首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Deccan basalts in central western India are believed to occupy large onshore–offshore area. Using geophysical and geological observations, onshore sub-surface structural information has been widely reported. On the contrary, information about offshore structural variations has been inadequate due to scarcity of marine geophysical data and lack of onshore–offshore lithological correlations. Till date, merely a few geophysical studies are reported that gauge about the offshore extent of Deccan Traps and the Mesozoic sediments (pre-Deccan). To fill this gap in knowledge, in this article, we present new geophysical evidences to demonstrate offshore continuation of the Deccan volcanics and the Mesozoic sediments. The offshore multi-channel seismic and onshore–offshore lithological correlations presented here confirm that the Mesozoic sedimentary column in this region is overlain by 0.2–1.2-km-thick basaltic cover. Two separate phases of Mesozoic sedimentation, having very distinctive physical and lithological characteristics, are observed between overlying basaltic rocks and underlying Precambrian basement. Using onshore–offshore seismic and borehole data this study provides new insight into the extent of the Deccan basalts and the sub-basalt structures. This study brings out a much clearer picture than that was hitherto available about the offshore continuation of the Deccan Traps and the Mesozoic sediments of Kachchh. Further, its implications in identifying long-term storage of anthropogenic CO2 within sub-basalt targets are discussed. The carbon sequestration potential has been explored through the geological assessment in terms of the thickness of the strata as well as lithology.  相似文献   

2.
Summary . Plots of seismic velocity and density of rock samples show that a range of densities is possible for rocks of each seismic velocity and vice versa. although a single linear relationship is often assumed in crustal gravity calculations. Because of the scatter, whenever rocks of known seismic velocity are converted to density using this relationship, a reduction is made to the resolving power of the resulting gravity calculation. If these rocks reach thicknesses of more than a few kilometres, then the uncertainties become significant when compared with the size of commonly observed gravity anomalies. Examples are considered from the North Sea, Mississippi and Carolina Trough. It is concluded that the use of a seismic velocity measurement as the only indication of rock density does not provide a useful constraint when attempting to reproduce observed gravity variations. An appropriate model for isostatic compensation is probably the most important factor for successful predictions of crustal structure on the basis of gravity data.  相似文献   

3.
Velocity estimation remains one of the main problems when imaging the subsurface with seismic reflection data. Traveltime inversion enables us to obtain large-scale structures of the velocity field and the position of seismic reflectors. However, as the media currently under study are becoming more and more complex, we need to know the finer-scale structures. The problem is that below a certain range of velocity heterogeneities, deterministic methods become difficult to use, so we turn to a probabilistic approach. With this in view, we characterize the velocity field as a random field defined by its first and second statistical moments. Usually, a seismic random medium is defined as a homogeneous velocity background perturbed by a small random field that is assumed to be stationary. Thus, we make a link between such a random velocity medium (together with a simple reflector) and seismic reflection traveltimes. Assuming that the traveltimes are ergodic, we use 2-D seismic reflection geometry to study the decrease in the statistical traveltime fluctuations as a function of the offset (the source–receiver distance). Our formulae are based on the Rytov approximation and the parabolic approximation for acoustic waves. The validity and the limits are established for both of these approximations in statistically anisotropic random media. Finally, theoretical inversion procedures are developed for the horizontal correlation structure of the velocity heterogeneities for the simplest case of a horizontal reflector. Synthetic seismograms are then computed (on particular realizations of random media) by simulating scalar wave propagation via finite difference algorithms. There is good agreement between the theoretical and experimental results.  相似文献   

4.
Collocated magnetotelluric (MT) and seismic profiling is emerging as a necessary combined approach for deep and near-surface imaging but the resulting experimental data are typically interpreted separately since no production programs exist for multidimensional joint inversion of MT and seismic data. We present a joint 2-D inversion approach for imaging collocated MT and seismic refraction data with cross-gradient structural constraints. We describe the main features of the algorithm and first apply it to synthetic data generated for a hypothetical complex geological model. For the synthetic data, we find that the scheme leads to models with remarkable structural resemblance and improved estimates of electrical resistivity and seismic velocity. We apply the scheme to near-surface field data to test the consistency of a previously suggested resistivity–velocity interrelationship and its potential use for subsurface lithofacies discrimination or structural classification. The MT-seismic relationship is found to be in excellent accord with that derived previously for DC resistivity and seismic data set at the test site. Our results suggest that joint MT-seismic cross-gradient imaging leads to improved characterization of heterogeneous geological targets at near-surface to mantle depths.  相似文献   

5.
Summary . In this paper we present laboratory measurements of compressional and shear wave velocities of a diverse suite of gabbroic rocks collected from the walls of the Mid-Cayman Spreading Centre with DSRV Alvin. The degree of deformation and alteration affecting these gabbros is quite variable, and we believe that they are typical of plutonic rocks emplaced at shallow levels (upper portion of seismic layer 3 and shallower) of the oceanic crust. The compositional and textural variations are reflected in the wide range of laboratory velocities which span most of the range of seismic velocities reported for oceanic and ophiolite rock samples including basalts, gabbros, ultramafics, and their altered derivatives. Based upon the laboratory velocities and the geological setting of the Mid-Cayman gabbros, it is argued that no unique lithology, except anhydrous peridotite, can be unequivocally identified in the oceanic lithosphere from seismic velocity data alone. Furthermore, these data allow for the possibility of considerable lithologic heterogeneity within portions of the oceanic crust at the scale of a few centimetres to a few hundred metres. Such heterogeneities would go unrecognized because seismic refraction studies mask these variations resulting in a picture of apparent uniformity.  相似文献   

6.
To quantify the seismic properties of lower crustal rocks and to better constrain the origin of the lower crustal seismic reflectivity, we determined the complete 3-D seismic properties of a lower crustal section. Eight representative samples of the main lithologic and structural units outcropping in the Val Sesia (Ivrea zone) were studied in detail. The seismic velocities were calculated using the single crystal stiffness coefficients and the lattice preferred orientation (LPO) of each mineral in all samples. The 21 stiffness coefficients characterizing the elastic behaviour of each rock are determined. Mafic and ultramafic rocks such as pyroxenite and pyroxene-bearing gabbros display complex shear wave properties. These rocks are weakly birefringent (maximum 0.1 kms−1) and it is difficult to find consistent relationships between the seismic properties and the rock structure. On the other hand, seismic properties of deformed felsic rocks are essentially controlled by mica. They display strong S -wave birefringence (0.3 km s−1) and relatively high V p anisotropy (7.6 per cent). Amphibole also strongly influences the rock birefringence patterns. For both kind of rocks, the foliation is highly birefringent and the fast polarized shear wave is systematically oriented parallel to the foliation. We show that the number of mineral phases in the rock strongly controls the anisotropy. The seismic anisotropy has a complex role in the P -wave reflectivity. Compared to the isotropic case, anisotropy enhances the reflection coefficient for about 60 per cent of the possible lithological interfaces. For 40 per cent of the interfaces, the reflection coefficient is much lower when one considers the medium as anisotropic.  相似文献   

7.
Summary. Velocities of compressional waves are determined for central California rocks at pressures up to 0.7 GPa (7 kb) and temperatures up to 450°C. These data are used to interpret the seismic velocity structure of the crust in the California Coast Ranges. The seismic data on both sides of the San Andreas fault are consistent with the following model; besides some patches of surface sediments the upper 10—15 km of the crust on the northeast side consists predominantly of sedimentary and metasedimentary rocks of the Franciscan assemblage; the lower crust, of a thickness of 15—20 km, may be composed of gabbroic or other mafic rocks. Across the fault on the south-west side, the entire crustal section is probably a granitic complex similar to that exposed on the surface. The proposed model is shown to be consistent with the observed gravity anomaly.  相似文献   

8.
Methods for detection of pore fluid overpressures in shales from seismic data have become widespread in the oil industry. Such methods are largely based on the identification of anomalous seismic velocities, and on subsequent determination of pore pressures through relationships between seismic velocities and the vertical effective stress (VES). Although it is well known that lithology variations and compaction mechanisms should be accounted for in pore pressure evaluation, a systematic approach to evaluation of these factors in seismic pore pressure prediction seems to be absent. We have investigated the influence of lithology variations and compaction mechanism on shale velocities from acoustic logs. This was performed by analyses of 80 wells from the northern North Sea and 24 wells from the Haltenbanken area. The analyses involved identification of large‐scale density and velocity variations that were unrelated to overpressure variations, which served as a basis for the analyses of the resolution of overpressure variations from well log data. The analyses demonstrated that the overpressures in neither area were associated with compaction disequilibrium. A significant correlation between acoustic velocity and fluid overpressure nevertheless exists in the Haltenbanken data, whereas the correlation between these two parameters is weak to non‐existing in the North Sea shales. We do not presently know why acoustic velocities in the two areas respond differently to fluid overpressuring. Smectitic rocks often have low permeabilities, and define the top of overpressures in the northern North Sea when they are buried below 2 km. As smectitic rocks are characterized by low densities and low acoustic velocities, their presence may be identified from seismic data. Smectite identification from seismic data may thus serve as an indirect overpressure indicator in some areas. Our investigations demonstrate the importance of including geological work and process understanding in pore pressure evaluation work. As a response to the lack of documented practice within this area, we suggest a workflow for geological analyses that should be performed and integrated with seismic pore pressure prediction.  相似文献   

9.
Summary. The paper describes some results of experimental seismic prospecting investigations of the anisotropic properties of sedimentary rocks at depths of less than 2.5 km. Shear and converted PS -waves were recorded. Examples of SV and SH velocity distributions and shear-wave polarization are given. The main conclusion is that the medium essentially differs from that usually adopted for sedimentary rocks in that the symmetry axis is not normal to the layering.  相似文献   

10.
A new algorithm is presented for the integrated 2-D inversion of seismic traveltime and gravity data. The algorithm adopts the 'maximum likelihood' regularization scheme. We construct a 'probability density function' which includes three kinds of information: information derived from gravity measurements; information derived from the seismic traveltime inversion procedure applied to the model; and information on the physical correlation among the density and the velocity parameters. We assume a linear relation between density and velocity, which can be node-dependent; that is, we can choose different relationships for different parts of the velocity–density grid. In addition, our procedure allows us to consider a covariance matrix related to the error propagation in linking density to velocity. We use seismic data to estimate starting velocity values and the position of boundary nodes. Subsequently, the sequential integrated inversion (SII) optimizes the layer velocities and densities for our models. The procedure is applicable, as an additional step, to any type of seismic tomographic inversion.
We illustrate the method by comparing the velocity models recovered from a standard seismic traveltime inversion with those retrieved using our algorithm. The inversion of synthetic data calculated for a 2-D isotropic, laterally inhomogeneous model shows the stability and accuracy of this procedure, demonstrates the improvements to the recovery of true velocity anomalies, and proves that this technique can efficiently overcome some of the limitations of both gravity and seismic traveltime inversions, when they are used independently.
An interpretation of field data from the 1994 Vesuvius test experiment is also presented. At depths down to 4.5 km, the model retrieved after a SII shows a more detailed structure than the model obtained from an interpretation of seismic traveltime only, and yields additional information for a further study of the area.  相似文献   

11.
全球已发现的工业油气田中与盐系地层有关的约为58%,总结盐相关盆地油气地质特征及其勘探经验,为含盐盆地的油气发现具有非常重要的意义。通过对红海盆地的岩盐发育和分布规律研究、盆地生储盖特征分析及红海盆地实际勘探经验总结,认为含盐盆地具有以下特征:含盐盆地盐系地层发育,岩盐因构造变形可形成多种类型的盐构造,油气勘探应以寻找各种盐构造油气藏为主;含盐盆地盐下易形成高温高压,盐下储层主要为碳酸盐岩和砂岩,这种异常高压对储集层的储集性能是有利的,盐下应以储层类型和圈闭识别为主要勘探目标;含盐盆地地质情况复杂,勘探工程难度大,需加强钻井工程研究;含盐盆地盐下地震成像普遍较差,加强盐下地震处理技术研究,辨别盐下"假构造",是盐盆勘探取得突破的关键。  相似文献   

12.
Summary. Multichannel seismic reflection sections recorded across Vancouver Island have revealed two extensive zones of deep seismic reflections that dip gently to the northeast, and a number of moderate northeasterly dipping reflections that can be traced to the surface where major faults are exposed. Based on an integrated interpretation of these data with information from gravity, heat flow, seismicity, seismic refraction, magnetotelluric and geological studies it is concluded that the lower zone of gently dipping reflections is due to underplated oceanic sediments and igneous rocks associated with the current subduction of the Juan de Fuca plate, and that the upper zone represents a similar sequence of accreted rocks associated with an earlier episode of subduction. The high density/high velocity material between the two reflection zones is either an underplated slab of oceanic lithosphere or an imbricated package of mafic rocks. Reprocessing of data from two of the seismic lines has produced a remarkable image of the terrane bounding Leech River fault, with its dip undulating from >60° near the surface to 20° at 3 km depth and ∼38° at 6 km depth.  相似文献   

13.
Hatton Bank (northwest U.K.) continental margin structure   总被引:1,自引:0,他引:1  
Summary. The continent-ocean transition near Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic (mcs) profiles. Extensive oceanward dipping reflectors in a sequence of igneous rocks are developed in the upper crust across the entire margin. At the landward (shallowest) end the dipping reflectors overlie continental crust, while at the seaward end they are formed above oceanic crust. Beneath the central and lower part of the margin is a mid-crustal layer approximately 5 km thick that could be either stretched and thinned continental crust or maybe newly formed igneous crust generated at the same time as the dipping reflector sequence. Beneath this mid-crustal layer and above a well defined seismic Moho which rises from 27 km (continental end) to 15 km (oceanic end) across the margin, the present lower crust comprises a 10–15 km thick lens of material with a seismic velocity of 7.3 to 7.4 km/s. We interpret the present lower crustal lens as underplated igneous rocks left after extraction of the extruded basaltic lavas, A considerable quantity of new material has been added to the crust under the rifted margin. The present Moho is a new boundary formed during creation of the margin and cannot, therefore, be used to determine the amount of thinning.  相似文献   

14.
Seismic reflection methods measure the time a seismic wave takes to travel through the ground, from the user defined source to a series of signal monitoring sensors known as geophones. The measured times need to be depth converted to allow for integration with other geological data. In order to convert from time to depth, an estimate of the rock volume velocity field must be made. The velocity field estimate can be made by assignment of velocity estimates to a geological model independent of the seismic processing. This article presents the results of using the acoustic geophysical log data extrapolated via sequential Gaussian simulation to derive the velocity field. The uncertainties associated with the velocity estimates were significant and provided the means to assess confidence limits for the actual depth determination. The technique is assessed by application to a major coal deposit, approximately 2.1 m thick and 210 m deep. Considering only the uncertainty associated with estimating the velocity field, half of the confidence interval values showed approximately 1 m of uncertainty in depth. The application of sequential Gaussian simulation to model the 3D distribution of acoustic velocity can be extended to other geophysical log parameters or derived estimates.  相似文献   

15.
This paper combines knowledge- and data-driven prospectivity mapping approaches by using the receiver operating characteristics (ROC) spatial statistical technique to optimize the process of rescaling input datasets and the process of data integration when using a fuzzy logic prospectivity mapping method. The methodology is tested in an active mineral exploration terrain within the Paleoproterozoic Peräpohja Belt (PB) in the Northern Fennoscandian Shield, Finland. The PB comprises a greenschist to amphibolite facies, complexly deformed supracrustal sequence of variable quartzites, mafic volcanic rocks and volcaniclastic rocks, carbonate rocks, black shales, mica schists and graywackes. These formations were deposited on Archean basement and 2.44 Ga layered intrusions, during the multiple rifting of the Archean basement (2.44–1.92 Ga). Younger intrusive units in the PB comprise 2.20–2.13 Ga gabbroic sills or dikes and 1.98 Ga A-type granites. Metamorphism and complex deformation of the PB took place during the Svecofennian orogeny (1.9–1.8 Ga) and were followed by intrusions of post-orogenic granitoids (1.81–1.77 Ga). The recent mineral exploration activities have indicated several gold-bearing mineral occurrences within the PB. The Rompas Au-U mineralization is hosted within deformed and metamorphosed calc-silicate veins enclosed within mafic volcanic rocks and contains uranium-bearing zones without gold and very high-grade (>10,000 g/t Au) gold pockets with uraninite and uraninite-pyrobitumen nodules. In the vicinity of the Rompas, a magnesium skarn hosted disseminated-stockwork gold mineralization was also recognized at the Palokas-Rajapalot prospect. The exploration criteria translated into a fuzzy logic prospectivity model included data derived from regional till geochemistry (Fe, Cu, Co, Ni, Au, Te, K), high-resolution airborne geophysics (magnetic field total intensity, electromagnetic, gamma radiation), ground gravity and regional bedrock map (structures). The current exploration licenses and exploration drilling sites for gold were used to validate the knowledge-driven mineral prospectivity model.  相似文献   

16.
We use teleseismic three-component digital data from the Trabzon, Turkey broadband seismic station TBZ to model the crustal structure by the receiver function method. The station is located at a structural transition from continental northeastern Anatolia to the oceanic Black Sea basin. Rocks in the region are of volcanic origin covered by young sediments. By forward modelling the radial receiver functions, we construct 1-D crustal shear velocity models that include a lower crustal low-velocity zone, indicating a partial melt mechanism which may be the source of surfacing magmatic rocks and regional volcanism. Within the top 5 km, velocities increase sharply from about 1.5 to 3.5 km s−1. Such near-surface low velocities are caused by sedimentation, extending from the Black Sea basin. Velocities at around 20 km depth have mantle-like values (about 4.25 km s−1 ), which easily correlate to magmatic rocks cropping out on the surface. At 25 km depth there is a thin low-velocity layer of about 4.0 km s−1. The average Moho velocity is about 4.6 km s−1, and its depth changes from 32 to 40 km. Arrivals on the tangential components indicate that the Moho discontinuity dips approximately southwards, in agreement with the crustal thickening to the south. We searched for the solution of receiver functions around the regional surface wave group velocity inversion results, which helped alleviate the multiple solution problem frequently encountered in receiver function modelling.
Station TBZ is a recently deployed broadband seismic station, and the aim of this study is to report on the analysis of new receiver function data. The analysis of new data in such a structurally complex region provides constraining starting models for future structural studies in the region.  相似文献   

17.
Summary. Results from eight seismic refraction lines, 35–90 km long, in the Bristol Channel area are presented. The data, mostly land recordings of marine shots, have been interpreted mainly by ray-tracing and time-term modelling. Upper layer velocities through Palaeozoic rocks usually fall within the range 4.8–5.2 km s−1. Below the Carboniferous Limestone with a normal velocity of 5.1–5.2 kms−1, the Old Red Sandstone with a velocity of 4.7–4.8 kms−1 acts as a low velocity layer, as do parts of the underlying Lower Palaeozoic succession. In the central South Wales/Bristol Channel area and the Mendips, a 5.4–5.5 km s−1 refractor is correlated with a horizon at or near the top of the Lower Palaeozoic succession. Under the whole area, except for north Devon, a 6.0–6.2 km s−1 basal refractor has been located and is correlated with Precambrian crystalline basement rocks. In general, this refractor deepens southwards from a series of basement highs, which existed before the major movements of the Variscan orogeny in South Wales, resulting in a southerly thickening of the pre Upper Carboniferous supra-basement sequence. In north Devon, a 6.2 km s−1 refractor at shallow depth, interpreted as a horizon in the Devonian or Lower Palaeozoic succession, overlies a deep reflector that may represent the Precambrian crystalline basement.  相似文献   

18.
川中南充盐盆是四川盆地最大的次一级含盐盆地,区域内钾盐具有成盐厚度大、分布范围广、埋藏深度深、岩性复杂等特点,目前尚未建立一套适用于研究区的钾盐地球物理评价方法。以地球物理勘探原理为基础,结合测井、录井、地质、地震等资料,分析和总结出不同岩性的测井响应特征以及分布范围,根据杂卤石"三高一低"的特点,建立杂卤石测井识别方法。在此基础上,优选伽马和声波速度作为敏感参数,建立了杂卤石的地质—测井—地震三位一体井约束地震反演识别方法,并以广参1井为例,预测杂卤石的空间展布情况。最后结合地震反演结果圈定出广安地区为杂卤石沉积的最有利区域。在实际应用中总结出一套适用于研究区的杂卤石预测方法,为研究区后续勘探开发提供了借鉴与参考,具有一定的推广应用价值。  相似文献   

19.
We show that seismic shear waves may be used to monitor the in situ stress state of deep inaccessible rocks in the crust. The most widespread manifestation of the stress-related behaviour of seismic waves is the shear-wave splitting (shear-wave birefringence) observed in almost all rocks, where the polarizations of the leading split shear waves are usually subparallel to the direction of the local maximum horizontal stress. It has been recognized that such shear-wave splitting is typically the result of propagation through distributions of stress-aligned fluid-filled microcracks and pores, known as extensive-dilatancy anisotropy or EDA. This paper provides a quantitative basis for the EDA hypothesis. We model the evolution of anisotropic distributions of microcracks in triaxial differential stress, where the driving mechanism is fluid migration along pressure gradients between neighbouring microcracks and pores at different orientations to the stress field. This leads to a non-linear anisotropic poroelasticity (APE) model for the stress-sensitive behaviour of fluid-saturated microcracked rocks. A companion paper shows that APE modelling matches a range of observed phenomena and is a good approximation to the equation of state of a stressed fluid-saturated rock mass.  相似文献   

20.
There have been several claims that seismic shear waves respond to changes in stress before earthquakes. The companion paper develops a stress-sensitive model (APE) for the behaviour of low-porosity low-permeability crystalline rocks containing pervasive distributions of fluid-filled intergranular microcracks, and this paper uses APE to model the behaviour before earthquakes. Modelling with APE shows that the microgeometry and statistics of distributions of such fluid-filled microcracks respond almost immediately to changes in stress, and that the behaviour can be monitored by analysing seismic shear-wave splitting. The physical reasons for the coupling between shear-wave splitting and differential stress are discussed.
In this paper, we extend the model by using percolation theory to show that large crack densities are limited at the grain-scale level by the percolation threshold at which interacting crack clusters lead to pronounced increases in rock-matrix permeability. In the simplest formulation, the modelling is dimensionless and almost entirely constrained without free parameters. Nevertheless, APE modelling of the evolution of fluid-saturated rocks under stress reproduces the observed fracture criticality and the narrow range of shear-wave azimuthal anisotropy in crustal rocks. It also reproduces the behaviour of temporal variations in shear-wave splitting observed before and after the 1986, M = 6, North Palm Springs earthquake, Southern California, and several other smaller earthquakes.
The agreement of APE modelling with a wide range of observations confirms that fluid-saturated crystalline rocks are stress-sensitive and respond to changes in stress by critical fluid-rock interactions at the microscale level. This means that the effects of changes in stress and other parameters can be numerically modelled and monitored by appropriate observations of seismic shear waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号