首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propagation of ion acoustic waves in plasmas containing electrons, positrons and high relativistic ions is investigated. It is shown that the Korteweg-de Vries (KdV) equation describes the nonlinear waves in this media. The amplitude and energy of the KdV solitary waves are derived and the effects of relativistic ions on these quantities are discussed.  相似文献   

2.
The nonlinear propagation of ion acoustic shock waves (IASWs) are studied in an unmagnetized plasma consisting of nonthermal electrons, nonthermal positrons, and singly charged adiabatically hot positive ions, whose dynamics is governed by the two dimensional nonplanar Kadomstev-Petviashvili-Burgers (KPB) equation. The shock solution of the KPB equations is obtained numerically. The effects of several parameters and ion kinematic viscosities on the properties of ion acoustic shock waves are discussed in planar and nonplanar geometry. It is shown that the ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be deformed as time goes on. Also, it is seen that the strength and the steepness of the IASWs increases with increasing β, the nonthermal parameter.  相似文献   

3.
The head-on collision of two ion acoustic solitary waves propagating in opposite directions in a weakly relativistic electron-positron-ion plasma composed of weakly relativistic warm ion fluid and nonextensive electrons, positrons is investigated. Using extended Poincaré-Lighthill-Kuo method, the Korteweg-de Vries equations and the analytical phase shifts after the head-on collision of two solitary waves are derived. The effects of the nonextensive parameter, positron-to-electron density ratio, ion-to-electron temperature ratio, electron-to-positron temperature ratio and relativistic factor on the phase shifts are studied. It is found that these parameters can significantly influence the phase shifts of solitary waves.  相似文献   

4.
The properties of cylindrical and spherical ion acoustic solitary waves (IASWs) are investigated in a three-component unmagnetized, collisionless plasma consisting of warm ion fluid and superthermally distributed electrons and positrons in a nonplanar cylindrical or spherical geometry. Using the reductive perturbation technique, the nonplanar cylindrical and spherical Korteweg-de Vries (KdV) equations are derived. The effects of spectral index of electron and positron, and other plasma parameters are studied. It is found that both negative as well as positive solitary potential structures are formed in nonplanar geometries. The numerical solution shows that amplitude of the soliton is large in spherical geometry in comparison with cylindrical geometry. Numerical results indicate that the amplitude of the soliton is large in spherical geometry in comparison with cylindrical geometry.  相似文献   

5.
6.
In the new investigation of dust-ion acoustic (DIA) waves with negative dust charges and weakly relativistic ions and electrons in the plasma, compressive and rarefactive DIA solitons of interesting characters are established through the Korteweg-de Vries (KdV) equation. Eventually, the amplitudes of the compressive DIA solitons are found to be constant at some critical temperature ratio α c (electron to ion temperature ratio) identifying some critical dust charge Z dc . It is predicted, that the reception of dust charges by the plasma particles at the variation of temperature starts functioning to the growth of compressive soliton’s constant stage of amplitude after the state of critical α c . The identification of critical dust charge (Z dc ) which is found to be very great for solitons of constant amplitudes becomes feasible for very small dust to ion density ratio (σ). But it can be achieved, we observe, due to the relativistic increase in ion-density as in mass, which is also a salient feature of this investigation.  相似文献   

7.
8.
Interaction of nonplanar ion acoustic solitary waves is an important source of information to study the nature and characteristics of ion acoustic solitary waves (IASWs) structures. The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas comprising with inertial ions, superthermal electrons and positrons is investigated by using the extended version of Poincaré-Lighthill-Kuo (PLK) perturbation method. It has been shown numerically that how the interactions are taking place in cylindrical and spherical geometry. The nonplanar geometry modified analytical phase shifts following the head-on collision are derived. The effects of the superthermal electrons and positrons on the phase shift are studied. It is shown that the properties of the interaction IASWs in different geometry are very different.  相似文献   

9.
A theoretical investigation has been performed on the nonlinear propagation of nonplanar (cylindrical and spherical) Gardner solitons (GSs) associated with the positron-acoustic (PA) waves in a four component plasma system consisting of nonthermal distributed electrons and hot positrons, mobile cold positrons, and immobile positive ions. The well-known reductive perturbation method has been employed to derive the modified Gardner (MG) equation. The basic features (viz. amplitude, polarity, speed, etc.) of nonplanar PA Gardner solitons (GSs) have been examined by the numerical analysis of the MG equation. It has been observed that the properties of the PA GSs in a nonplanar geometry differ from those in a planar geometry. It has been also investigated that the presence of nonthermal (Cairns distributed) electrons and hot positrons significantly modify the amplitude, polarity, speed, and thickness of such PA GSs. The results of our investigation should play an important role in understanding various interstellar space plasma environments as well as laboratory plasmas.  相似文献   

10.
The nonlinear wave structures of ion acoustic waves (IAWs) in an unmagnetized plasma consisting of nonextensive electrons and thermal positrons are studied in bounded nonplanar geometry. Using reductive perturbation technique we have derived cylindrical and spherical Korteweg-de Vries-Burgers’ (KdVB) equations for IAWs. The presence of nonextensive q-distributed electrons is shown to influence the solitary and shock waves. Furthermore, in the existence of ion kinematic viscosity, the shock wave structure appears. Also, the effects of nonextensivity of electrons, ion kinematic viscosities, positron concentration on the properties of ion acoustic shock waves (IASWs) are discussed in nonplanar geometry. It is found that both compressive and rarefactive type solitons or shock waves are obtained depending on the plasma parameter.  相似文献   

11.
Propagation of cylindrical and spherical ion acoustic solitary waves in plasmas consisting of cold ions, superthermal electrons and thermal positrons are investigated. It is shown that cylindrical/spherical Korteweg-de-Vries equation governs the dynamics of ion-acoustic solitons. The effects of nonplanar geometry and also superthermal electrons on the characteristics of solitary wave structures are studied using numerical simulations. Obtained results are compared with the results of the other published papers and errors in the results of some papers are pointed.  相似文献   

12.
The propagation of dust ion acoustic waves is studied in plasmas composed of superthermal distributed electrons and stationary dust particles. The nonlinear Schrödinger equation is derived using the reductive perturbation technique and the modulational instability of dust ion acoustic waves is analyzed. Parametric investigations indicate that the presence of superthermal distributed electrons significantly modify the modulational instability and its growth rate. The effect of particle relative density on the wave characters is also investigated.  相似文献   

13.
The nonlinear ion-acoustic double layers (IADLs) in a warm magnetoplasma with positive-negative ions and nonthermal electrons are investigated. For this purpose, the hydrodynamic equations for the positive-negative ions, nonthermal electron density distribution, and the Poisson equation are used to derive a modified Zakharov–Kuznetsov (MZK) equation, in the small amplitude regime. It is found that compressive and rarefactive IADLs strongly depend on the mass and density ratios of the negative-to-positive ions as well as the nonthermal electron parameter. Also, it is shown that there are one critical value for the density ratio of the negative-to-positive ions (ν), the ratio between unperturbed electron-to-positive ion density (μ), and the nonthermal electron parameter (β), which decide the existence of positive and negative IADLs. The present study is applied to examine the small amplitude nonlinear IADL excitations for the (H+, O2-)(\mathrm{H}^{+}, \mathrm{O}_{2}^{-}) and (H+,H) plasmas, where they are found in the D- and F-regions of the Earth’s ionosphere. This investigation should be helpful in understanding the salient features of the nonlinear IADLs in either space or laboratory plasmas where two distinct groups of ions and non-Boltzmann distributed electrons are present.  相似文献   

14.
Two dimensional ion acoustic shocks in electron-positron-ion (e-p-i) plasma with warm ions, and nonthermal electrons and positrons following the q-nonextensive velocity distribution are studied in the presence of weak transverse perturbations. The kinematic viscosity of warm ions is included for the dissipation in the plasma system. Kadomtsev–Petviashvili–Burgers (KPB) equation is derived by using reductive perturbation method in small amplitude limit and its analytical solution is also presented. The effects of variations of positrons concentration, q-indices of electrons and positrons, ion temperature and kinematic viscosity of ions, on the propagation characteristic of two dimensional shock profile are also discussed.  相似文献   

15.
The high-energy processes which occur in many astrophysical objects have motivated recent studies (e.g., Tsintsadze and Tsikarishvili, 1976; Ferrariet al., 1978; Sweeney and Stewart, 1978) of large amplitude wave propagation in plasmas. Such investigations are also of interest for laboratory experiments where strong laser radiation interacts with a high-density target. In the present paper we shall show that even rather small amplitude waves in the presence of an external magnetic field can induce particle velocities which are comparable to the velocity of light. In this ultrarelativistic limit we shall demonstrate that two completely new types of circularly polarized waves appear and that under certain conditions, modulational instabilities occur. Finally we look at the possibility to relate the amplitudes and wavelengths of such waves to pulsar data.  相似文献   

16.
A weakly nonlinear analysis is carried out to derive a Korteweg–de Vries-Burgers-like equation for small, but finite amplitude, ion-acoustic waves in a dissipative plasma consisting of weakly relativistic ions, thermal positrons and nonextensive electrons. The travelling wave solution has been acquired by employing the tangent hyperbolic method. Our results show that in a such plasma, ion-acoustic shock waves, the strength and steepness of which are significantly modified by relativistic, nonextensive and dissipative effects, may exist. Interestingly, we found that because of ion kinematic viscosity, an initial solitonic profile develops into a shock wave. This later evolves towards a monotonic profile (dissipation-dominant case) as the electrons deviate from their Maxwellian equilibrium. Our investigation may help to understand the dissipative structures that may occur in high-energy astrophysical plasmas.  相似文献   

17.
Existence of both subsonic and supersonic compressive solitons of interesting characters is established in this magnetized plasma model with non relativistic ions and relativistic electrons. The small supersonic range for the generation of compressive solitons is shown to confine near the vicinity of the direction of the magnetic field. It is predicted that the relativistic variation of electron’s mass is responsible for the expansion of Sagdeev potential to result increase in soliton’s amplitude and decrease in its width.  相似文献   

18.
This article presents the first study of the head-on collision of two ion-acoustic solitary waves (IASWs) in magnetized plasmas with nonextensive electrons and positrons using the extended Poincaré-Lighthill-Kuo (PLK) method. The effects of the ion gyro-frequency to ion plasma frequency ratio, the positron to ion number density ratio, the electrons temperature to positrons temperature ratio, and the nonextensive parameter q on the phase shifts are investigated. It is shown that these factors significantly modify the phase shifts.  相似文献   

19.
The nonlinear amplitude modulation of dust-ion acoustic wave (DIAW) is studied in the presence of nonextensive distributed electrons in dusty plasmas with stationary dust particles. Using the reductive perturbation method (RPM), the nonlinear Schrödinger equation (NLSE) which governs the modulational instability (MI) of the DIAWs is obtained. Modulational instability regions and the growth rate of nonlinear waves are discussed. It is shown that the wave characters are affected by the value of nonextensive parameter and also relative density of plasma constituents.  相似文献   

20.
Propagation regimes of large-amplitude dust-ion acoustic solitary wave in a dusty plasma with nonthermal electrons are analyzed by employing the Sagdeev potential technique. Two domains of the Mach numbers are defined depending on the nonthermal and plasma parameters. The two types of soliton solution are found to be exited corresponding to certain values of the nonthermal parameter. Numerical solutions are presented that illustrate the dependence of soliton characteristics on practically interesting plasma and nonthermal parameters. The findings of this investigation could be useful in understanding the detected solitary waves in space plasma in the presence of nonthermal electrons such as electrostatic solitary structures observed in Saturn’s E-ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号