首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of vertical erosion of till in water depths ranging from 1.1 m to 5 m have been obtained using a modified micro-erosion meter. Measurements in this environment are hindered by poor underwater visibility and losses due to high erosion rates and ice action. There is considerable spatial and temporal variability in the erosion rates measured but average values show a general increase from 11 mm y?1 in 6 m of water to about 35 mm y?1 in 2.3 m of water and even higher rates closer to shore. The measured values in shallow water are in good agreement with long-term rates extrapolated from shoreline recession. It is suggested that erosion occurs through abrasion and fluid stressing, and that these mechanisms are aided by softening of the upper surface of the till, possibly through cyclic ‘fatigue failure’.  相似文献   

2.
The rate of blanket peat erosion was measured at an upland site in central Wales during the 1983-1984 drought years. Erosion pins, a peat surface sediment trap, and sediment sampling in the effluent stream, were used to estimate the rate of peat surface recession and the rate of organic sediment loss from the catchment. An overall rate of surface recession of 16 mm y?1 on exposed peat faces was recorded; this differed between faces of different aspects, with the greatest recession on southwest faces. Eroding peat surfaces exhibited maximum recession during the summer, but the peat surface sediment trap indicated that the highest rates of sediment loss from peat faces due to rain wash occurred during the autumn and early winter. Stream sediment sampling showed that the yield of organic sediment from the catchment was 34·4 t km?2 yr?1, with greatest losses also during the autumn and early winter. The evidence suggested that the surface recession, as measured on erosion pins, included a ‘wastage’ or shrinkage component, which possibly accounted for as much as 80 per cent of the apparent loss. Direct and circumstantial evidence suggested that peat wastage during the summer months was the most important agent of surface recession in the study period, which encompassed the two dry summers. Desiccation provided available sediment during the autumn, but organic sediment supply became limited as the winter progressed, despite the occurrence of frost heave.  相似文献   

3.
Despite growing interest in soil erosion on agricultural land, relatively little attention has been paid to the influence of erosion processes on the pattern of contemporary landform evolution. This in part reflects the problems associated with up-scaling the results of short-term process studies to temporal and spatial scales relevant to the study of landform evolution. This paper presents a new approach to examining the influence of erosion processes on landform evolution on agricultural land which employs: caesium-137 (137Cs) measurements to provide medium-term (c. 40 years) estimates of rates of landform change; experimental data and a topographic-based model to simulate soil redistribution by tillage; a mass-balance model of 137Cs redistribution to separate the water erosion and tillage components of the 137Cs ‘signatures’; and field observations of water erosion for validation. This approach is used to examine the relative importance of water erosion and tillage processes for contemporary landform evolution at contrasting sites near Leuven, in Belgium, and near Yanan, in Shaanxi Province, China. This application of the approach provides good agreement between the derived water erosion rates and field observations, and hitherto unobtainable insights into medium-term patterns and rates of contemporary landform evolution. At Huldenberg in Belgium, despite rill incision of slope concavities and ephemeral gully incision of the valley floor, contemporary landform evolution is dominated by infilling of slope and valley concavities (rates >0.5 mm a−1) and gradual lowering of slope angles as a result of tillage. In contrast, at Ansai (near Yanan) the slope is characterized by increase in slope angle over most of the length, recession of the steepest section at a rate >5 mm a−1 and by increasing planform curvature. At this site, contemporary landform evolution is dominated by water erosion. The constraints on the approach are examined, with particular attention being given to limitations on extrapolation of the results and to the sensitivity of the models to parameter variation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
Estimation of the recession rate of waterfalls is a crucial issue in bedrock river erosion because waterfall recession can cause a major impact on bedrock incision, especially when waterfall recession rates are high. Areas of active volcanoes are often characterized by many waterfalls in the volcanic edifice. This study examines recession rates of waterfalls in welded Aso‐1 ignimbrite from the Aso volcano in southwestern Japan using an empirical equation, which comprises a force/resistance index composed of measurable geomorphic parameters. The estimated recession rates are on the order of 0·01–0·07 m a?1. The estimated rates are then validated by examining the duration and distance of their recession. The duration of waterfall recession is derived from eruptive ages of the Aso ignimbrites, giving waterfall recession distances of approximately 10 km. Although the original locations of the waterfalls suggested by the recession distances exceed the downstream limit of the present Aso‐1 ignimbrite remnants along valley floors, features of the surrounding topography are consistent with these localities being where the waterfalls formed. The use of an equation to estimate recession rates is therefore considered to be valid and practical. The contrast between the highly dissected landforms downstream of the present waterfalls and the gentle landscapes upstream of the waterfalls suggests that the rapid recession of the waterfalls is the major cause of post‐eruptive fluvial erosion into ignimbrites. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
A previous hydrometric study of runoff production in tussock grassland drainage basins in Otago (45°50′S, 169°45′E), New Zealand, revealed a marked change of slope in storm hydrograph recessions. An environmental isotope study was initiated to investigate the runoff mechanisms operating and to test specific hypotheses to explain this break in the hydrograph recession. The results indicated that for quickflow volumes in excess of 10mm, the first part of the storm hydrograph can be attributed to two separate sources, namely, ‘old’ water from a shallow, unconfined groundwater reservoir and ‘new’ water from saturation overland flow on the lower wetlands of concave slopes. Despite the extensive area of wetlands, ‘old’ water runoff from the unconfined groundwater reservoir is delivered more rapidly to the stream than ‘new’ water from saturation overland flow. Substantial surface storage in the wetlands has first to be exceeded before rain becomes a significant part of stream discharge. For quickflow volumes less than 10mm, only ‘old’ water from groundwater contributes to the first part of the hydrograph recession. This means that only the largest 7 per cent of storms (in terms of quickflow volume) generate quickflow containing significant amounts of ‘new water’. The second part of the recession of the storm hydrograph consists of ‘old’ water derived from a remarkably well-mixed shallow unconfined groundwater body.  相似文献   

6.
River bank erosion occurs primarily through a combination of three mechanisms: mass failure, fluvial entrainment, and subaerial weakening and weathering. Subaerial processes are often viewed as ‘preparatory’ processes, weakening the bank face prior to fluvial erosion. Within a river basin downstream process ‘domains’ occur, with subaerial processes dominating the upper reaches, fluvial erosion the middle, and mass failure the lower reaches of a river. The aim of this paper is to demonstrate that (a) subaerial processes may be underestimated as an erosive agent, and (b) process dominance has a temporal, as well as spatial, aspect. Bank erosion on the River Arrow, Warwickshire, UK, was monitored for 16 months (December 1996 to March 1998) using erosion pins. Variations in the rate and aerial extent of erosion are considered with reference to meteorological data. Throughout the first 15 months all erosion recorded was subaerial, resulting in up to 181 mm a?1 of bank retreat, compared with 13 to 27 mm a?1 reported by previous researchers. While the role of subaerial processes as ‘preparatory’ is not contended, it is suggested that such processes can also be erosive. The three bank erosion mechanisms operate at different levels of magnitude and frequency, and the River Arrow data demonstrate this. Thus the concept of process dominance has a temporal, as well as spatial aspect, particularly over the short time‐periods often used for studying processes in the field. Perception of the relative efficacy of each erosive mechanism will therefore be influenced by the temporal scale at which the bank is considered. With the advent of global climate change, both these magnitude–frequency characteristics and the consequent interaction of bank erosion mechanisms may alter. It is therefore likely that recognition of this temporal aspect of process dominance will become increasingly important to studies of bank erosion processes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Geomorphological process research demands quantitative information on erosion and deposition event timing and magnitude, in relation to fluctuations in the suspected driving forces. This paper establishes a new measurement principle – thermal consonance timing (TCT) – which delivers clearer, more continuous and quantitative information on erosion and deposition event magnitude, timing and frequency, to assist understanding of the controlling mechanisms. TCT is based on monitoring the switch from characteristically strong temperature gradients in sediment, to weaker gradients in air or water, which reveals the moment of erosion. The paper (1) derives the TCT principle from soil micrometeorological theory; (2) illustrates initial concept operationalization for field and laboratory use; (3) presents experimental data for simple soil erosion simulations; and (4) discusses initial application of TCT and perifluvial micrometeorology principles in the delivery of timing solutions for two bank erosion events on the River Wharfe, UK, in relation to the hydrograph. River bank thermal regimes respond, as soil temperature and energy balance theory predicts, with strong horizontal thermal gradients (often >1 K cm?1 over 6·8 cm). TCT fixed the timing of two erosion events, the first during inundation, the second 19 h after the discharge peak and 13 h after re‐emergence from the flow. This provides rare confirmation of delayed bank retreat, quantifies the time‐lag involved, and suggests mass failure processes rather than fluid entrainment. Erosion events can be virtually instantaneous, implying ‘catastrophic retreat’ rather than ‘progressive entrainment’. Considerable potential exists to employ TCT approaches for: validating process models in several geomorphological contexts; assisting process identification and improving discrimination of competing hypotheses of process dominance through high‐resolution, simultaneous analysis of erosion and deposition events and driving forces; defining shifting erodibility and erosion thresholds; refining dynamic linkages in event‐based sediment budget investigations; and deriving closer approximations to ‘true’ erosion and deposition rates, especially in self‐concealing scour‐and‐fill systems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Coastal cliff erosion represents a significant geohazard for people and infrastructure. Forecasting future erosion rates is therefore of critical importance to ensuring the resiliency of coastal communities. We use high precision monitoring of chalk cliffs at Telscombe, UK to generate monthly mass movement inventories between August 2016 and July 2017. Frequency–magnitude analysis of our inventories demonstrate negative power law scaling over 7 orders of magnitude and, for the first time, we report statistically significant correlations between significant wave height (Hs) and power law scaling coefficients (r2 values of 0.497 and 0.590 for β and s respectively). Applying these relationships allows for a quantitative method to predict erosion at the site based on Hs probabilities and sea level forecasts derived from the UKCP09 medium emission climate model (A1B). Monte‐Carlo simulations indicate a range of possible erosion scenarios over 70 years (2020–2090) and we assess the impact these may have on the A259 coastal road which runs proximal to the cliffs. Results indicate a small acceleration in erosion compared with those based on current conditions with the most likely scenario at the site being 21.7 m of cliff recession by 2090. However, low‐probability events can result in recession an order of magnitude higher in some scenarios. In the absence of negative feedbacks, we estimate an ~11% chance that the A259 will be breached by coastal erosion by 2090. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Knickpoint behaviour is a key to understanding both the landscape responses to a base‐level fall and the corresponding sediment fluxes from rejuvenated catchments, and must be accommodated in numerical models of large‐scale landscape evolution. Knickpoint recession in streams draining to glacio‐isostatically uplifted shorelines in eastern Scotland is used to assess whether knickpoint recession is a function of discharge (here represented by its surrogate, catchment area). Knickpoints are identified using DS plots (log slope versus log downstream distance). A statistically significant power relationship is found between distance of headward recession and catchment area. Such knickpoint recession data may be used to determine the values of m and n in the stream power law, E = KAmSn. The data have too many uncertainties, however, to judge definitively whether they are consistent with m = n = 1 (bedrock erosion is proportional to stream power and KPs should be maintained and propagate headwards) or m = 0·3, n = 0·7 (bedrock incision is proportional to shear stress and KPs do not propagate but degrade in place by rotation or replacement). Nonetheless, the E Scotland m and n values point to the dominance of catchment area (discharge) in determining knickpoint retreat rates and are therefore more consistent with the stream power law formulation in which bedrock erosion is proportional to stream power. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Hydrological process in arid zones differs substantially from that in better documented humid environments. The ponding point for infiltration is reached within 10 mins of first rain and overland flow forms the major component of basin runoff. Drainage densities are high, approaching 100 km.km?2, maximising the opportunity for both water and eroded soil to reach the channel network. The typical flood bore is not as abrupt as the mythology of desert streams would suggest. Nevertheless, the time of rise of the flood hydrograph is usually between 4 and 16 mins, giving credance to the notion of ‘flash flood’. Measured flows remain subcritical in the main, though Froude number exceeds unity for short periods around peak discharge. Flow is exceedingly turbulent, with Reynolds number > 105 even for much of the recession limb. As a result, suspended sediment concentrations by size grade are shown to be hydraulically controlled. However, the high degree of turbulence and wide availability of sediment from hillslope and channel sources also means that the mean size of the suspended load varies systematically with flow parameters. In this respect, ephemeral streams differ from perennial counterparts in humid environments where no clear-cut relationships exist. There is greater prospect of deriving a physically deterministic model of suspended sediment transport in desert streams. Implications for soil erosion and reservoir siltation are discussed, and sediment is traced from its source to its various sinks within the drainage basin.  相似文献   

13.
We report concentrations of cosmogenic 10Be and 36Cl used to determine erosion depths in the recently deglaciated bedrock at Goldbergkees in the Eastern Alps. The glacier covered the sampling sites during the Little Ice Age (LIA) until c. 1940. The youngest ages calculated from these concentrations match the known exposure time after the post‐LIA exposure of <100 years. The apparent age (no cover, no erosion) of most samples, however, is significantly older. We show that the measured nuclide concentrations represent subglacial erosion depths, rather than exposure times. In particular, erosion depths calculated using 10Be and 36Cl concentrations of individual samples match well, whereas apparent 36Cl ages are consistently older than 10Be ages. The bedrock at the ‘youngest’ surfaces was deeply eroded (≥ 297 cm) by the Goldbergkees during the late Holocene. In contrast, bedrock at the margin of the LIA ice extent was eroded ≤35 cm. These values convert to subglacial erosion rates on the order of 0.1 mm/a to >5 mm/a. While modeled erosion rates depend on the duration of glacial cover and erosion intrinsic to the different exposure scenarios used for calculation (700–3300 years), modeled total erosion depths are insensitive (5–20% change). Analysis of erosion depths on the transverse valley profile shows a general trend of greatest erosion part way up the valley side and less erosion under thin ice at the lateral margin. A second profile along the valley axis indicates depth of erosion is greatest where the ice abuts the foot of the investigated bedrock riegel and at its lee side just beyond the crest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Rill erosion is an important erosional form on agricultural soils in England, causing large losses of soil, particularly on cultivated slopes. This paper describes a rill system that developed in a small agricultural catchment in north Oxfordshire during the winter of 1992–93. The rill system comprised two components: a system of ‘feeder rills’ along the valley-side slopes, which were the result of flow concentration and erosion along wheelings, and a thalweg rill, which formed along a dry valley bottom as a result of surface runoff concentration from the feeder rills. Total volumetric soil loss from the rill system was 32·28 m3, equivalent to 3·01 m3, ha?1 for the rill catchment area, or 3·91 t ha?1. Mean discharge for the thalweg rill and feeder rills, calculated during a storm event, was 31·101s?1 and 1·171s?1, respectively. All flows were fully turbulent and supercritical. We emphasize the need for a spatially distributed approach to the study of runoff and erosion at the catchment scale.  相似文献   

15.
A combination of numerical analysis and 10Be concentrations measured in sediment samples from the high‐relief Torrente catchment, southern Spain, allows us to investigate the sampling requirements for determining erosion rates using cosmogenic nuclides in high‐relief, landslide‐dominated terrain. We use simple modelling to quantify the effect of particle spalling and/or landsliding on erosion rates determined using a cosmogenic in‐situ produced isotope. Analytical results show that the cosmogenic nuclide concentration of a surface experiencing regular detachment of a grain or block may be considered to be in steady state, and ‘in‐situ’ erosion rates estimated, when an appropriate number of spatially independent samples are amalgamated. We present equations that enable calculation of the number of bedrock samples that must be amalgamated for the estimation of mean erosion rates on an outcrop experiencing regular detachment of a grain or chip of thickness L every T years. Our findings confirm that mean catchment erosion rates may be reliably estimated from 10Be concentrations in fluvial sediment in high‐relief rapidly eroding terrain. These catchment‐wide integrated erosion rates can be calculated where erosion is primarily accomplished through shallow (<3 m) spalling processes; where deep‐seated (>3 m) landslides are the dominant mode of erosion only minimum erosion rates can be determined. Lastly, we present erosion rate measurements from the Torrente catchment that reveal variation of two orders of magnitude (0·03–1·6 m ka?1) quantifying the high degree of spatial variation in erosion rates expected within rapidly uplifting catchments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The interaction between particle weathering and surface armouring and its effect on erosion has been investigated. The effect of soil armouring is to decrease sediment transport with time by preferentially stripping away fine particles. On the other hand the effect of weathering, which breaks down the particles in the armour, is generally believed to increase erosion. By extending an existing armouring model, ARMOUR, and using a variety of published weathering mechanisms this interaction has been explored. The model predicts that while this is generally true, in some cases erosion can be decreased by weathering. When the particles generated by weathering were approximately of equal diameter, erosion increased while armouring decreased. When weathering produced very fine particles by spalling, erosion increased and armouring also increased. When weathering produced a range of particles from fine to coarse, the armour layer broke down and erosion decreased relative to the no‐weathering case. This latter decrease in erosion was due to the high entrainment of coarser transportable materials from the bed decreasing the sediment transport capacity of the flow. In these studies clear regimes could be identified where erosion was limited by either the energy of the flow alone (i.e. ‘transport‐limited’), or the rate of weathering (‘weathering‐limited’); however, for some mechanisms there was an interaction between the two, which we called ‘weathering/transport limited’. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Soil erosion and desertification are severe problems in Iceland. Erosion processes are numerous, and more than one can occur at each site, resulting in many erosional forms. Erosion forms and an erosion severity scale are the basis for a recent national survey of erosion in Iceland. One of the most distinctive erosion forms in Iceland is an erosion escarpment, termed ‘rofabard’ in Icelandic. Rofabards are formed in thick but non‐cohesive Andosols that overlie more cohesive materials such as glacial till or lava. The relatively loose Andosols beneath the root mat are undermined, creating escarpments, or rofabards. The rofabards retreat as a unit, with a fully vegetated and rich ecosystem on top but leaving barren desert in their place. Rofabards are common within a 20 000 km2 area. The Agricultural Research Institute and Soil Conservation Service erosion database suggests that erosion associated with rofabards has denuded 15 000 –30 000 km2 of land that was previously fully vegetated and had fertile Andosols, but is now mostly desert. Erosion rates associated with rofabards are reported as the loss of vegetated land with Andosol mantle, measured as hectares per square kilometre per year. This measure of erosion has more meaning for Icelandic landscapes than the traditional tonnes per hectare per year. Estimated losses of Andosol cover in rofabard areas for the whole country are currently about 230 ha a−1. This rate is about 10 times lower than the rate needed to cause estimated losses of Andosol mantle in rofabard areas since settlement, 1125 years ago. During peak years of soil erosion, losses were probably several thousand hectares per year, but the erosion rates slowed down as extensive Andosol areas have become barren deserts. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Two principal groups of processes shape mass fluxes from and into a soil: vertical profile development and lateral soil redistribution. Periods having predominantly progressive soil forming processes (soil profile development) alternate with periods having predominantly regressive processes (erosion). As a result, short-term soil redistribution – years to decades – can differ substantially from long-term soil redistribution; i.e. centuries to millennia. However, the quantification of these processes is difficult and consequently their rates are poorly understood. To assess the competing roles of erosion and deposition we determined short- and long-term soil redistribution rates in a formerly glaciated area of the Uckermark, northeast Germany. We compared short-term erosion or accumulation rates using plutonium-239 and -240 (239+240Pu) and long-term rates using both in situ and meteoric cosmogenic beryllium-10 (10Be). Three characteristic process domains have been analysed in detail: a flat landscape position having no erosion/deposition, an erosion-dominated mid-slope, and a deposition-dominated lower-slope site. We show that the short-term mass erosion and accumulation rates are about one order of magnitude higher than long-term redistribution rates. Both, in situ and meteoric 10Be provide comparable results. Depth functions, and therefore not only an average value of the topsoil, give the most meaningful rates. The long-term soil redistribution rates were in the range of −2.1 t ha-1 yr-1 (erosion) and +0.26 t ha-1 yr-1 (accumulation) whereas the short-term erosion rates indicated strong erosion of up to 25 t ha-1 yr-1 and accumulation of 7.6 t ha-1 yr-1. Our multi-isotope method identifies periods of erosion and deposition, confirming the ‘time-split approach’ of distinct different phases (progressive/regressive) in soil evolution. With such an approach, temporally-changing processes can be disentangled, which allows the identification of both the dimensions of and the increase in soil erosion due to human influence. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes the design, operation and performance of a field‐portable ‘drip‐type’ simulator and erosion measurement system. The system was constructed specifically for soil erosion research in the humid tropics and has been used extensively in Malaysian Borneo. The simulator is capable of producing replicable storms of up to 200 mm h?1 intensity and 20–30 minutes duration with a drop‐size distribution close to that of natural storms of such intensity (D50 of simulated rainfall is 4·15 mm at 200 mm h?1 and 3·65 mm at 160 mm h?1, D50 measured during natural rainfall = 3·25 mm). The simulator is portable and simply constructed and operates without a motor or electronics, thus making it particularly useful in remote, mountainous areas. The erosion measurement system allows assessment of: (1) rainsplash detachment and net downslope transport from the erosion plot; (2) slopewash (erosion transported by overland flow); and (3) infiltration capacity and overland flow. The performance of the simulator–erosion system compared with previous systems is assessed with reference to experiments carried out in primary and regenerating tropical rainforest at Danum Valley (Malaysian Borneo). The system was found to compare favourably with previous field simulators, producing a total storm kinetic energy of 727 J m?2 (over a 20‐minute storm event) and a kinetic energy rate of 0·61 J m?2 s?1, approximately half that experienced on the ground during a natural rainfall event of similar intensity, despite the shorter distance to the ground. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
An understanding of the sources of variation in the use of erosion plots and of their feasibility to meet the objectives of each specific research project is key to improving future field designs, selecting data for modelling purposes and furthering knowledge of soil erosion processes. Our own field experiences from ongoing research on soil erosion processes since 1989, have allowed us to detect several methodological problems that cause measurement variability. Here several examples are presented concerning: (i) differences in long‐term soil erosion data between open and closed plots; (ii) differences in soil loss derived from replica soil erosion plots; and (iii) differences in soil loss data derived from plots at a range of spatial scales. Closed plots are not the most suitable method for long‐term monitoring of soil erosion rates due to the risk of exhaustion of available material within the plot. The difference in time after which exhaustion occurs depends on the surface soil characteristics, the climatological conditions and the size of the plots. We detected four and seven years as ‘time to exhaustion’. Different results are frequently obtained between pairs of replica plots. Differences up to a factor of nine have been detected in total soil loss between replica plots due to different spatial patterns of surface components. Different constraints appear depending on the spatial scale of measurement of soil loss. We obtained lower runoff percentages at coarser scales; however, larger sediment concentrations are observed at coarser scales (1·32 g l?1, catchment; 0·30 g l?1, 30 m2; 0·17 g l?1, 1 m2 scales). The smaller the plot, the larger the hydrological disconnection within the system, the lower the energy flows due to short distances and the quicker the response to runoff due to an artificial decrease of concentration times for continuous flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号