首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Permo-Carboniferous Talchir Formation in the southeastern part of the Talchir basin is represented by about 260 m thick clastic succession resting on the Precambrian basement rocks of the Eastern Ghats Group. The succession is tentatively subdivided into four lithostratigraphic units, namely A-I, A-II, B and C from base to top. Unit A-I comprises mud-matrixed, very poorly sorted diamictites and interbedded thin sandstone and mudstone yielding dropstones. They reveal deposition in a proglacial lake environment in which ice rafting and suspension sedimentation, as well as meltwater-underflow processes, produced variety of facies. The succession of unit A-II is dominated by pebble to boulder conglomerates and sandstones. They were deposited mostly from various kinds of high-energy sediment gravity flows, both subaerial and subaqueous, and formed steep-faced fan-delta on the margin of the basin. Unit B demonstrates turbidite sedimentation in lake-margin slope and base-of-slope environments, in which a sublacustrine channel-fan system developed. The lake-margin slope was dissected by channels which were accompanied by overbank and levee deposits. Sediments delivered from the mouth of a channel were deposited at the base-of-slope, forming a fan lobe which prograded onto the lake basin floor. Unit C dominantly consists of mudstone with intercalations of siltstone and sandstone and forms a large-scale coarsening-upward deltaic sequence eventually covered by the fluvial deposits of the Karharbari Formation.Following the glacially influenced sedimentation, the Talchir succession shows a vertical facies progression suggesting gradual deepening of the lake basin and eventual filling up of it due to rapid delta progradation. Such a succession represents deglacial control on basin evolution during the Talchir time. In the initial stage of glacial recession, collapse of a glacier and failure of montane glacial lakes frequently occurred and gave rise to generation of a highly sediment-laden debris flow and a catastrophic flood, which brought abundant coarse clastics into the lake and built a fan-delta on the basin margin. The continued recession and disappearance of glacier resulted in abundant supply of ice-melt water into the graben as well as eustatic sea-level rise, being the cause of the rise in lake-level. Subsequent rapid delta progradation and eventual filling-up of the lake basin suggest rapid lake-level fall after deepening of lake basin. It was possibly caused by the regional uplift due to post-glacial isostatic rebound. Rapid draining of lake water through the graben gave rise to the establishment of an axial drainage system which rapidly filled the lake basin in form of an axially fed delta.  相似文献   

2.
The cyclic arrangement of lithofacies of the Karharbari Formation of the Damuda Group from a part of the Talchir Gondwana basin has been examined by statistical techniques. The lithologies have been condensed into five facies states viz. coarse-, medium-, fine-grained sandstones, shale and coal for the convenience of statistical analyses. Markov chain analysis indicates the arrangement of Karharbari lithofacies in form of fining upward cycles. A complete cycle consists of conglomerate or coarse-grained sandstone at the base sequentially succeeded by medium-and fine-grained sandstones, shale and coal at the top. The entropy analysis categorizes the Karharbari cycles into the C-type cyclicity, which is essentially a random sequence of lithologic states. Regression analysis undertaken in the present study indicates the existence of sympathetic relationship between total thickness of strata (net subsidence) and number and average thickness of sedimentary cycle and antipathic relationship between number and average thickness of sedimentary cycle. These observations suggest that cyclic sedimentation of the Karharbari Formation was controlled by autocyclic process by means of lateral migration of streams activated by intrabasinal differential subsidence, which operated within the depositional basin and the channels carrying coarse grade clastic sediments, which make the cycles thicker, tend to be more common in the areas of maximum subsidence. Clastic sediments issued from the laterally migrating rivers interrupted the cyclic sedimentation of the Karharbari Formation in many instances.  相似文献   

3.
Cyclic characters of Karharbari, Barakar and Barren Measures Formations of the Talchir Gondwana basin have been studied in the subsurface logs statistically using first order Markov chain and entropy analyses. Results strongly suggest that the sediments of these formations were deposited by Markovian mechanism and all the three formations represent cyclic sedimentation. The complete cycles of all the three formations are identical and exhibit fining-upward character. Each complete cycle starts with a thin conglomerate or pebbly to coarse-grained sandstone at the base and successively followed by medium- and fine-grained sandstones, interbedded sandstone-shale, shale and terminates with a coal seam at the top. There are, however, minor variations of facies transition in different formations. Entropy analysis also corroborates these findings. The upward sequence of facies states, which is stationary at individual localities, is non-stationary over the entire area. Broad regional variations in the depositional environment, that are not significant at the local scale, may be the plausible explanation. The Karharbari, Barakar and Barren Measures sediments of the Talchir Gondwana basin fit suitably into the concept of fluvial cycles.  相似文献   

4.
5.
Basal part of the Gondwana Supergroup represented by Talchir and Karharbari Formations (Permo-Carboniferous) records an abrupt change-over from glacio-marine to terrestrial fluviolacustrine depositional environment. The contact between the two is an unconformity. Facies analysis of the glacio-marine Talchir Formation reveals that basal glaciogenic and reworked glaciogenic sediments are buried under storm influenced inner and outer shelf sediments. Facies associations of the Karharbari Formation suggest deposition as fluvio-lacustrine deposits in fault-controlled troughs. An attempt has been made in this paper to explain the sedimentation pattern in Talchir and Karharbari basins, and the abrupt change-over from glacio-marine to terrestrial fluviolacustrine depositional environment in terms of glacio-isostacy.  相似文献   

6.
The lowest unit of the Talchir Formation of Talchir Basin, Orissa, was described by pioneer workers as the ‘basal boulder bed’. In an attempt to explain the co-existence of gravel and clay, materials of contrasting hydraulic properties, a probable situation resembling the effects of the action of ground-ice enabled boulders to be carried down by sluggish currents resulting in an intermixture of large boulders and fine mud was conceived. Misinterpretation of this conclusion led to a general tendency to describe the ‘basal boulder bed’ as ‘glacial tillite’. However, the unit described as ‘basal boulder bed’ is actually represented by a matrix rich conglomerate with pockets of normally graded silty clay. The present study reveals that the depositional imprints preserved in this part of the sedimentary succession indicate emplacement of successive debris flows generated through remobilization of pre-existing unconsolidated sediments. Small pockets of fine-grained turbidites presumably deposited from the entrained turbidity currents associated with the debris flows suggest the composite character of the debris flow deposit.  相似文献   

7.
The Talchir Basin, one of India's oldest basins, has been a subject of interest because of its rich coal deposits. The maximum thickness of the basin is about 1500 m. Beyond the basin is the hard metamorphic rocks of Precambrian age. The ambient noise survey data have been analyzed for the Talchir Basin using Nakamura's technique of horizontal–vertical-spectral-ratio (HVSR) to ascertain the basin structure in terms of the predominant frequency. The predominant frequency varies from 0.25 Hz to 7.8 Hz but a major portion of the basin comes under the range of 0.3 Hz–2.4 Hz while on the metamorphic rocks it is as high as 7.8 Hz. The variation in predominant frequency shows a good correlation with the sediment thickness of the basin. The results have been compared with the previous studies by other researchers and it shows consistency with the northerly dip of the basin. The present study has also been compared with the results of the synthetic seismogram that was performed for the Talchir Basin. The predominant frequency obtained from HVSR technique complements well with the frequency at which the peak response spectra ratio is observed. The present study of the predominant frequency identifies quite well the characteristics of Talchir Basin and is in good agreement with the synthetic ground motion modeling of the region.  相似文献   

8.
9.
In the Lower Gondwana succession of the Jharia basin of eastern India, the Barren Measures Formation is characterized by the cyclic disposition of fine-grained lacustrine deposits and relatively coarse-grained fluvial deposits. The cyclic variation in the rate of coarse clastic input is attributed to the sedimentary response to basin tectonics. The sandstone-shale alternations of the Barren Measures succession can be correlated with the tectonic cyclothems developed on the hangingwall dip-slope and adjoining trough in a continental half-graben setting. Enhancement of the gradient of the hangingwall dip-slope during reactivation of the basin margin faults led to progradation of the existing fluvial system towards the half-graben trough and deposition of the coarser clastics on the fine-grained lacustrine deposits of the trough. Peneplanation of the hangingwall slope and slow increase in the lake level caused lacustrine transgression and retrogration of the fluvial system on the hangingwall block. The fluvial sediments were onlapped by the fine-grained lacustrine deposits. Episodic rejuvenation of the basin margin faults thus caused development of tectonic cyclothem on the hangingwall block. The paleocurrent pattern indicates that a persistent northward paleoslope was maintained during Barren Measures sedimentation. The inferred depositional settings were much more extensive than the present limit of the outcrop. The faults, presently defining the northern limit of the Barren Measures Formation, were possibly emplaced after Barren Measures sedimentation. The final movement along these fault planes caused preservation of the downthrown hangingwall block and the Barren Measures sediments on the footwall block were eroded during subsequent denudation. The Southern Boundary Fault came into existence after the deposition of the Barren Measures sediments.  相似文献   

10.
The Gondwana basins of peninsular India are traditionally considered as extensional-rift basins due to the overwhelming evidence of fault-controlled synsedimentary subsidence. These basins indeed originated under a bulk extensional tectonic regime, due to failure of the attenuated crust along pre-existing zones of weakness inherited from Precambrian structural fabrics. However, disposition of the basins and their structural architecture indicate that the kinematics of all the basins cannot be extensional. To maintain kinematic compatibility with other basins as well as the bulk lateral extension, some basins ought to be of strike-slip origin. The disposition, shape and structural architecture of the Satpura basin, central India suggest that the basin could be a pull-apart basin that developed above a releasing jog of a left-stepping strike-slip fault system defined by the Son-Narmada south fault and Tapti north fault in consequence to sinistral displacement along WSW-ENE. Development of a sedimentary basin under the above-mentioned kinematic condition was simulated in model experiments with sandpack. The shape, relative size, stratigraphic and structural architecture of the experimental basin tally with that of the Satpura basin. The experimental results also provide insights into the tectono-sedimentary evolution of the Satpura basin in particular and pull-apart basins in general.  相似文献   

11.
The Upper Permian Bijori Formation of the Satpura Gondwana basin comprising fineto coarse-grained sandstone, carbonaceous shale/mudstone and thin coal bands was previously interpreted as the deposits of meandering rivers. The present study documents abundance of wave ripples, hummocky and swaley cross-stratification and combined flow bedforms in the Bijori Formation, suggesting that a significant part of the formation was deposited in a wave-agitated environment. Evidence of near-emergent depositional conditions provided by repeated occurrence of rootlet beds and hydromorphic paleosols, local flooding surfaces denoting rapid fluctuation of water level, occurrences of temnospondyl vertebrate fossils, and absence of tidal signatures and marine fossils suggest a lacustrine rather than marine depositional regime. Five facies associations recognised within the Bijori Formation are inferred to represent fluvial channels and associated floodplains (FA1), lake shorelines (FA2), subaqueous distributary channels and associated levees (FA3), waveand storm-affected delta front (FA4), and open lacustrine/lower shoreface (FA5) deposits. The planoconcave fluvial channel-fill sandbodies with unidirectional cross-beds are clearly distinguishable from the delta front bars that show a convexo-plan or bi-convex sandbody geometry and dominance of wave and combined flow bedforms. Some of the distributary channels record interaction of fluvial and wave-dominated basinal processes. Major distributary sandbodies show a north to northwest flow direction while wave-affected delta front sandbodies show very complex flow patterns reflecting interaction between fluvial discharge and wave processes. Wave ripple crest trends show that the lake shoreline had an overall east-northeast to west-southwest orientation. The lack of documented contemporaneous lacustrine or marine sediments in the Satpura Gondwana basin posed a major problem of basin-scale palaeogeographic reconstruction. The existence of Bijori lake solves the problem and the lake is inferred to have acted as repository for the contemporaneous alluvial drainage. Development of the large Bijori lake body implies generation of accommodation space exceeding the rate of sediment supplied and thus represents locus of high tectonic subsidence. Transition of fluvial sediments with red mudstone and calcareous soil profile in the lower part of the succession to carbonaceous shale and coal-bearing lacustrine sediments in the upper part, denote a change from a warm semi-arid climate with seasonal rainfall to a more humid one.  相似文献   

12.
The Permian Barakar Formation in the Mohpani coalfield, Satpura Gondwana basin, is composed of three broad lithologies that occur repetitively and are iterdigitated: (1) several metres thick coarse- to medium-grained sandstone bodies with scoured bases, (2) 5-20 m thick medium- to fine-grained sandstone bodies and (3) 5-20 m thick mudstone-dominated packages with variable proportions of centimetre- to decimetre-scale, fine- to medium-grained sandstone, carbonaceous shale and coal. The Barakar strata were previously interpreted as deposits of braided rivers and associated inter-channel flood basin in a continental setting. However, this study recognizes signatures of tidal current from the mudstone-dominated packages implying marine influence during Barakar sedimentation.

The mudstone-dominated sediment bodies are the focus of this paper and comprise of three lithofacies that bear imprints of tidal processes during Barakar sedimentation: (1) heterolith, (2) sandstone, and (3) coal-carbonaceous shale, which alternate with one another within individual bodies. The heterolithic facies show interlayering of sandstone and claystone resembling flaser, wavy and lenticular bedding, as well as pinstripe stratification. Successive sandstone-mudstone couplets indicate periodic waxing and waning of flows. Within individual heterolithic packages, the sandstone:claystone ratio along with the bedding style, varies cyclically upwards giving rise to alternate sandstone-dominated and claystone-dominated intervals suggesting tidal velocity fluctuation reflective of spring-neap lunar cycle. Thickness plots of successive sand-mud couplets also reveal cyclic variation with a conspicuous periodicity of around 12 couplets per cycle, which corroborates the spring-neap-spring (or neap-spring-neap) lunar cycle. Presence of abundant desiccation cracks indicates periodic emergence and points towards an intertidal setting. The sandstone facies is characterized by a variety of wave-generated features such as bundled and chevron upbuilding of lamina, bi-directional foreset orientations, offshooting and draping laminae, scour-and-drape feature, swollen lens-like geometries suggesting their emplacement under storm-induced combined-flow on the tidal-flat. The coal-carbonaceous shale facies represent supratidal marsh environment.  相似文献   


13.
The Gondwana (Early Permian to Early Cretaceous) basins of eastern India have been intruded by ultramafic–ultrapotassic (minette, lamproite and orangeite) and mafic (dolerite) rocks. The Salma dike is the most prominent among mafic intrusives in the Raniganj basin. This dike is tholeiitic in composition; MgO varies from 5.4 to 6.3% and the mg number from 54 to 59. In general, the major and trace element abundances are uniform both along and across the strike. There is geochemical and mineralogical evidence for fractional crystallization. The chondrite normalized REE pattern of the Salma dike (La/Ybn=3.5) is similar to that of Deccan dikes of the Son–Narmada rift zone, western India. 87Sr/86Sr varies from 0.70552 to 0.70671 suggesting assimilation of crustal material. Some trace element abundances (e.g. Ti, Zr, Y) of the Salma dike are comparable to Group I Rajmahal basalts. The 40Ar–39Ar whole rock age of 65 Ma for the Salma dike is less than the ca. 114 Ma age for the Rajmahal basalt, but is similar to the generally accepted age for Deccan volcanic rocks. Despite geographical proximity with the Rajmahal basalt, the Salma dike is believed to be related to late phase of Deccan volcanic activity.  相似文献   

14.
The Lesser Himalayan duplex (LHD) is a prominent structure through much of the Lesser Himalayan fold–thrust belt. In the Darjeeling - Sikkim Himalaya a component of the LHD is exposed in the Rangit window as the Rangit duplex (RD). The RD consists of ten horses of the upper Lesser Himalayan Sequence (Gondwana, Buxa, Upper Daling). The duplex varies from hinterland-dipping in the north, through an antiformal stack in the middle to foreland-dipping in the south. The Ramgarh thrust (RT) is the roof thrust and, based on a balanced cross-section, the Main Himalayan Sole thrust is the floor thrust at a depth of ~ 10 km and with a dip of ~ 3.5° N.Retrodeformation suggests that the RD initiated as a foreland-dipping duplex with the Early Ramgarh thrust as the roof thrust and the RT as the floor thrust. The RT became the roof thrust during continued duplexing by a combination of footwall imbrication and concurrent RT reactivation. This kinematic history best explains the large translation of the overlying MCT sheets. The restoration suggests that RD shortening is ~ 125 km, and the original Gondwana basin extended ~ 142 km northward of its present northernmost exposures within the window.  相似文献   

15.
A triangular outlier of coal-bearing lower Gondwana rocks comprises a tectonic window within the Precambrian metamorphic terrain of the Rangit Valley, in the eastern Himalays of India. Due to a series of tectonic events which took place during the Mesozoic and Tertiary the succession has become reversed and the coal has undergone severe physical, chemical, microstructural and optical changes. Studies reveal that (1) the rank of the coal prior to tectonism was low, (2) the coal underwent oxidation in the peat forming stage and during subsequent orogenic stages but effect of oxidation on the properties of coal was insignificant, (3) the coal reached its present abnormally high rank mainly due to heating under tectonic pressure and (4) the heat which was generated due to tectonic pressure, affected all the coal seams of this belt.  相似文献   

16.
Detrital mode, composition of feldspars and heavy minerals, and major element chemistry of sandstones from the Permo-Triassic succession in the intracratonic Satpura Gondwana basin, central India have been used to investigate provenance. The Talchir Formation, the lowermost unit of the succession, comprises glacio-marine and glacio-fluvial deposits. The rest of the succession (base to top) comprising the Barakar, Motur, Bijori, Pachmarhi and Denwa formations, largely represent variety of fluvial depositional systems with minor fluvio-deltaic and fluvio-lacustrine sedimentation under a variety of climatic conditions including cold, warm, arid, sub-humid and semi-arid. QFL compositions of the sandstones indicate a predominantly continental block provenance and stable cratonic to fault-bounded basement uplift tectonic setting. Compositional maturity of sandstones gradually increases upwards from the Early Permian Talchir to the Middle Triassic Denwa but is punctuated by a sharp peak of increased maturity in the Barakar sandstones. This temporal change in maturity was primarily controlled by temporal variation in fault-induced basement uplift in the craton and was also influenced by climatic factors. Plots of different quartz types suggest plutonic source rocks for the Talchir sandstones and medium-to high-rank metamorphic plus plutonic source rocks for the younger sandstones. Composition of alkali feldspars in the Permo-Triassic sandstones and in different Precambrian rocks suggests sediment derivation from felsic igneous and metasedimentary rocks. Compositions of plagioclase in the Talchir and Bijori sandstones are comparable with those of granite, acid volcanic and metasedimentary rocks of the Precambrian basement suggesting the latter as possible source. Rare presence of high-K plagioclase in the Talchir sandstones, however, indicates minor contribution from volcanic source rock. Exclusively plagioclase-bearing metasedimentary rock, tonalite gneiss and mafic rocks are the probable sources of plagioclase in the Upper Denwa sandstones. Quartz-rich nature of the sandstones, predominance of K-feldspar over plagioclase and albite rich character of plagioclase in the sandstones is consistent with deposition in an intracratonic, pull-apart basin like the Satpura Gondwana basin. Composition of garnet and its comparison with that from the Precambrian basement rocks suggests mica-schist and amphibolite as possible sources. Predominance of dravite variety of tourmaline in the Permian sandstones suggests sediment supply from metasedimentary rocks. Presence of both dravite and schorl variety of tourmaline in subequal amount in the Triassic sandstones indicates sediment derivation from granitic and metasedimentary rocks. However, schorl-bearing rocks are absent in the basement complex of the study area. A-CN-K plot suggests granites, acid volcanic rock and meta-sediments of the basement as possible sources of the Talchir sandstones and metasedimentary rocks for the Barakar to Pachmarhi sandstones. The Denwa sandstones were possibly derived from K-feldspar-free, plagioclase-bearing metasediments, mafic rocks and tonalite gneiss. Chemical Index of Alteration (CIA) values suggest low intensity source rock weathering for the Talchir sandstones and higher intensity source rock weathering for the others. Various bivariate plots of major oxides composition of the sandstones suggest passive to active continental margin setting and even arc tectonic setting for a few samples.  相似文献   

17.
18.
The Cerro Durazno Pluton belongs to a suite of Paleozoic granitoid intrusions in NW-Argentina, that are central for understanding the tectonic setting of the western margin of Gondwana in Ordovician and Silurian times. The pluton and its host rocks were tectonically overprinted by metamorphic mineral shape fabrics formed under middle greenschist-facies metamorphic conditions and associated with the nearby Agua Rosada Shear Zone. Kinematic analysis of the shear zone based on the geometric relationship between individual segments of the shear plane and principal axes of mineral fabric ellipsoids indicates reverse-sense of shear with a minor component of left-lateral displacement. This is compatible with the kinematics of other ductile deformation zones in this area, collectively forming a network, which accomplished orogen-parallel extension in addition to vertical thickening. Using the Rb–Sr isotopic system, an undeformed pegmatite dike of the Cerro Durazno Pluton was dated at 455.8 ± 3.6 Ma and mineral fabrics of the Agua Rosada Shear Zone formed at middle greenschist-facies metamorphism gave deformation ages of 437.0 ± 3.8 Ma and 428.4 ± 4.5 Ma. Thus, tectonic overprint at low metamorphic grade occurred about 20–30 Ma after terminal magmatism in the Cerro Durazno area. Our data from the Cerro Durazno area and regional considerations suggest that the western margin of Gondwana was characterized by orogen-parallel extension in addition to crustal thickening as well as episodes of magmatism and ductile deformation that varied greatly in time and space.  相似文献   

19.
李宇平 《地质与勘探》2015,51(4):789-796
伦坡拉盆地为西藏地区唯一发现工业油流的古近系断拗型陆相残留盆地。勘探实践表明,早期对该盆地构造-沉积模式与油气成藏关系认识不够一定程度上制约了勘探,为理清二者关系并落实有利勘探方向,本文对该盆地的构造、沉积特征及成藏条件进行分析。盆地南北向可划分为缓坡带、深凹带、陡岸带3个构造带;识别出河流-冲积扇、扇三角洲、湖泊、水下扇4种沉积体系,其中在缓坡带发育河流-冲积扇、扇三角洲沉积体系,深凹带发育湖相沉积体系,陡岸带发育水下扇沉积体系;盆地存在2种沉积体系组合:缓坡带(河流)冲积扇-扇三角洲-滨浅湖相沉积体系组合,陡岸带水下扇-半深湖(深湖)-滨浅湖相沉积体系组合;可用"双向物源、缓坡扇三角洲、陡坡水下扇"构造-沉积模式解释。在缓坡带,应寻找扇三角洲前缘岩性隐蔽性油藏;在陡岸带,有可能发现构造-岩性复合型隐蔽性油藏。盆地具有多种潜在有利勘探目标类型,展现出较好的勘探前景。  相似文献   

20.
The review paper provides an updated account of the previous and recently published records concerning the palaeobiology and the geology of the Talcher Basin of Orissa State, India. We conclude that fossil floral species in this basin originated in the earliest Permian Talchir Formation and evolved and diversified through the Karharbari Fm., Barakar Fm., Barren Measures Fm. and the uppermost Kamthi Fm. (Late Permian–Triassic). The megaflora and the palynology of the different formations of the basin are also discussed briefly. The geological setting of the basin along with the status of different formations (especially the Kamthi Formation) has been redefined. The post‐Barakar Fm. rocks, earlier retained in the Raniganj/Kamthi, Panchet and Mahadeva formations in this basin, have been critically assessed and redefined as the Lower and Upper Kamthi formations of Late Permian and Triassic ages, respectively. Accordingly, the geological map of the basin has been modified. Permian deposits (particularly the Barakar and the lower Kamthi formations) not only have the best preserved flora but also possess the highest diversity, whereas the upper Kamthi Triassic sediments have a meagre number of taxa. The plant diversity of the basin has been discussed in detail to interpret the development of the flora, evolutionary trends and palaeoenvironments of the basin. The patchy Gangamopteris vegetation of the Talchir glacial phase has ultimately evolved and diversified through time (Karharbari Fm. to Lower Kamthi Fm.) and gave rise to the thick dense swampy forests consisting of large Glossopteris trees and other shade‐loving under‐storied pteridophytes. Several groups of plants including spores and pollen have disappeared in a ladder pattern during the Permian–Triassic interval (Lower Kamthi–Upper Kamthi Fm.) and, similarly, in steps, many new fore‐runners appeared in the Upper Kamthi Formation. Records of marine acritarchs and ichnofossils in this basin at various Permian–Triassic levels demonstrate that there were marine influences. These features suggest a paralic (coastal marine to deltaic) mode of origin of the coal beds and associated sediments in the basin. The present study also advocates the continued survival of plants, rather than a mass extinction near the vicinity of the Permian–Triassic (P–T) boundary in this basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号