首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A Five dimensional spherically symmetric space-time model in Rosen's (1973) bimetric theory of gravitation is considered. It is shown that, in this theory, the geometry of the five dimensional space-time does not admit perfect fluid source. Hence a vacuum model is presented and studied. It is observed that in the case of stiff fluid we again get the vacuum model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The Brans-Dicke field equations for a viscous distribution representing slowly rotating fluid spheres are investigated. Exact solutions are obtained for differential rotation by imposing physical restrictions on the matter rotation (r,t). The physical properties are discussed fork=±1.  相似文献   

4.
In this work, we have considered the flat FRW model of the universe in (n+2)-dimensions filled with the dark matter and the magnetic field. We present the Hubble parameter in terms of the observable parameters Ω m0 and H 0 with the redshift z and the other parameters like B 0, ω, μ 0, δ, n, w m . The natures of magnetic field B, deceleration parameter q and $\operatorname{Om}$ diagnostic have also been analyzed for accelerating expansion of the universe. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the χ 2 test. The best-fit values of the parameters are obtained by 66 %, 90 % and 99 % confidence levels. Now to find the bounds of the parameters (B 0,ω) and to draw the statistical confidence contour, we fixed four parameters μ 0, δ, n, w m . Here the parameter n determines the higher dimensions and we perform comparative study between three cases: 4D (n=2), 5D (n=3) and 6D (n=4) respectively. Next due to joint analysis with BAO observation, we have also obtained the bounds of the parameters (B 0,ω) by fixing other parameters μ 0, δ, n, w m for 4D, 5D and 6D. The best fit of distance modulus for our theoretical model and the Supernova Type Ia Union2 sample are drawn for different dimensions.  相似文献   

5.
This study is emphasized to explore the validity of generalized second law of thermodynamics in the context of non-linear electrodynamics (magnetic effects only) with Brans-Dicke chameleon scalar field as dark energy candidate. For this purpose, we consider FRW universe model with perfect fluid matter contents. We evaluate matter energy density and magnetic field by taking interacting and non-interacting cases of magnetic field and matter as well as the power law ansatz for scalar field. The validity of this law is discussed by using the first law of thermodynamics for four different horizons: Hubble, apparent, particle and event horizons. We conclude that this law may hold for all four horizons with small positive red-shift when chameleon mechanism is taken into account in Brans-Dicke gravity. Finally, we investigate the statefinders in order to check the viability of the model.  相似文献   

6.
We consider inhomogeneous viscous fluids in flat Friedmann-Robertson-Walker universe. We analyze different kinds of such fluids and investigate the possibility to reproduce the current cosmic acceleration providing a different future evolution with respect to the Cosmological Constant case. In particular, we study the presence of finite-future time singularities. We also discuss a general class of “integrable” viscous fluid models whose bulk viscosities obey to a common differential equation.  相似文献   

7.
The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) has been utilized to solve the field equations. The Berman’s law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe has been discussed in detail.  相似文献   

8.
In this paper, we have investigated a five dimensional Kaluza-Klein space-time in the frame work of Brans-Dicke (Phys. Rev. 124:925, 1961) scalar-tensor theory of gravitation when the source of energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. We have obtained a determinate solution of the field equations using the special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento B 74:182, 1983) We have also used a barotropic equation of state for the pressure and density. Some physical properties of the model are also discussed.  相似文献   

9.
We study the correspondence between the interacting new agegraphic dark energy and the polytropic gas model of dark energy in the non-flat FRW universe. This correspondence allows us to reconstruct the potential and the dynamics for the scalar field of the polytropic model, which describe accelerated expansion of the universe.  相似文献   

10.
11.
Cosmological solutions in the presence of an imperfect fluid and zero-mass scalar field are obtained in higher derivative theory. We investigate both power law and exponential expansion of the universe described by full causal theories proposed by Israel and Stewart. It is observed that energy density, co-efficient of bulk viscosity decrease with time in the presence of massless scalar field and temperature increase with expansion of universe.  相似文献   

12.
We give here the calculation of density perturbations in a gravitation theory with a scalar field non-minimally coupled to gravity, i.e., the Brans-Dicke theory of gravitation. The purpose is to show the influence of this scalar field on the dynamic behaviour of density perturbations along the eras where the equation of state for the matter can be put under the formp=, where is a constant. We analyse the asymptotic behaviour of this perturbations for the cases =0, =–1, =1/3 and =0. In general, we obtain a decaying and growing modes. In the very important case of inflation, =–1, there is no density perturbation, as it is well known. In the vacuum phase the perturbations on the scalar field and the gravitational field present growing modes at the beginning of the expansion and decaying modes at the end of this phase. In the case =0 it is possible, for some negative values of , to have an amplification of the perturbations with a superluminal expansion of the scale factor. We can also obtain strong growing modes for the density contrast for the case where there is a contraction phase which can have physical interest in some primordial era.  相似文献   

13.
We have obtained static and spherically symmetric self-gravitating solution of the field equations for anisotropic distribution of matter in higher- dimensional in the context of Einstein’s general theory of relativity. This work is an extension of the previous work of Hector Rago (Astrophys. Space Sci. 183:333, 1991) for four dimensional space-time. The solutions are matched to the analytical solutions for spherically symmetric self gravitating distribution of anisotropic matter obtained by Hector Rago (1991) for n=2.  相似文献   

14.
In this paper string cosmology has been developed in the presence of Brans-Dicke scalar field coupled to Einstein gravity. Solutions are obtained for both geometric andp-string models and physical situations are discussed.  相似文献   

15.
We explore a 5D Brans-Dicke scalar cosmology by conjecturing that the four-dimensional Hubble parameter varies as H = εφs,ε∈ R and s is some unknown power index and that the extra-dimensions compactify as the visible dimensions expand as b(t) ≈ ax(t) ,x ∈ R-. We mainly discuss the case x =-1. For critical values of ε close to unity,it was observed that the acceleration of the universe occurs at redshift close to z = 0.8 which indicates that in our model,accelerated expansion of the universe began only recen...  相似文献   

16.
17.
In FRW space time Brans-Dicke theory is developed for two cases: (i) the vacuum and (ii) the perfect fluid model. The field equations are transformed into a much simpler form under a change of time co-ordinates and then the solutions are determined for the above cases. An equation of statep =/3 (radiation) is assumed in the case of perfect fluid.  相似文献   

18.
We consider a spatially homogeneous and isotropic flat Robertson-Walker model filled with a scalar (or tachyonic) field minimally coupled to gravity in the framework of higher derivative theory. We discuss the possibility of the emergent universe with normal and phantom scalar fields (or normal and phantom tachynoic fields) in higher derivative theory. We find the exact solution of field equations in normal and phantom scalar fields and observe that the emergent universe is not possible in normal scalar field as the kinetic term is negative. However, the emergent universe exists in phantom scalar field in which the model has no time-like singularity at infinite past. The model evolves into an inflationary stage and finally admits an accelerating phase at late time. The equation of state parameter is found to be less than −1 in early time and tends to −1 in late time of the evolution. The scalar potential increases from zero at infinite past to a flat potential in late time. More precisely, we discuss the particular case for phantom field in detail. We also carry out a similar analysis in case of normal and phantom tachyonic field and observe that only phantom tachyonic field solution represents an emergent universe. We find that the coupling parameter of higher order correction affects the evolution of the emergent universe. The stability of solutions and their physical behaviors are discussed in detail.  相似文献   

19.
We use the generalized Brans-Dicke theory, in which the Pauli metric is identified to be the physical space-time metric, to study the Universe in different epochs. Exact analytical expressions for dilaton field , cosmological radiusR and density parameter are obtained fork=+1,0,–1 Universe in the radiation-dominated epoch. For matter dominated Epoch, exact analytical expressions for Hubble parameterH, cosmological radius, dilaton field, deceleration factorq, density parameter and the gravitational coupling of the ordinary matter are obtained for the flat Universe. Other important results are: (1) the density parameter is always less than unity for the flat Universe because the dilaton field plays a role as an effective dark matter, and (2) the new Brans-Dicke parameter must be larger than 31.75 in order to consistent with the observed data.  相似文献   

20.
Solutions of Brans-Dicke field equations are obtained when the source of the gravitational field is a perfect fluid with pressure equal to energy density and the metric is cylindrically symmetric of Marder-type. Various physical and geometrical properties of the model have been discussed. Finally the solutions have been transformed to the original form of Brans-Dicke (1961) theory and then through unit transformation to a general form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号