首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We present the analysis of 30 ks of Chandra observations of the galaxy cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology, although we detect substructure in the inner 30-kpc radius. Spectral analysis shows a steep drop in the X-ray gas temperature from ∼12 keV in the outer regions of the cluster to ∼4 keV in the core. The Chandra data provide tight constraints on the gravitational potential of the cluster which can be parametrized by a Navarro, Frenk & White model. The X-ray data allow us to measure the X-ray gas mass fraction as a function of radius, leading to a determination of the cosmic matter density of
   
. The projected mass within a radius of ∼150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about
   
. Cooling-flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (∼     with an integrated mass deposition rate of     within a radius of 30 kpc. We discuss the implications of our results in the light of recent Reflection Grating Spectrograph (RGS) observations of Abell 1835 with XMM-Newton .  相似文献   

2.
We present 83 new galaxy radial velocities in the field of 18 APM clusters with redshifts between 0.06 and 0.13. The clusters have Abell identifications and the galaxies were selected within 0.75  h −1 Mpc in projection from their centres. We derive new cluster velocity dispersions for 13 clusters using our data and published radial velocities.
We analyse correlations between cluster velocity dispersions and cluster richness counts as defined in Abell and APM catalogues. The correlations show a statistically significant trend although with a large scatter, suggesting that richness is a poor estimator of cluster mass irrespectively of cluster selection criteria and richness definition. We find systematically lower velocity dispersions in the sample of Abell clusters that do not fulfil APM cluster selection criteria, suggesting artificially higher Abell richness counts owing to contamination by projection effects in this subsample.  相似文献   

3.
We present an analysis of the spatial orientations of 1315 galaxies in 10 Abell clusters of BM type II–III (type II–III in the Bautz–Morgan system). It is found that the spin-vector orientations of the galaxies in six clusters (Abell 168, 426, 1035, 1227, 1367 and 1904) tend to lie parallel to the Local Supercluster (LSC) plane. The spin-vector projections of galaxies in six clusters (Abell 168, 1020, 1035, 1227, 1904 and 1920) are found to be oriented perpendicular with respect to the direction of the LSC centre. Three clusters (Abell 1920, 2255 and 2256) show a bimodal orientation: spin vectors tend to be oriented both parallel and perpendicular to the LSC plane. No dependence of radial velocity, distance and cluster magnitude on galaxy orientation is noticed. In a comparison with previous work, we noticed that the anisotropy might increase from early-type (BM type I) to late-type (BM types II–III and III) clusters. We notice a vanishing angular momentum for the less massive galaxy clusters (richness class 0). A significant alignment of the angular momenta of galaxies for massive clusters, e.g. the core of the Shapley Supercluster (richness class 4,   M > 1015 M  ), is found.  相似文献   

4.
We study the mass distribution in six nearby  ( z < 0.06)  relaxed Abell clusters of galaxies A0262, A0496, A1060, A2199, A3158 and A3558. Given the dominance of dark matter in galaxy clusters, we approximate their total density distribution by the Navarro, Frenk & White (NFW) formula characterized by virial mass and concentration. We also assume that the anisotropy of galactic orbits is reasonably well described by a constant and that galaxy distribution traces that of the total density. Using the velocity and position data for 120–420 galaxies per cluster we calculate, after removal of interlopers, the profiles of the lowest order even velocity moments, dispersion and kurtosis. We then reproduce the velocity moments by jointly fitting the moments to the solutions of the Jeans equations. Including the kurtosis in the analysis allows us to break the degeneracy between the mass distribution and anisotropy and constrain the anisotropy as well as the virial mass and concentration. The method is tested in detail on mock data extracted from the N -body simulations of dark matter haloes. We find that the best-fitting Galactic orbits are remarkably close to isotropic in most clusters. Using the fitted pairs of mass and concentration parameters for the six clusters, we conclude that the trend of decreasing concentration for higher masses found in the cosmological N -body simulations is consistent with the data. By scaling the individual cluster data by mass, we combine them to create a composite cluster with 1465 galaxies and perform a similar analysis on such sample. The estimated concentration parameter then lies in the range  1.5 < c < 14  and the anisotropy parameter in the range  −1.1 < β < 0.5  at the 95 per cent confidence level.  相似文献   

5.
The analysis of a homogeneous sample of 108 Abell clusters has led to an average peculiar velocity for the center of mass motion of these clusters of 610±750 km s–1. From this result, an upper limit for the average mass of the Abell clusters of (1.6±2.4)×1015 M was obtained under the assumption that the peculiar motion is due to the excess of neighbours with respect to an uniform background. A lower limit of (2.42.9) x 1014 h -10.4 M was derived if one assumes that the peculiar velocity results from the mutual acceleration with the nearest neighbour.  相似文献   

6.
Abell 85 is a cD cluster of galaxies with the redshift of 0.055 in the southern hemisphere. Based on the spectroscopic data obtained by predecessors and the data of the SDSS (Sloan Digital Sky Survey), 370 member galaxies of the cluster are sieved by means of the 3σ method and their dynamical states are analyzed. From the spatial distribution and the local line-of-sight velocity distribution of these member galaxies it is found that this cluster of galaxies contains 4 clear substructures and they are just in the process of pairwise coalescence. This shows that the cluster Abell 85 is in the actively dynamical state, far from reaching the dynamical equilibrium.  相似文献   

7.
We present the first detection of a gravitational depletion signal at near-infrared wavelengths, based on deep panoramic images of the cluster Abell 2219 ( z =0.22) taken with the Cambridge Infrared Survey Instrument (CIRSI) at the prime focus of the 4.2-m William Herschel Telescope. Infrared studies of gravitational depletion offer a number of advantages over similar techniques applied at optical wavelengths, and can provide reliable total masses for intermediate-redshift clusters. Using the maximum-likelihood technique developed by Schneider, King & Erben, we detect the gravitational depletion at the 3 confidence level. By modelling the mass distribution as a singular isothermal sphere and ignoring the uncertainty in the unlensed number counts, we find an Einstein radius of (66 per cent confidence limit). This corresponds to a projected velocity dispersion of v 800 km s1, in agreement with constraints from strongly lensed features. For a Navarro, Frenk & White mass model, the radial dependence observed indicates a best-fitting halo scalelength of 125 h 1 kpc. We investigate the uncertainties arising from the observed fluctuations in the unlensed number counts, and show that clustering is the dominant source of error. We extend the maximum-likelihood method to include the effect of incompleteness, and discuss the prospects of further systematic studies of lensing in the near-infrared band.  相似文献   

8.
As a concluding paper in this series, we present an analysis of the spatial orientations of galaxies in seven Abell clusters of BM type II and compare the results with previous works. Four BM type II clusters (A1767, A1809, A2554, A2721) show a similar preferred alignment: spin vectors of galaxies tend to lie in the local supercluster plane and the projections of the spin vector tend to be oriented perpendicular with respect to the Virgo cluster centre. A preferred alignment of galaxies in cluster A2554 is noticed in both the two- and three-dimensional analyses. In a comparison with previous work, we noticed a systematic change (with distance, radial velocity, morphology and magnitude) in the galaxy alignments from early-type (BM I) to late-type (BM III) clusters. Possible explanations of these systematic changes will be discussed.  相似文献   

9.
We present Chandra and Very Large Array observations of two galaxy clusters, Abell 160 and Abell 2462, whose brightest cluster galaxies (BCGs) host wide angle tailed radio galaxies (WATs). We search for evidence of interactions between the radio emission and the hot, X-ray emitting gas, and we test various jet termination models. We find that both clusters have cool BCGs at the cluster centre, and that the scale of these cores (∼30–40 kpc for both sources) is of approximately the same scale as the length of the radio jets. For both sources, the jet flaring point is coincident with a steepening in the host cluster's temperature gradient, and similar results are found for 3C 465 and Hydra A. However, none of the published models of WAT formation offers a satisfactory explanation as to why this may be the case. Therefore, it is unclear what causes the sudden transition between the jet and the plume. Without accurate modelling, we cannot ascertain whether the steepening of the temperature gradient is the main cause of the transition, or merely a tracer of an underlying process.  相似文献   

10.
We present the results of 12CO(1-0) and 12CO(2-1) observations on UGC 1347 obtained with BIMA and the IRAM 30 m telescope. UGC 1347 is a member of the Abell 262 cluster. In Abell 262, a nearby spiral rich cluster, the signs of galaxy interaction and therefore the mechanisms which play an important role in galaxy evolution within clusters can be studied with high spatial resolution. Aside from its bright central region, UGC 1347 features a second prominent source at the southern tip of the bar, which has been identified as region with recent enhanced star formation. The CO observations prove the existence of reservoirs of cold molecular gas at the positions of both bright regions.  相似文献   

11.
We describe a new non-parametric technique for reconstructing the mass distribution in galaxy clusters with strong lensing, i.e. from multiple images of background galaxies. The observed positions and redshifts of the images are considered as rigid constraints, and through the lens (ray-trace) equation they provide us with linear constraint equations. These constraints confine the mass distribution to some allowed region, which is then found by linear programming. Within this allowed region we study in detail the mass distribution with minimum mass-to-light variation, and also some other distributions, such as the smoothest mass distribution.
The method is applied to the extensively studied cluster Abell 370, which hosts a giant luminous arc and several other multiply imaged background galaxies. Our mass maps are constrained by the observed positions and redshifts (spectroscopic or model-inferred by previous authors) of the giant arc and multiple-image systems. The reconstructed maps obtained for Abell 370 reveal a detailed mass distribution, with substructure quite different from the light distribution. The method predicts the bimodal nature of the cluster, and that the projected mass distribution is indeed elongated along the axis defined by the two dominant cD galaxies. However, the peaks in the mass distribution appear to be offset from the centres of the cDs.
We also present an estimate for the total mass of the central region of the cluster. This is in good agreement with previous mass determinations. The total mass of the central region is M =(2.0–2.7)×1014 M⊙ h −150, depending on the solution chosen.  相似文献   

12.
New radio and X-ray data are reported for the rich cluster Abell 2319. This object is known from optical data to consist of two separate clusters, which are displaced by about 10′ in the NW direction, and could be in a pre-merger state.

In the radio domain, the cluster is characterized by the presence of a central diffuse halo source, more extended and powerful than the prototype halo in the Coma cluster. The radio halo shows an irregular structure, elongated in the NE-SW direction, and also extended towards the NW. We also report data on the extended radio galaxies located within the halo, or in its proximity.

The cluster X-ray brightness distribution shows an elongated structure towards the NW, in the radial region between 6′–12′, i.e. in the direction of the subcluster. This feature is exactly coincident with the NW extension of the radio halo. In addition, more substructural features are identified which could be due to an ongoing merger of the cluster with yet another mass component.

The radio halo morphology is correlated with the X-ray structure and the existence of merger processes in the cluster. The cluster merger can provide energy to maintain the radio halo, while the origin of the relativistic particles seems more problematic.  相似文献   


13.
We present a high-resolution dark matter reconstruction of the   z = 0.165  Abell 901/902 supercluster from a weak lensing analysis of the Hubble Space Telescope STAGES survey. We detect the four main structures of the supercluster at high significance, resolving substructure within and between the clusters. We find that the distribution of dark matter is well traced by the cluster galaxies, with the brightest cluster galaxies marking out the strongest peaks in the dark matter distribution. We also find a significant extension of the dark matter distribution of Abell 901a in the direction of an infalling X-ray group Abell 901α. We present mass, mass-to-light and mass-to-stellar mass ratio measurements of the structures and substructures that we detect. We find no evidence for variation of the mass-to-light and mass-to-stellar mass ratio between the different clusters. We compare our space-based lensing analysis with an earlier ground-based lensing analysis of the supercluster to demonstrate the importance of space-based imaging for future weak lensing dark matter 'observations'.  相似文献   

14.
We present results from a ROSAT HRI study of 11 distant ( z  ∼ 0.2–0.3) Abell clusters. We have performed a morphological analysis to search for and quantify substructure in the clusters. About 70 per cent of the sample shows significant evidence of substructure in the form of centroid shift or obvious X-ray clumps. We examine the clusters for the presence of cooling flows, and determine the physical properties of the ICM by deprojecting the HRI data. Nine of the clusters have central cooling times less than the age of the system, in agreement with fractions determined from nearby, X-ray-bright samples. Additional PSPC results are presented for four clusters in the sample, and ASCA results for six clusters. The temperatures and metallicities for these distant clusters appear to be consistent with nearby clusters of similar richness.  相似文献   

15.
Gravitational lensing magnifies the observed flux of galaxies behind the lens. We use this effect to constrain the total mass in the cluster Abell 1689 by comparing the lensed luminosities of background galaxies with the luminosity function of an undistorted field. Under the assumption that these galaxies are a random sample of luminosity space, this method is not limited by clustering noise. We use photometric redshift information to estimate galaxy distance and intrinsic luminosity. Knowing the redshift distribution of the background population allows us to lift the mass/background degeneracy common to lensing analysis. In this paper we use nine filters observed over 12 h with the Calar Alto 3.5-m telescope to determine the redshifts of 1000 galaxies in the field of Abell 1689. Using a complete sample of 146 background galaxies we measure the cluster mass profile. We find that the total projected mass interior to 0.25  h −1 Mpc is M 2D(<0.25  h −1 Mpc)=(0.48±0.16)×1015  h −1 M, where our error budget includes uncertainties from the photometric redshift determination, the uncertainty in the offset calibration and finite sampling. This result is in good agreement with that found by number-count and shear-based methods and provides a new and independent method to determine cluster masses.  相似文献   

16.
We present a catalogue of galaxies in Abell 3653 from observations made with the 2-degree field (2dF) spectrograph at the Anglo-Australian Telescope. Of the 391 objects observed, we find 111 are bona fide members of Abell 3653. We show that the cluster has a velocity of   cz = 32 214 ± 83  km s−1 ( z = 0.10 738 ± 0.00 027)  , with a velocity dispersion typical of rich, massive clusters of  σ cz = 880+66−54  . We find that the cD galaxy has a peculiar velocity of  683 ± 96  km s−1  in the cluster rest frame – some 7σ away from the mean cluster velocity, making it one of the largest and most significant peculiar velocities found for a cD galaxy to date. We investigate the cluster for signs of substructure, but do not find any significant groupings on any length scale. We consider the implications of our findings on cD formation theories.  相似文献   

17.
Deep inside the core of Abell 1795: the Chandra view   总被引:1,自引:0,他引:1  
We present X-ray spatial and spectral analysis of the Chandra data from the central     of the cluster of galaxies Abell 1795. The plasma temperature rises outwards by a factor of 3, whereas the iron abundance decreases by a factor of 4. The spatial distribution of oxygen, neon, sulphur, silicon and iron shows that supernovae Type Ia dominate the metal enrichment process of the cluster plasma within the inner 150 kpc. Resolving both the gas density and temperature in nine radial bins, we recover the gravitational mass density profile and show that it flattens within 100 kpc as   ρ DM∝ r -0.6  with a power-law index flatter than −1 at >3 σ level. The observed motion of the central galaxy and the presence of excesses and deficits along the north–south direction in the brightness distribution indicate that the central cluster region is not relaxed. In the absence of any non-gravitational heating source, the data from the inner ∼200 kpc indicate the presence of a cooling flow with an integrated mass deposition rate of about 100 M yr−1. Over the same cluster region, the observed rate of 74 M yr−1 is consistent with the recent XMM-Newton Reflection Grating Spectrometer limit of 150 M yr−1.  相似文献   

18.
We present a deep H -band image of the region in the vicinity of the cluster Abell 1942 containing the puzzling dark matter concentration detected in an optical weak lensing study by Erben et al. We demonstrate that our limiting magnitude, H =22 , would be sufficient to detect clusters of appropriate mass out to redshifts comparable with the mean redshift of the background sources. Despite this, our infrared image reveals no obvious overdensity of sources at the location of the lensing mass peak, nor an excess of sources in the I − H versus H colour–magnitude diagram. We use this to constrain further the luminosity and mass-to-light ratio of the putative dark clump as a function of its redshift. We find that for spatially flat cosmologies, background lensing clusters with reasonable mass-to-light ratios lying in the redshift range 0< z <1 are strongly excluded, leaving open the possibility that the mass concentration is a new type of truly dark object.  相似文献   

19.
We investigate the Luminosity Function(LF)of the cluster of galaxies Abell 566.The photometric data of 15 intermediate-bands are obtained from the Beijing-Arizona- Taiwan-Connecticut(BATC)photometric sky survey.For each of the 15 wavebands,the LF of cluster galaxies is well modelled by the Schechter function,with characteristic luminosi- ties from-18.0 to-21.9 magnitude,from the a- to the p-band.Morphological dependence of the LF is investigated by separating the cluster members into‘red’and‘blue’subsamples. It is clear that late type galaxies have a steeper shape of LF than the early type galaxies.We also divided the sample galaxies by their local environment.It was found that galaxies in the sparser region have steeper shape of LF than galaxies in the denser region.Combining the results of morphological and environmental dependence of LFs,we show that Abell 566 is a well relaxed cluster with positive evidence of galaxy interaction and merger,and excess number of bright early type galaxies located in its denser region.  相似文献   

20.
Through the morphological classifications for 290 member galaxies in the nearby galaxy Abell 2199, the star formation rates and their relations with their morphology and related physical properties are investigated in this paper. It is found that the typical star formation rate in galaxies of this galaxy cluster is strongly correlated with the Hα equivalent width, and the degree of discontinuity of the galaxy spectrum at 4000 Å is also strongly correlated with the stellar mass included in the galaxy. It is also found that star formation activities in these galaxies do not exhibit the obvious circumstance effect. This result indicates that this galaxy cluster is still situated at the stage of the violent dynamical evolution and far from the dynamical equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号