首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Teleconnections between the seasonal rainfall anomalies of March through May (“long-rains”) over eastern Africa (Uganda, Kenya and Tanzania) and the lower equatorial stratospheric (30-mb) zonal winds for the 32-year period 1964–1995 are examined using statistical methods. The analysis is based on the application of the simple correlation method and QBO/rainfall composite analysis. A statistical study of spatial correlation patterns is made in an effort to understand the climatic associations between the equatorial stratospheric zonal wind and regional rainfall at the interannual scale. The aim of this analysis is to establish whether this global signal can be employed as predictor variable in the long-range forecasts. The study is part of an ongoing investigation, which aims at designing a comprehensive and objective, multi-variate-forecast system of seasonal rainfall over eastern Africa. The correlation parameters include simultaneous (zero lag), and the non-zero lag correlations. The statistical significance of the correlation coefficient [r] is tested based on the Monte Carlo t-statistical method, and the standard correlation tables. Our results indicate significant positive simultaneous and non-zero lag correlations between rainfall over parts of East Africa and lower equatorial stratospheric zonal wind during the months of March–May and June–August. Significantly high correlations are concentrated over the western regions of eastern Africa with peak values of (+ 0.8) observed over these areas. These associations have been observed to be more prominent during lag than in the simultaneous correlations. Strong month to month lag coherence is observed after June prior to the onset of the March to May seasonal rainfall and persists for more than 4 months. Correlation indices for the eight homogeneous rainfall regions over eastern Africa which are derived from our Empirical Orthogonal Function/Cluster analysis shows a clear annual cycle with significant relationships between QBO and seasonal rainfall occurring during boreal summer (June–August). The season with the weakest relationship is December–February. It is however, noted that although the coherence between QBO-Index and rainfall during the long-rains is significantly high, there are some wet/dry years for which the relationship between the long rains and the lower equatorial zonal wind are not significant (for example in 1966, 1973 and 1983). These years have been associated with strong and prolonged ENSO events. Preliminary comparison of the QBO-Index and the newly found Indian Ocean dipole mode index (DMI) indicates that the two climate variables may be significantly related. Of the six high dipole mode events in the Indian Ocean that were observed in 1961, 1967, 1972, 1982, 1994 and 1997, all except 1967 coincided with the easterly phase of the QBO-Index and below normal rainfall over western highlands of eastern Africa. Contingency analyses indicate 60 percent likelihood for the occurrence of above normal rainfall during the westerly phase of the QBO and 63 percent likelihood of below normal rainfall during the east phase of the QBO. Our correlation analysis results indicate that about 36 percent of the variability of the long-rains season over eastern Africa are associated with the QBO-Index. Our results further show that the tendency of the lower equatorial stratosphe ric zonal wind prior to the season is a good indicator of the performance of the long rains of eastern Africa. A positive OND minus JJA QBO trend is a good indicator for the non-occurrence of drought over eastern Africa. Similarly, a negative trend is a good indicator for the non-occurrence of high rainfall over the region. The identified characteristics and domain of influence of the QBO signal in different regions of East Africa suggests that this global oscillator may offer useful input to objective multi-variate rainfall prediction models for eastern Africa. Received June 4, 1999 Revised November 25, 1999  相似文献   

2.
利用观测和再分析资料通过合成分析方法,研究了中部型ENSO和平流层准两年振荡(QBO)对冬季北半球平流层臭氧的独立影响和联合调制作用。研究表明,北半球平流层臭氧在中部型厄尔尼诺年增加,而在中部型拉尼娜年减少;准两年振荡东风位相年份,北半球平流层臭氧增加,准两年振荡西风位相结果则相反。相比之下,北半球中、高纬度平流层臭氧异常对准两年振荡活动的响应明显小于其对ENSO活动的响应。进一步研究发现,准两年振荡东风位相会加强中部型厄尔尼诺事件引起的北半球平流层臭氧的增加,而减弱中部型拉尼娜事件造成的平流层臭氧的减少。在准两年振荡西风位相下,中部型厄尔尼诺事件仅导致北半球平流层臭氧含量少量升高,而中部型拉尼娜事件期间臭氧会大幅度减少。因此,准两年振荡东风位相会加强中部型厄尔尼诺事件对北半球平流层臭氧的影响,而减弱中部型拉尼娜事件对北半球平流层臭氧的影响。准两年振荡西风位相会减弱中部型厄尔尼诺而加强中部型拉尼娜事件对北半球平流层臭氧的影响。   相似文献   

3.
低纬地区平流层准零风层时空分布特征分析   总被引:1,自引:0,他引:1  
利用ERA-Interim逐日再分析资料,使用EOF(Empirical Orthogonal Function)等统计方法,分析了中国低纬地区平流层准零风层(Quasi-Zero Wind Layer,QZWL)的时空分布特征,旨在为平流层飞艇寻找合适的运行区域及时段。低纬地区QZWL主要受到热带平流层大气环流季节性变化和平流层准两年振荡(Quasi-BiennialOscillation,QBO)的影响。在二者共同作用下,低纬地区QZWL高概率带可分为南北两支:“北支”出现在10月至次年4月间,QBO东风位相时期,“北支”中心纬度基本维持在20°N附近,西风位相时期,“北支”中心纬度随高度降低南移明显;“南支”仅出现在QBO西风位相期间,5~11月在5°N附近,其余时段与“北支”合并,可以认为是“北支”向南延伸。通过对比海口站和南沙站Weibull概率密度函数与风速资料的拟合结果,表明Weibull分布可以很好拟合不同QBO位相下平流层逐月风速频率分布,根据Weibull分布计算特定的累积概率风速值,可以作为选取适宜平流层飞艇运行的低风速风场的判据。海口站30~50 hPa高度11月至次年4月、南沙站50~70 hPa高度QBO西风位相时期全年均较为适合平流层飞艇运行。  相似文献   

4.
On the basis of total column ozone (TO) data obtained in the period of 1957–2007 at 10 ground-based European stations, characterized by long and highly reliable measurements, the effects of the quasi-biennial oscillation (QBO) and 11-year solar cycle (11-year SC), manifesting in TO are investigated. The results of comparative analysis of seasonal differences between different QBO/solar extremes convincingly demonstrate interrelation between the QBO and 11-year SC effects. It is shown that solar activity modulates the phase of the QBO effect so that the quasi-biennial TO signals during solar maximum and solar minimum are nearly in opposite phase. It is also demonstrated that isolated under permanent conditions of solar minimum or solar maximum the QBO effects in TO have the time scale of about 20 months. Solar modulation of the QBO effect makes the QBO a conductor of the solar cycle impact on TO over Europe. The mechanism of influence of the 11-year SC on the QBO and probably includes its impact on the QBO amplitude in the equatorial lower stratosphere, mainly through weakening of the equatorial easterlies during solar maximum.  相似文献   

5.
A nonlinear principal component analysis (NLPCA) is applied to a set of monthly mean time series from January 1956 to December 2007 consisting of the Arctic oscillation (AO) index derived from 1,000-hPa geopotential height anomalies poleward of 20°N latitude and the zonal winds observed at seven pressure levels between 10 and 70?hPa in the equatorial stratosphere to investigate the relation of the AO with the quasi-biennial oscillation (QBO). The NLPCA is conducted using a new, compact neural network model. The NLPCA modeling of the dataset of the AO index and QBO winds offers a clear picture of the relation between the two oscillations. In particular, the phase of covariation of the oscillations defined by the two nonlinear principal components of the dataset progresses with a predominant 28.4-month periodicity. This predominant cycle is modulated by an 11-year cycle. The variation of the AO index with the QBO phase also shows that the average AO index is positive when the westerly QBO phase descends past 30?hPa and, conversely, the average AO index is negative when the easterly QBO phase descends past 30?hPa. This relationship is evident during the boreal cold season from November to April but non-existent during the boreal warm season from May to October.  相似文献   

6.
Using the longest and most reliable ozonesonde data sets grouped for four regions (Japan, Europe, as well as temperate and polar latitudes of Canada) the comparative analysis of regional responses of ozone, temperature, horizontal wind, tropopause and surface pressure on the equatorial quasi-biennial oscillation (QBO effects), manifesting in opposite phases of the 11-year solar cycle (11-yr SC) was carried out. The impact of solar cycle is found to be the strongest at the Canadian Arctic, near one of two climatological centres of polar vortex, where in solar maximum conditions the QBO signals in ozone and temperature have much larger amplitudes, embrace greater range of heights, and are maximized much higher than those in solar minimum conditions. The strengthening of the temperature QBO effect during solar maxima can explain why correlation between the 11-yr SC and polar winter stratospheric temperature is reversed in the opposite QBO phases. At the border of polar vortex the 11-yr SC also modulates the QBO effect in zonal wind, strengthening the quasi-biennial modulation of polar vortex during solar maxima that is associated with strong negative correlation between stratospheric QBO signals in zonal wind and temperature. Above Japan the QBO effects of ozone, temperature, and zonal wind, manifesting in solar maxima reveal the downward phase dynamics, reminding similar feature of the zonal wind in the equatorial stratosphere. Above Europe, the QBO effects in solar maxima reveal more similarity with those above Japan, while in solar minima with the effects obtained at the Canadian middle-latitude stations. It is revealed that the 11-yr SC influences regional QBO effects in tropopause height, tropopause temperature and surface pressure. The influence most distinctly manifest itself in tropopause characteristics above Japan. The results of the accompanying analysis of the QBO reference time series testify that in the period of 1965–2006 above 50-hPa level the duration of the QBO cycle in solar maxima is 1–3 months longer than in solar minima. The differences are more distinct at higher levels, but they are diminished with lengthening of the period.  相似文献   

7.
Summary Latitude-altitude structure of ozone QBO over the tropical-subtropical stratosphere (40° S–40° N) has been explored by analyzing Microwave Limb Sounder (MLS) aboard Upper Atmospheric Research Satellite (UARS) data for the period 1992–1999 using the multifunctional regression model. The inferred ozone QBO shows two maxima located at 22 hPa and 10 hPa with coefficient of 2–3% per 10 m/s centered at the equator. The equatorial maxima are out of phase with each other. Subtropics exhibit two peak structure near 14 hPa but of opposite sign to that of equatorial maximum near 10 hPa. Over the equatorial region, positive (zonal winds westerly) coefficients overlay negative (zonal winds easterlies) coefficients which descend with time. A pattern of equatorial maximum and two subtropical minima appears in the months December to February near 10 hpa and it propagates upward with progression of seasons. Equatorial QBO is seasonally asynchronous while subtropical QBO is seasonally synchronous. Correspondence: Suvarna Fadnavis, Physical Meteorology and Aerology Division, Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411008, India  相似文献   

8.
Summary A comparison of the solar flux in January and February with the United States national temperature does not show any evident connection during the period 1952–1987. However, when the data are separated according to the east or west phase of the quasi-biennal oscillation (QBO) in the equatorial stratosphere the following phenomenon is found. When the QBO was in its west phase the U.S. national temperature is negatively correlated with the solar flux cycle; the opposite holds true for the east phase of the QBO.With 2 Figures  相似文献   

9.
Pawson  S.  Fiorino  M. 《Climate Dynamics》1998,14(9):645-658
 Reanalysis datasets potentially offer the opportunity to examine the tropical quasi-biennial oscillation (QBO) in greater detail than in the past, including the associated meridional circulation and the links with other parts of the atmosphere. For such studies to be useful, the QBO represented by the reanalyses should be realistic. In this work, the QBO in the ERA and NCEP reanalyses is validated against rawinsonde observations from Singapore. Monthly mean data are used. In the lower stratosphere (at 50 hPa and 30 hPa) the ERA QBO is reasonable, although the wind extrema in both phases are too weak and the vertical shear and the temperature anomalies are too small. The NCEP QBO is weaker still. At 10 hPa neither reanalysis system performs well, both systems failing to reproduce the westerlies, possibly because of the proximity of the upper boundary. The Singapore wind is representative of the zonal means in the reanalyses. The weak wind extrema in the reanalyses would not support a wave-mean flow interaction theory of the QBO, because a large portion of the gravity wave spectrum which would be absorbed in reality would be transmitted beyond 10 hPa. The stronger shear zones captured in the ERA data are associated with larger, more realistic temperature perturbations near 30 hPa. The northward velocities in the NCEP data show a more realistic structure than in the ERA reanalysis, where they are dominated by a vertical “gridpoint wave” structure in the lowermost stratosphere. Despite the shortcomings of the reanalyses, the high correlations of the wind at 30 hPa and 50 hPa with the observations at Singapore mean that the reanalyses could potentially be used to examine the effects of the QBO away from the tropical stratosphere. Future reanalyses need to take full account of the wind shears evident in the rawinsonde observations and use models with an adequate resolution to capture these vertical scales. Received: 23 June 1997/Accepted 17 December 1998  相似文献   

10.
李自强  马生春 《气象》1992,18(9):3-7
通过资料分析发现:夏季50hPa QBO的东、西风位相与华北南部降水及旱涝状况的关系存在显著的阶段性,并明显地受太阳活动11年周期的影响。分析表明,50年代以来,太阳活动11年周期双周内,平流层夏季50hPa QBO西风位相年华北南部降水偏多,东风位相年降水偏少;反之,在单周内东风位相年降水偏多,西风位相年降水偏少。分析还表明,平流层夏季50hPaQBO纬向风强度自身的演变也存在显著的跃变过程,在太阳活动11年周期单周内东风平均强度较双周显著增强。  相似文献   

11.
Summary An attempt has been made in this paper to examine different modes of oscillation in the wind field during different seasons over Thiruvananthapuram (lat. 8.29° N, long. 76.59° E, located at the extreme southwest coast of India) based on daily upper air observations for the period from January 1997 to December 1999. A power spectral analysis is carried out with the upper air data of the station. The study shows that one and half cycle of Quasi–Biennial Oscillation (QBO) and the power spectra of the meridional wind component exhibit peaks between the period of four days and seven days (corresponding frequency range between 0.25 day−1 and 0.15 day−1) during all seasons. The seasonal variation of these large-scale oscillations over the station depends upon the background mean zonal flow, which in turn closely related to the QBO structure. The time sequence of power spectra shows that the disturbances with periods between four days and seven days dominantly prevail in the upper troposphere and lower stratosphere throughout the year. The regimes of high power spectral intensity in this period range are maintained in the levels where the mean zonal flow (westerly or easterly) weakens and changes with height. The study establishes the fact that disturbances (mixed Rossby-gravity waves) acquire maximum power in the winter season whereas the south-west monsoon exhibits minimum spectral intensity when spreading of energy over a frequency range takes place.  相似文献   

12.
使用NCEP/NCAR再分析资料、中国气象局台站降水资料和GPCC降水资料,系统研究了在冬季平流层准两年振荡(Quasi-Biennial Oscillation, QBO)调制下,厄尔尼诺-南方涛动(El Ni?o-Southern Oscillation, ENSO)不同阶段与中国夏季降水的可能联系。根据两者的位相和强度,可将它们的配置分为QBO西风/El Ni?o、QBO西风/La Ni?a、QBO东风/El Ni?o、QBO东风/La Ni?a。研究结果表明,在年际时间尺度上,ENSO和QBO无显著相关关系。冬季QBO西风位相时,El Ni?o发展年夏季,我国整体偏旱,而华南偏涝;衰减年夏季,华南、华东北部偏旱,东北、长江流域偏涝。La Ni?a发展年夏季,我国东部降水异常呈负-正-负的三极分布;衰减年夏季,东南沿海偏涝。冬季QBO东风位相时,El Ni?o发展年夏季,长江以北偏旱;衰减年夏季,我国东部降水异常呈负-正-负的三极分布。La Ni?a发展年夏季,江淮和华南南部偏旱;衰减年夏季,我国东部沿海偏涝。ENSO是影响我国夏季降水异常的重要因子,而QBO的调制作用在ENSO衰减年夏季更为显著。相比冬季QBO东(西)风位相,QBO西(东)风位相时El Ni?o (La Ni?a)期间赤道西太平洋负(正)海温异常更强,衰减年夏季位于西太平洋的异常下沉(上升)运动和印度洋的异常上升(下沉)运动更强更深厚,西太平洋副热带高压范围更大(小),南亚高压更偏东(西)。   相似文献   

13.
Summary  The Mediterranean basin experiences considerable cyclone activity mostly during fall, winter and spring and diminished activity during summer. In this study we present results of synoptic disturbance track analysis for two contrasting winter months and two, near average, summer months over the eastern Mediterranean. The surface and 500 hPa disturbance tracks were subjectively analyzed from two points of view. First, looking at tracks of conventionally defined cyclone centers (eddies) based on actual pressure and height distribution and second, looking at tracks of transient cyclonic disturbances (TRADs), defined as centers of negative deviations from the time mean. The second type of analysis demonstrated a considerable increase in the number of detectable tracks. Over the Mediterranean and vicinity the ratio between the number of surface TRAD tracks to cyclone tracks is, about 2, whereas at 500 hPa the ratio is much higher, about 5. However, the average life span of transient disturbances was only slightly longer than that of conventional cyclones (mainly at 500 hPa). At the surface and at 500 hPa about 50% of the cyclone tracks coincided to a certain extent with TRAD tracks. In summer, when conventional analysis over the eastern Mediterranean yields mostly quasi‐stationary low pressure centers associated with the Persian Gulf Trough, we detected clear signs of transient disturbances. Some interpretations of the differences between cyclones and TRADs in terms of weather in the eastern Mediterranean are also made. Received January 19, 1999Revised June 23, 1999  相似文献   

14.
对流层大气环流的甚低频振荡   总被引:3,自引:0,他引:3  
吴晓红  王绍武 《气象学报》1996,54(4):427-436
对1951—1992共42a500hPa北半球高度场的月平均资料进行了纬圈谐波分析,计算了35°N与55°N超长波振幅及位相,以及35—55°N北半球月平均纬向风距平百分比。对超长波振幅及纬向风距平百分比做了小波转换。结果表明,对流层大气环流变化中存在3种准周期性的甚低频振荡:1.年代际的振荡;2.准2a周期振荡(QBO);3.半年韵律。同时发现对流层QBO和平流层赤道纬向风QBO之间可能没有联系。  相似文献   

15.
Summary The behaviour of the 10.7 cm solar flux, surface air temperature and sea surface pressure are discussed on the basis of the 11-year solar cycle and the Quasi-Biennial Oscillation (QBO) over Greece. In this respect a strong negative correlation was identified between the 11-year solar cycle and the sea surface pressure during the winter west phase years of the QBO, while a similar correlation was found between the sea surface pressure differences estimated between stations located in northern and southern regions of Greece, and the 11-year solar cycle. On the contrary, for the same QBO period, a strong positive correlation was observed between the 11-year cycle and the surface air temperature in Greece in agreement with recently published results. Considering the east phase QBO years, no correlation was identified between the 10.7 cm solar flux and the sea surface pressure and surface air temperature over Greece.With 7 Figures  相似文献   

16.
Seven carboxylic acids in rainwater were simultaneously determined using ion chromatography for 13 months in two different sites, Guiyang and Shangzhong, southwest of China. Results showed formic, acetic and oxalic acids were the three predominant carboxylic acids. Their volume-weighted average concentrations were 14.24, 9.35, 2.79 μmol/L in Guiyang and 4.95, 1.35, 2.31 μmol/L in Shangzhong, respectively. A distinctive diurnal pattern in carboxylic acid concentrations (daytime>nighttime, t test, p < 0.05) was observed during the growing season in Guiyang. Shangzhong witnessed higher concentration of these acids during the growing season than that during the non-growing season. Direct emissions from growing vegetation or soils probably account for the main provenance of the acids in the rural area. However, the opposite trend were found in Guiyang and the anthropogenic sources during the non-growing season were the main reason. By comparison of our result with the previous data about 20 years ago, we calculated that at least 42% of acetic acids and 69% of formic acid originated from the anthropogenic sources in Guiyang. Furthermore, the ratio of formate/acetate in gas phase larger than 1 suggest the oxidation of unsaturated hydrocarbons from the human activity and/or natural sources were the main origin of carboxylic acids in Guiyang. While The F/A ratio in gas phase was less than 1 in Shangzhong which indicate the direct emissions from biogenic sources. Oxalic acid was in similar amounts in both sites, indicating the common source of the acid.  相似文献   

17.
运用小波分析方法和相关分析对东亚季的准两年振荡的存在及其与ENSO变率的关系进行了研究,结果指出:东亚季风具有显著的准两年振荡特征,但周期与振幅具有明显的年代际变化,同时东亚季风的QBO过程与ElNino事件具有密切的联系;  相似文献   

18.
利用1945~2011年美国联合台风预警中心(JTWC)西北太平洋热带气旋资料,研究了南海(5°N~25°N,110°E~120°E)与西北太平洋(5°N~25°N,120°E~180°)热带气旋生成位置、生成频数、强度和持续时间的季节变化差异及其成因。从热带气旋路径穿越经度带频数的角度,探讨了ENSO对气旋活动年际变化的影响。结果表明,南海热带气旋活动显著地受季风调控。在南海冬季风作用下,1~4月热带气旋生成于10°N以南且频数较少、强度较弱,这主要是低层气旋式相对涡度和弱东风切变区偏南造成的。相反,受夏季风影响,6~9月是热带气旋生成最多、最频繁的季节,大都生成于南海北部17°N附近。在5月(10月)的季节转换期,生成位置大幅度北进(南撤)且生成频数显著增加(减少),取决于风速垂直切变及中层的相对湿度的急剧转变。11、12月两海域热带气旋生成于10°N以南主要归因于其上空中层大气相对湿度较北部偏大。在西北太平洋,热带气旋生成的季节变化没有南海显著,只在7月有一次明显的变化,7~10月是热带气旋活动的"盛期"。在强度上,西北太平洋大部分区域全年均为弱东风切变,因此热带气旋以台风为主且持续时间长;但南海多为热带风暴。ENSO事件使得不同季节热带气旋生成区域和气旋路径地理位置发生显著变化。在El Nio事件期间,穿越南海所在经度带路径频数为负距平,而西北太平洋经度带为正距平;在La Nia事件期间,情况相反。  相似文献   

19.
1. Introduction The quasi-biennial oscillation (QBO) of the mean zonal wind in the equatorial stratosphere was discov- ered by Reed et al. (1961) and Veryard and Ebdon (1961). Later, Funk and Garnham (1962) and Ra- manathan (1963) were the first to descri…  相似文献   

20.
东亚温带低气压路径   总被引:4,自引:0,他引:4  
王荣华 《气象学报》1963,33(1):15-24
本文利用1951—1960年的亚洲地面天气图,分月統計东亚地区(70°E以东,55°N以南)每2.5°×2.5°經緯格內低压中心通过的頻数,繪制了頻数分布图,确定出低压移动的主要路径,此外,还繪制了冬半年和夏半年低压发生(初現)頻数分布图、頻数百分率的随緯度分布和沿120°E与110°E經线上低压中心通过頻数的各月綜合图。結果得出:1.东亚大陆中緯度西风带的低压主要出現在蒙古人民共和国中部到我国的东北地区,20°N以南不出現溫带低气压;2.45°N以南的我国大陆上低压很弱,大多数不閉合,只有在我国东部或入海后才发展;3.日本东南面海上是低压路径的集中带;4.春季低压出現最为頻繁,秋季次之,夏季我国江淮流域低压有所增多。 最后,对低压路径进行了分类,把东亚的溫带低气压划为五大类和十一亚类,并对各类低压分别作了簡要的叙述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号