首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We incorporate a model for black hole growth during galaxy mergers into the semi-analytical galaxy formation model based on ΛCDM proposed by Baugh et al. Our black hole model has one free parameter, which we set by matching the observed zero-point of the local correlation between black hole mass and bulge luminosity. We present predictions for the evolution with redshift of the relationships between black hole mass and bulge properties. Our simulations reproduce the evolution of the optical luminosity function of quasars. We study the demographics of the black hole population and address the issue of how black holes acquire their mass. We find that the direct accretion of cold gas during starbursts is an important growth mechanism for lower mass black holes and at high redshift. On the other hand, the re-assembly of pre-existing black hole mass into larger units via merging dominates the growth of more massive black holes at low redshift. This prediction could be tested by future gravitational wave experiments. As redshift decreases, progressively less massive black holes have the highest fractional growth rates, in line with recent claims of 'downsizing' in quasar activity.  相似文献   

2.
The power of jets from black holes is expected to depend on both the spin of the black hole and the structure of the accretion disc in the region of the last stable orbit. We investigate these dependencies using two different physical models for the jet power: the classical Blandford–Znajek (BZ) model and a hybrid model developed by Meier. In the BZ case, the jets are powered by magnetic fields directly threading the spinning black hole while in the hybrid model, the jet energy is extracted from both the accretion disc as well as the black hole via magnetic fields anchored to the accretion flow inside and outside the hole's ergosphere. The hybrid model takes advantage of the strengths of both the Blandford–Payne and BZ mechanisms, while avoiding the more controversial features of the latter. We develop these models more fully to account for general relativistic effects and to focus on advection-dominated accretion flows (ADAFs) for which the jet power is expected to be a significant fraction of the accreted rest mass energy.
We apply the models to elliptical galaxies, in order to see if these models can explain the observed correlation between the Bondi accretion rates and the total jet powers. For typical values of the disc viscosity parameter  α∼ 0.04 –0.3  and mass accretion rates consistent with ADAF model expectations, we find that the observed correlation requires   j ≳ 0.9  ; that is, it implies that the black holes are rapidly spinning. Our results suggest that the central black holes in the cores of clusters of galaxies must be rapidly rotating in order to drive jets powerful enough to heat the intracluster medium and quench cooling flows.  相似文献   

3.
We investigate whether models based on the assumption that jets in quasars are powered by rotating black holes can explain the observed radio dichotomy of quasars. We show that in terms of the 'spin paradigm' models, radio-loud quasars could be objects in which the rotation rate of the black hole corresponds to an equilibrium between spin-up by accretion and spin-down by the Blandford–Znajek mechanism. Radio-quiet quasars could be hosting black holes with an average spin much smaller than the equilibrium one. We discuss possible accretion scenarios which can lead to such a bimodal distribution of black hole spins.  相似文献   

4.
The growth of supermassive black holes by merging and accretion in hierarchical models of galaxy formation is studied by means of Monte Carlo simulations. A tight linear relation between masses of black holes and masses of bulges arises if the mass accreted by supermassive black holes scales linearly with the mass-forming stars and if the redshift evolution of mass accretion tracks closely that of star formation. Differences in redshift evolution between black hole accretion and star formation introduce a considerable scatter in this relation. A non-linear relation between black hole accretion and star formation results in a non-linear relation between masses of remnant black holes and masses of bulges. The relation of black hole mass to bulge luminosity observed in nearby galaxies and its scatter are reproduced reasonably well by models in which black hole accretion and star formation are linearly related but do not track each other in redshift. This suggests that a common mechanism determines the efficiency for black hole accretion and the efficiency for star formation, especially for bright bulges.  相似文献   

5.
We incorporate a simple scheme for the growth of supermassive black holes into semi-analytic models that follow the formation and evolution of galaxies in a cold dark matter-dominated Universe. We assume that supermassive black holes are formed and fuelled during major mergers. If two galaxies of comparable mass merge, their central black holes coalesce and a few per cent of the gas in the merger remnant is accreted by the new black hole over a time-scale of a few times 107 yr. With these simple assumptions, our model not only fits many aspects of the observed evolution of galaxies, but also reproduces quantitatively the observed relation between bulge luminosity and black hole mass in nearby galaxies, the strong evolution of the quasar population with redshift, and the relation between the luminosities of nearby quasars and those of their host galaxies. The strong decline in the number density of quasars from z ∼2 to z =0 is a result of the combination of three effects: (i) a decrease in the merging rate; (ii) a decrease in the amount of cold gas available to fuel black holes, and (iii) an increase in the time-scale for gas accretion. The predicted decline in the total content of cold gas in galaxies is consistent with that inferred from observations of damped Ly α systems. Our results strongly suggest that the evolution of supermassive black holes, quasars and starburst galaxies is inextricably linked to the hierarchical build-up of galaxies.  相似文献   

6.
We use semi-analytic modelling on top of the Millennium simulation to study the joint formation of galaxies and their embedded supermassive black holes. Our goal is to test scenarios in which black hole accretion and quasar activity are triggered by galaxy mergers, and to constrain different models for the light curves associated with individual quasar events. In the present work, we focus on studying the spatial distribution of simulated quasars. At all luminosities, we find that the simulated quasar two-point correlation function is fit well by a single power law in the range  0.5 ≲ r ≲ 20  h −1 Mpc  , but its normalization is a strong function of redshift. When we select only quasars with luminosities within the range typically accessible by today's quasar surveys, their clustering strength depends only weakly on luminosity, in agreement with observations. This holds independently of the assumed light-curve model, since bright quasars are black holes accreting close to the Eddington limit, and are hosted by dark matter haloes with a narrow mass range of a few  1012  h −1 M  . Therefore, the clustering of bright quasars cannot be used to disentangle light-curve models, but such a discrimination would become possible if the observational samples can be pushed to significantly fainter limits. Overall, our clustering results for the simulated quasar population agree rather well with observations, lending support to the conjecture that galaxy mergers could be the main physical process responsible for triggering black hole accretion and quasar activity.  相似文献   

7.
肖看  汪定雄  雷卫华 《天文学报》2002,43(2):178-188
采用等效电路模型讨论了两种不同类型的磁场对黑洞的旋转能量和角动量的提取机制;Blandford-Znajek(BZ)过程和磁耦合过程,在研究磁化吸积盘中心黑洞自转参量演化特征的基础上,详细比较了纯吸积过程,BZ过程和磁耦合过程对黑洞吸积盘放能效率的贡献,结果表明,磁耦合过程是提取黑洞旋转能量重要的新机制,其放能效率与BZ过程几乎相等,在黑洞自转不是特别大的情况,纯吸积过程的放能效率高于BZ过程和磁耦合过程的放能效率,但是当黑洞自转接近极端Kerr黑洞的自转状态时,放能效率主要由BZ过程和磁耦合过程贡献。  相似文献   

8.
We study the dynamical structure of a cooling dominated rotating accretion flow around a spinning black hole. We show that non-linear phenomena such as shock waves can be studied in terms of only three flow parameters, namely the specific energy     , the specific angular momentum (λ) and the accretion rate     of the flow. We present all possible accretion solutions. We find that a significant region of the parameter space in the     plane allows global accretion shock solutions. The effective area of the parameter space for which the Rankine–Hugoniot shocks are possible is maximum when the flow is dissipation-free. It decreases with the increase of cooling effects and finally disappears when the cooling is high enough. We show that shock forms further away when the black hole is rotating compared to the solution around a Schwarzschild black hole with identical flow parameters at a large distance. However, in a normalized sense, the flow parameters for which the shocks form around the rotating black holes are produced shocks closer to the black hole. The location of the shock is also dictated by the cooling efficiency in that higher the accretion rate     , the closer is the shock location. We believe that some of the high-frequency quasi-periodic oscillations may be due to the flows with higher accretion rate around the rotating black holes.  相似文献   

9.
We performed detailed calculations of the relativistic effects acting on both the reflection continuum and the iron line from accretion discs around rotating black holes. Fully relativistic transfer of both illuminating and reprocessed photons has been considered in Kerr space–time. We calculated overall spectra, line profiles and integral quantities, and present their dependences on the black hole angular momentum. We show that the observed EW of the lines is substantially enlarged when the black hole rotates rapidly and/or the source of illumination is near above the hole. Therefore, such calculations provide a way to distinguish between different models of the central source.  相似文献   

10.
We analyse the observed distribution of Eddington ratios  ( L / L Edd)  as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation [   M */star formation rate (SFR) ∼  a Hubble time] in their central kiloparsec regions, and is characterized by a broad lognormal distribution of accretion rates peaked at a few per cent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows little dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations (   M */SFR ≫  a Hubble time), and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate on to black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power law and the decrease in the accretion rate on to black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.  相似文献   

11.
We show that for the accretion disk with equipartition between magnetic and radiative pressures, prograde black holes generate outflowing energy in jets more efficiently than retrograde black holes do. Both viscous radiative and irradiative disks provide more efficient outflow jets in the case of a prograde black hole than in the case of a retrograde black hole. Our results confirm the conclusion of Tchekhovskoy & McKinney (2012) that, for the same absolute value of the spin, prograde black holes with geometrically thick accretion disks generate outflows several times more efficiently than retrograde black holes do. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
13.
We introduce a multipolar scheme for describing the structure of stationary, axisymmetric, force-free black hole magnetospheres in the '3+1' formalism. We focus here on Schwarzschild spacetime, giving a complete classification of the separable solutions of the stream equation. We show a transparent term-by-term analogy of our solutions with the familiar multipoles of flat-space electrodynamics. We discuss electrodynamic processes around disc-fed black holes in which our solutions find natural applications: (i) 'interior' solutions in studies of the BlandfordZnajek process of extracting the rotational energy of holes, and of the formation of relativistic jets in active galactic nuclei and 'microquasars'; (ii) 'exterior' solutions in studies of accretion disc dynamos, disc-driven winds and jets. On the strength of existing numerical studies, we argue that the poloidal field structures found here are also expected to hold with good accuracy for rotating black holes, except for the cases of the maximum possible rotation rates. We show that the closed-loop exterior solutions found here are not in contradiction with the MacdonaldThorne theorem, as these solutions, which diverge logarithmically on the horizon of the hole , only apply to those regions that exclude .  相似文献   

14.
We investigate the hypothesis that the cores of elliptical galaxies and bulges are created from the binding energy liberated by the coalescence of supermassive binary black holes during galaxy mergers. Assuming that the central density profiles of galaxies were initially steep power laws,   ρ ∼ r -2  , we define the 'mass deficit' as the mass in stars that had to be removed from the nucleus in order to produce the observed core. We use non-parametric deprojection to compute the mass deficit in a sample of 35 early-type galaxies with high-resolution imaging data. We find that the mass deficit correlates well with the mass of the nuclear black hole, consistent with the predictions of merger models. We argue that cores in haloes of non-interacting dark matter particles should be comparable in size to those observed in the stars.  相似文献   

15.
The current Cherenkov telescopes together with GLAST are opening up a new window into the physics at work close to black holes and rapidly rotating neutron stars with great breakthrough potential. Very high energy gamma-ray emission up to 10 TeV is now established in several binaries. The radiative output of gamma-ray binaries is in fact dominated by emission above 1–10 MeV. Most are likely powered by the rotational spindown of a young neutron star that generates a highly relativistic wind. The interaction of this pulsar wind with the companion’s stellar wind is responsible for the high energy gamma-ray emission. There are hints that microquasars, accretion-powered binaries emitting relativistic jets, also emit gamma-ray flares that may be linked to the accretion–ejection process. Studying high energy gamma-ray emission from binaries offers good prospects for the study of pulsar winds physics and may bring new insights into the link between accretion and ejection close to black holes.  相似文献   

16.
We investigate the distribution of massive black holes (MBHs) in the Virgo cluster. Observations suggest that active galactic nuclei activity is widespread in massive galaxies ( M *≳ 1010 M), while at lower galaxy masses star clusters are more abundant, which might imply a limited presence of central black holes in these galaxy-mass regimes. We explore if this possible threshold in MBH hosting is linked to nature , nurture or a mixture of both. The nature scenario arises naturally in hierarchical cosmologies, as MBH formation mechanisms typically are efficient in biased systems, which would later evolve into massive galaxies. Nurture , in the guise of MBH ejections following MBH mergers, provides an additional mechanism that is more effective for low mass, satellite galaxies. The combination of inefficient formation, and lower retention of MBHs, leads to the natural explanation of the distribution of compact massive objects in Virgo galaxies. If MBHs arrive to the correlation with the host mass and velocity dispersion during merger-triggered accretion episodes, sustained tidal stripping of the host galaxies creates a population of MBHs which lie above the expected scaling between the holes and their host mass, suggesting a possible environmental dependence.  相似文献   

17.
Strong gravity effects should have crucial impact on structure and radiative properties of an accretion flow surrounding a black hole. We discuss several observational consequences of such effects. (i) We note that the hard X-ray spectra of Seyfert galaxies, which appear to be intrinsically harder when observed at higher inclination angles, may be most naturally explained by radiative properties of plasmas in the Kerr metric. (ii) We indicate bending of photon trajectories to the equatorial plane, which is a distinct property of rapidly rotating black holes, as the most feasible effect underlying reduced variability of the Fe Kα line observed in several objects. (iii) Both the extreme Fe line profile and the variability pattern (observed, e.g., in a Seyfert galaxy MCG–6-30-15) independently indicate that a primary hard X-ray source must be located within a few gravitational radii from the Kerr black hole. We indicate a hot inner corona as the most likely model of such a source.  相似文献   

18.
Merging neutron stars (NSs) are hot candidates for the still enigmatic sources of short gamma-ray bursts (GRBs). If the central engines of the huge energy release are accreting relic black holes (BHs) of such mergers, it is important to understand how the properties of the BH–torus systems, in particular disc masses and mass and rotation rate of the compact remnant, are linked to the characterizing parameters of the NS binaries. For this purpose, we present relativistic smoothed particle hydrodynamic simulations with conformally flat approximation of the Einstein field equations and a physical, non-zero temperature equation of state. Thick disc formation is highlighted as a dynamical process caused by angular momentum transfer through tidal torques during the merging process of asymmetric systems or in the rapidly spinning triaxial post-merger object. Our simulations support the possibility that the first well-localized short and hard GRBs 050509b, 050709, 050724, 050813 have originated from NS merger events and are powered by neutrino-antineutrino annihilation around a relic BH–torus system. Using model parameters based on this assumption, we show that the measured GRB energies and durations lead to estimates for the accreted masses and BH mass accretion rates which are compatible with theoretical expectations. In particular, the low-energy output and short duration of GRB 050509b set a very strict upper limit of less than 100 ms for the time interval after the merging until the merger remnant has collapsed to a BH, leaving an accretion torus with a small mass of only  ∼0.01 M  . This favours a (nearly) symmetric NS+NS binary with a typical mass as progenitor system.  相似文献   

19.
In this contribution, I briefly review recent progress in detecting and measuring the properties of relativistic iron lines observed in stellar‐mass black hole systems, and the aspects of these lines that are most relevant to studies of similar lines in Seyfert‐1 AGN. In particular, the lines observed in stellar‐mass black holes are not complicated by complex low‐energy absorption or partial‐covering of the central engine, and strong lines are largely independent of the model used to fit the underlying broad‐band continuum flux. Indeed, relativistic iron lines are the most robust diagnostic of black hole spin that is presently available to observers, with specific advantages over the systematics–plagued disk continuum. If accretion onto stellar‐mass black holes simply scales with mass, then the widespread nature of lines in stellar‐mass black holes may indicate that lines should be common in Seyfert‐1 AGN, though perhaps harder to detect. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The cosmological evolution of active galactic nuclei (AGN) is important for understanding the mechanism of accretion on to supermassive black holes and the related evolution of the host galaxy. In this work, we include objects with very low Eddington ratio  (10−3–10−2)  in an evolution scenario, and compare the results with the observed local distribution of black holes. We test several possibilities for the AGN population, considering obscuration and dependence with luminosity, and investigate the role of the Eddington ratio λ and radiative accretion efficiency ε on the shape of the evolved mass function. We find that three distinct populations of AGN can evolve with a wider parameter range than is usually considered, and still be consistent with the local mass function. In general, the black holes in our solutions are spinning rapidly. Taking fixed values for ε and λ neither provides a full knowledge of the evolution mechanism nor is consistent with the existence of low-Eddington-ratio objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号