首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
An expression for the vertical velocity of the neutral atmosphere in the F-region is derived for Joule heating by the electric field that drives the auroral electrojet. When only vertical expansion is allowed, it is found that the vertical wind must always increase monotonically with altitude. The heating rate is proportional to the F-region ion density, so that appreciable heating, even during high electric fields, requires some production mechanism of ionization such as auroral secondary ionization or solar photoionization, in the lower F-region. Once started at night, when an ionizing source is present in the lower F-region, the expansion of the atmosphere transports ionization upward, thereby increasing the heating rate, and hence the expansion rate, i.e. positive feedback. Electric field strengths and F-region ion densities of 50 mV/m and 2 × 1011e/m3, respectively, will produce vertal neutral wind speeds of several tens of m/sec in the 300–500 km altitude range. During periods of high magnetic activity, i.e. high electric field, Joule heating can produce large increases in the relative N2 concentration in the upper F-region; computations made with a simple model suggest that tenfold increases can occur at 400 km altitude 12?1 hr after the onset of magnetic activity, a result in agreement with satellite observations. When the Joule heating theory is applied to incoherent scatter data taken during one period of high heating, the horizontal electric field in the F-region is found to decrease markedly, possibly approaching zero as the field penetrates a weak, discrete auroral arc; the decrease began 10–20 km from the arc.  相似文献   

2.
An intense, localized auroral disturbance observed by Intercosmos-Bulgaria-1300 satellite in the morning sector at the altitude 850 km is analyzed in detail. The disturbance is characterized by strong “jumps” of electric and magnetic fields reaching ~ 80 mV/m and ~ 100 nT, fluctuations of ion density (Δn/n ~ 70%) and bursts of downward and upward energetic electron fluxes. Electric and magnetic disturbances display a distinct spatial-temporal relationship typical for the standing quasi-monochromatic wave (? ~ 1 Hz, λx ~ 10 km). The ratio of amplitudes of electric and magnetic fluctuations is equal to Alfvén velocity (ΔE/ΔBvA/c). However, a strong parallel component of the electric field (~ 30 mV/m) and large ion density fluctuations indicate significant changes of plasma properties (the effects of anomalous resistivity are possible).  相似文献   

3.
The motion of auroral forms on the day- and nightside of the Earth has been studied during different substorm phases by means of all-sky camera films. A substorm is characterized by a shift of the luminescence region towards the equator at noon and mainly towards the pole at midnight. However, individual forms drift predominantly toward the pole on the dayside and towards the equator on the nightside. The velocity of the poleward motion at noon is largest during the expansive phase of a substorm and amounts on the average to 330 msec but even during relatively quiet magnetic conditions a poleward motion is observed.  相似文献   

4.
The horizontal electric field has been measured with balloons over the Pacific Ocean near the Sanriku Coast in Japan. By comparing the electric-field data obtained during magnetically disturbed periods, 16–17 October 1973, 6–7 October 1975 and 3–4 October 1977, with IMF Bz, auroral zone AU and AL, equatorial Dst and Δ(Dst)Δt, mid-latitude magnetic fields (H, D, Z at Kakioka), and the ionospheric electron density (?0F2 at Kokubunji), it is found that the observed electric fields of about 9 mVm?1 made the clockwise rotation during the growth and recovery stages of the magnetospheric substorms. Relations between high and middle latitude ionospheres and between the magnetosphere and the ionosphere are discussed in relation to the origin and propagation of these electric fields.  相似文献   

5.
Under magnetically quiet conditions, ionospheric plasma in the midlatitude F-region corotates with the Earth and relative east-west drifts are small compared to the corotation velocity. During magnetic storms, however, the enhanced dawn-to-dusk magnetospheric convection electric field often penetrates into the midlatitude region, where it maps into the ionosphere as a poleward electric field in the 18:00 LT sector, producing a strong westward plasma drift. To evaluate the ionospheric response to this east-west drift, the time-dependent O+ continuity equation is solved numerically, including the effects of production by photoionization, loss by charge exchange and transport by diffusion, neutral wind and E × B drift. In this investigation only the neutral wind's meridional component and east-west E × B drift are included. It is found that an enhanced equatorward wind coupled with westward drift produces an enhancement in the peak electron density (NMAX(F2)) and in the electron content (up to 1000 km) in the afternoon sector and a subsequent greater-than-normal decay in ionization after 18:00 LT. These results agree in general with midlatitude F-region ionospheric storm observations of NMAX(F2) and electron content which show an afternoon enhancement over quiet-time values followed by an abrupt transition to lower-than-normal values. Westward drift appears to be a sufficient mechanism in bringing about this sharp transition.  相似文献   

6.
《Planetary and Space Science》1987,35(8):1009-1020
Latitudinal structures of discrete arcs are modelled as a consequence of the quasi-steady magnetosphere-ionosphere coupling involving viscous interaction between sunward and anti-sunward plasma flows in the magnetosphere. The quasi-steady state in the magnetosphere and ionosphere coupling is described by the magnetospheric and ionospheric current conservation and the field-aligned currentpotential relation assuming adiabatic electron motion along field lines. The upward and downward fieldaligned currents are assumed to be stably maintained by vorticity-induced space charges in the region of plasma flow reversal, where divergence of the magnetospheric electric field E is negative and positive, respectively. By introducing the effective conductance Σdc arising from the anomalous viscosity, a specific relation between the dc field-aligned current density J and the magnetospheric electric field E is derived as J=−ΣdcdivE. Sufficiently large potential drops to accelerate auroral electrons are shown to exist along the auroral field lines originating from the flow reversal region with div E < 0. It is shown that the latitudinal structure of a discrete arc is primarily determined by the magnetospheric potential structure and the characteristic width is on the order of 10 km at the ionospheric altitude.  相似文献   

7.
Ten years data set is used to separate the influence of IMF Bz-component and solar wind speed on the dawn-dusk component of magnetic variations in the summer polar cap. The reference level was chosen from most quiet periods of winter solstices (small polar cap and auroral zone conductivity) to exclude the inner source component. The linear regression analysis was then used to calculate the PC variation response to Bz under different ranges of solar wind speed. As a result, taking into account the value of polar cap conductivity and effects of induced currents, the response of dawn-dusk electric field component to Bz and V was obtained and the potential difference across the polar cap was estimated to be Δ?(kV) ≈ 6(V300)2 ? 9Bz(γ) for Bz ? + 1γ. The results give a proof for simultaneous operation in the magnetosphere of two electric field generation mechanisms, related to the boundary layer processes and magnetic field reconnection. The above-mentioned functional form was shown to correlate effectively with AE index (R = 0.73).  相似文献   

8.
On 27 January 1979, three rocket payloads were launched from Kiruna, Sweden into different phases of two successive auroral substorrns. Among other experiments, the payloads carried the RIT double probe electric field experiments providing electric field, electron density and temperature data which are presented here. These data supported by rocket particle observations are discussed mainly in association with ground-based observations (magnetometer, TV) and very briefly with GEOS electric field data. The motions of the auroral forms as obtained from auroral pictures are compared with E × B/B2 drifts and the currents calculated from the rocket electric field and density measurements with the equivalent current system deduced from ground-based magnetometer data (Scandinavian Magnetometer Array).  相似文献   

9.
It is assumed that the original impulse producing Pi-2 pulsations is generated in the ionosphere at the moment of a brightening of aurora. The electric field is known to decrease in the auroral arc almost by an order of magnitude. The electric impulse that appears will be transferred along magnetic field lines and reflected from the ionosphere of the opposite hemisphere, forming the standing Alfvén wave. The electric field impulse of 100 mVm is capable of causing magnetic field oscillations of order of 100 γ. Reflection of the Alfvén impulse from the ionosphere with horizontal inhomogeneities corresponding to different forms of auroras is studied. The following is found: (a) the resonance is possible only for harmonics with the rotating vector of polarization; (b) the resonance periods appear to depend essentially on the ionospheric conductivity; this may bring a significant error into determination of the magnetospheric plasma density from the pulsation periods; (c) the auroral zone exerts a screening influence on the pulsations excited at latitudes higher than the zone itself.  相似文献   

10.
The polar orbiting magnetically stabilized satellite AZUR measured transverse magnetic variations in auroral and polar latitudes by means of a two component flux-gate magnetometer. Simultaneous measurements of λ2972 A? and λ3914 A? auroral emissions are related to low-energy zero-pitch-angle electron fluxes, which cause the transverse magnetic disturbances. Power spectra of the magnetic field variations are consistent with those of geomagnetic micropulsations.The sources of the field-aligned currents can be located in the Alfvén layer and in the magnetotail.  相似文献   

11.
12.
The development of an auroral absorption substorm has been studied using riometer measurements in the northern hemisphere. In the events studied, the onset is preceded by an absorption bay which begins to develop 1?112h before the onset. The bay may occur between L-values 3–19 and can cover as much as 150° of geomagnetic longitude, generally in the same longitudinal sector where the substorm breaks up and to the west of it. Whereas the substorm breaks up at or near the midnight meridian, the preceding bay may, in some geophysical conditions, appear in the afternoon sector. The preceding bay moves southward with a velocity between 60 and 600 ms?1, intensifying during the movement. This equatorward movement is consistent with an E × B drift in a cross-magnetotail electric field of between 0.5 and 1 mV m?1. The absorption at the onset exceeds that in the bay, and in the sector of break up the absorption shows a minimum just before the onset; to the west-of the break up the preceding bay continues its southward movement. In 14 cases studied, the sharp onset moved to the west with a velocity of 1–31 km s?1, median 6 km s?1. The onset was seen at higher L-values to the west than in the break-up sector. This applied also to the preceding bay. Whereas most onsets showed westward movement, in only about half of the cases studied was there movement towards the east. The injection area affected during the first minute of the onset was typically 1–2 L-value units, but as much as 30° of geomagnetic longitude. The onset later spread to cover 1–10 L-value units, and up to 130° of longitude. The contouring method used in the analysis of the data from the riometer is described in the Appendix.  相似文献   

13.
The magnetic perturbation patterns in the polar cap and auroral zone regions are obtained for extremely quiet days using two different techniques. It is shown that the form of the equivalent current flow pattern is extremely sensitive to the level of quietness, and that even so-called quiet days are at times disturbed by substorm activity. Certain characteristic equivalent flow not typically observed during substorms is noted in the polar cap, and this flow appears to be associated with effects associated with polar cap perturbations discussed by Svalgaard (1973). As well a region of equatorward flow appears at high latitudes near the dawn meridian, which appears to be Hall current driven by an eastward electric field. The dayside sub-auroral zone is dominated by the Sq-current system, while the nightside shows no significant current flow in the absence of substorm activity.  相似文献   

14.
From an analysis of the local time distribution of the electron upper energy limit reached by the geostationary satellite GEOS-2 in cutting through the innermost part of the electron plasma sheet during fairly quiet conditions the following results have been obtained, among others. An electric field model given by E = ?▽{AR4sin(φ+π4)}, with the dusk singular point of the forbidden region boundary at 1500, instead of at 1800 M.L.T., is in quite good agreement with the observations. This means that effects due to the shielding by the hot plasma of the inner magnetosphere from the convection electric field are quite strong in situations of low disturbance level. The quiet-time convection electric field strength at 2100 M.L.T. in the geostationary orbit obtained from this analysis varies in the range 0.15–0.3 kV/Re. Six hours earlier or later in the satellite orbit the convection field is four times stronger. Also when the convection field varies, some information about its magnitude can be obtained from the keV electron measurements.  相似文献   

15.
An attempt has been made to estimate the east-west component (Ew) of the magnetospheric equatorial electric field near L = 1.12 during a magnetic storm period from the whistlers observed at our low latitude ground station, Nainital (geomag.lat. 19°1'N), on March 25, 1971 in the 0130–0500 IST sector. The method of measuring Ew from the observed cross L-motions of whistler ducts within the plasmasphere, indicated by changes in nose frequency of whistlers, has been outlined. The nose frequencies of non-nose whistlers under consideration have been deduced from Dowden-Allcock linear Q-technique. The variation of (?n)23 with local time has been shown, the slope of which can be directly related to the convection electric field. The estimated equatorial electric field at L? 1.12 is in the range 0.1–0.5 mV m?1 (in the 0130–0500 IST sector) during a storm period, which is in agreement with the results reported by earlier workers. The departure from a dipole field and the contribution of an induced electric field from the temporal changes have been discussed. The importance of an electric field study has been indicated.  相似文献   

16.
During a long series of recordings of the Doppler shift of signals from NLK, Seattle, which have propagated in ducts in the whistler mode, a number of occasions have been noted where the duct has been acted on by the electric field of micropulsation events in the Pc4–5 range. Large oscillations are produced in the Doppler shift of the received VLF signal.It is shown that the field line has an antinode of motion in the equatorial plane, and that the Doppler shift is responding almost entirely to the radial component of the duct motion. The latter enables a comparison to be made between the magnetic disturbance in the magnetosphere and that seen on the ground. Some support is given to the prediction of Hughes (1974) and Inoue (1973) that the magnetospheric disturbance vector when seen on the ground is rotated 90° by the currents induced in the ionosphere. Models of the oscillating field line enable an estimate to be made of the azimuthal component of the electric field in the equatorial plane. This is typically 1 mVm. The model also predicts the north-south magnetic field strength of the transverse standing wave at the base of the magnetosphere, and this value may be compared with that seen on the ground. Values of the order 1–2 times the ground H-component or 5–10 times the ground D-component were found.  相似文献   

17.
For nighttime auroras, we find that positive ion ratios are only a function of the neutral atmospheric composition and of the pertinent ionic processes if the ions are depleted mainly by ion-molecule reactions. Ionic ratios calculated for [N+][N2+] using the 1976 U.S. Standard Atmosphere and laboratory rate coefficients (with one exception) rise smoothly with altitude: 0.1 (120 km), 0.3 (140 km), 0.6 (160 km), 1.0 (180 km) and 1.5 (200 km). These values compare favorably with experimental ratios from three different auroral experiments. The exception refers to our use of a larger rate coefficient for N2+ + O → NO+ + N than found in the laboratory. We also determine an [N2+][O+] ratio with altitude: 0.36 (120 km), 0.078 (140 km), 0.030 (160 km), 0.014 (180 km) and 0.0075 (200 km). These values compare favorably with results from the same three auroral experiments. However, the match with a fourth auroral experiment is poor. Except for this last case, we conclude that the neutral composition at auroral latitudes in late winter is similar to the U.S. Standard for the altitudes examined.  相似文献   

18.
Wind velocities at 140–200 km altitude were observed by a Low-G Accelerometer Calibration System (LOGACS) flown on an Agena satellite during a geomagnetic storm. An interesting wind reversal observed by the satellite at auroral latitudes is satisfactorily explained by the neutral air motion caused by the E × B drift deduced from the ground-based geomagnetic data recorded at stations near the meridian of the satellite orbit.  相似文献   

19.
On moderately disturbed days when substorms occur frequently, the quiet day daily variation in the polar region (Sqp) is enhanced. On such days, however, the quiet day variation along the dip equator appears to be suppressed, as well as being superposed with ‘fluctuations’.It is suggested that the enhancement of Sqp is related to a partial suppression of the equatorial electrojet. The asymmetric ring current also causes an apparent suppression of the electrojet.On the other hand, the substorm-associated electric field which drives the eastward current in the auroral and subauroral zone (causing positive bays) in the afternoon sector appears to enhance the equatorial electrojet.Thus, magnetic variations along the dip equator are influenced by a number of processes in the magnetosphere.  相似文献   

20.
When observed noontime values of the maximum electron density, NMAX(F2), in the ionospheric F2 region are plotted as a function of magnetic latitude, a curve is produced which has two peaks, one on either side of the dip equator at ±16° dip latitude. This paper theoretically investigates the daily variation of this latitudinal distribution in NMAX(F2) (the so-called Appleton or equatorial anomaly) and specifically attempts to account for the longitudinal differences observed between the American and Asian sectors.In Part II, models of the neutral atmosphere, production, loss and diffusion rates, neutral wind, and electric field are described and the electron densities obtained by solving the continuity equation utilizing these models are presented. In each sector, the extent to which the equatorial anomaly's daily variation is affected by changes in the geomagnetic field configuration, neutral wind, and E × B drift is examined. It is found that development of the anomaly is most sensitive to the electric field model assumed, and that the observed differences at the magnetic equator between the American and Asian sectors could be accounted for by an upward E × B drift which commences an hour or two earlier in the Asian sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号