at these long wavelengths. High redshift quasars are found to have substantial reservoirs of cool gas and dust, indicative of substantial metal enrichment early in the history of the universe. As a result, even early stages of galaxy formation will show powerful far-infrared emission. The combination of strong dust emission and large redshift (1 < z < 7) of these galaxies means that they can only be studied in the far-infrared and submillimeter. For nearby galaxies, many of the most active galaxies in the universe appear to be those whose gaseous disks are interacting in violent collisions. The details of these galaxies, including the effect of the central black holes that probably exist in most of them, are obscured to shorter wavelength optical and ultraviolet observatories by the large amounts of dust in their interstellar media. Within our own galaxy, the earliest stages of star formation, when gas and dust clouds are collapsing and the beginnings of a central star are taking shape, can only be observed in the far-infrared and submillimeter. The cold dust that ultimately forms the planetary systems, as well as the cool “debris” dust clouds that indicate the likelihood of planetary sized bodies around more developed stars, can only be observed at wavelengths longward of 20μ. Over the past several years, there has been an increasing recognition of the critical importance of the far-infrared to submillimeter spectral region to addressing fundamental astrophysical problems, ranging from cosmological questions to understanding how our own Solar System came into being. The development of large, far-infrared telescopes in space has become more feasible with the combination of developments for the James Webb Space Telescope (JWST) of enabling breakthroughs in detector technology. We have developed a preliminary but comprehensive mission concept for SAFIR, as a 10 m-class far-infrared and submillimeter observatory that would begin development later in this decade to meet the needs outlined above. Its operating temperature (≤4 K) and instrument complement would be optimized to reach the natural sky confusion limit in the far-infrared with diffraction-limited performance down to at least the atmospheric cutoff, λ {>rsim} 40 {μ}. This would provide a point source sensitivity improvement of several orders of magnitude over that of the Spitzer Space Telescope (previously SIRTF) or the Herschel Space Observatory. Additionally, it would have an angular resolution 12 times finer than that of Spitzer and three times finer than Herschel. This sensitivity and angular resolution are necessary to perform imaging and spectroscopic studies of individual galaxies in the early universe. We have considered many aspects of the SAFIR mission, including the telescope technology (optical design, materials, and packaging), detector needs and technologies, cooling method and required technology developments, attitude and pointing, power systems, launch vehicle, and mission operations. The most challenging requirements for this mission are operating temperature and aperture size of the telescope, and the development of detector arrays. SAFIR can take advantage of much of the technology under development for JWST, but with much less stringent requirements on optical accuracy.  相似文献   

18.
The paper presents the results of dynamic simulation for the dust tail formation of comet C/1995 O1 (Hale-Bopp). To simulate the dust tail, the trajectories of 2 × 106 dust particles were traced. The sizes, ejection moments, outflow directions and velocities of the dust particles were defined by the Monte Carlo algorithm. The obtained three-dimensional tail was projected on the sky plane to compare it with the observed images. The brightness distribution in the comet tail was fitted to similar model parameters for three different dates. According to our model experiments, the observed tails could be formed by particles with sizes from 0.3 to 8.0 μm, ejection velocities from 0.155 to 0.670 km/s, and power index of the exponential size distribution from −3.6 to −3.7. It is shown that the inclusion of the particles fragmentation processes leads to a noticeable improvement of the simulation results.  相似文献   

19.
Recent observations of the environments of gamma-ray bursts (GRBs) favour massive stars as their progenitors, which are likely to be surrounded by gas and dust. The visibility of the optical and UV emission of a GRB is expected to depend on the characteristics of both the dust and the GRB emission itself. A reasonable distribution of surrounding dust is capable of absorbing all the optical and UV emission of the optical flash and afterglow of a GRB, unless the optical flash has a peak isotropic luminosity L peak≳1049 erg s−1 . This means that dark bursts should exist and these bursts will have to be studied at infrared rather than optical wavelengths. In this paper details will be given about the infrared GRB dust emission. The reprocessed dust emission peaks at a rest-frame wavelength of about 8 μm. Forthcoming space telescopes, in particular the IRAC camera on board the Space Infrared Telescope Facility , could detect this emission out to a redshift of about two. However, an accurate position of the GRB afterglow must be provided for this emission to be identified, because the light curve of the reprocessed dust emission does not vary on time-scales less than several years.  相似文献   

20.
Leech  K.  Crovisier  J.  Bockelée-Morvan  D.  Brooke  T. Y.  Hanner  M. S.  Altieri  B.  Keller  H. U.  Lellouch  E.  Lim  T. 《Earth, Moon, and Planets》1997,78(1-3):81-83
Spectra of comet C/1995 O1 (Hale-Bopp) were obtained with the Infrared Space Observatory (ISO) at medium resolution with the grating spectrometer in the photometer (PHT-S) and/or at high resolution with the short wavelength spectrometer (SWS) and long wavelength spectrometer (LWS) in April 1996 (Crovisier et al., 1996), September–October 1996 (Crovisier et al., 1997a, b) and December 1997, at distances from the Sun of 4.6, 2.9 and 3.9 AU, respectively. For the first time, high-resolution spectra of a comet covering the entire 2.4 to 200 μm spectral range were obtained. The vibrational bands of H2O, CO2 and CO are detected in emission with PHT-S. Relative production rates of 100:22:70 are derived for H2O:CO2:CO at 3 AU pre-perihelion. H2O is observed at high spectral resolution in the ν3 group of bands around 2.7 μm and the ν2 group around 6 μm with SWS, and in several rotational lines in the 100–180 μm region with LWS. The high signal-to-noise ratio of the ν3 band observed on September–October 1996 allows accurate determinations of the water rotational temperature (28 K) and of its ortho-to-para ratio(2.45 ± 0.10, which significantly differs from the high temperature limit and corresponds to a spin temperature of 25 K). Longward of 6 μm the spectrum is dominated by dust thermal continuum emission, upon which broad emission features are superimposed. The wavelengths of the emission peaks correspond to those of Mg-rich crystalline olivine (forsterite). In the September–October 1996 spectra, emission features at 45 and 65 μm and possible absorption at 2.9–3.2 μm suggest that grains of water ice were present at 3 AU from the Sun. The observations made post-perihelion in late December 1997 led to the detections of H2O, CO2 and CO at 3.9 AU from the Sun (Figures 1 and 2). The production rates were ≈3.0 × 1028,3.5 × 1028 and ≈1.5 × 1029 s-1, respectively. This corresponds to H2O:CO2:CO = 100:110:500 and confirms that at such distances from the Sun, cometary activity is dominated by sublimation of CO and CO2 rather than by H2O. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号