首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are given of the calculations of the group delay time propagating τ(ω, φ0) of hydromagnetic whistlers, using outer ionospheric models closely resembling actual conditions. The τ(ω, φ0) dependencies were compared with the experimental data of τexp(ω, φ0) obtained from sonagrams. The sonagrams were recorded in the frequency range ? ? (0.5?2.5) Hz at observation points located at geomagnetic latitudes φ0 = (53?66)° and in the vicinity of the geomagnetic poles. This investigation has led us to new and important conclusions.The wave packets (W.P.) forming hydromagnetic whistlers (H.W.) are mainly generated in the plasma regions at L = 3.5?4.0. This is not consistent with ideas already expressed in the literature that their generation region is L ? 3?10. The overwhelming majority of the τexp values differ considerably from the times at which wave packets would, in theory, propagate along the magnetic field lines corresponding to those of the geomagnetic latitudes φ0 of the observation points. The second important fact is that the W.P. frequency ω is less than ΩH everywhere along its propagation trajectory, including the apogee of the magnetic force line (ΩH is the proton gyrofrequency). Proton flux spectra E ? (30?120) keV, responsible for H.W. generation, were determined. Comparison of the Explorer-45 and OGO-3 measurements published in the literature, with our data, showed that the proton flux density energy responsible for the H.W. excitation Np(MV622) ? (5 × 10?3?10?1) Ha2 where Ha is the magnetic field force in the generation region of these W.P. The electron concentration is Na ? (102?103) cm?3. The values given in the literature are Na ? (10?10?103) cm?3. The e data considered also leads to the conclusion that the generating mechanism of the W.P. studied probably always co-exists with the mechanism of their amplification.  相似文献   

2.
G. Leonard Tyler 《Icarus》1979,37(1):29-45
Quasi-specular radar data used to determine apparent surface roughness σχ of geologic surfaces displays a variable wavelength λ dependence ranging between σχ ~ λ0and σχ ~ λ?13 for 0.01 ? λ ? 1 m. The strongest changes in σχ with wavelength are observed in lunar mare, while scatter from lunar highlands is nearly wavelength independent. Commonly used, gently undulating surface models for electromagnetic scatter predict no wavelength dependence. Wavelength dependence occurs whenever a significant fraction of the surface has local radii of curvature comparable to the observing wavelength. This condition can be determined by comparison of the value of the integrated surface curvature spectrum with the radar wavenumber, multiplied by a constant that depends on the geometry. Variations in curvature statistics calculated from photogrammetric reduction of lunar images are consistent with the observed variations in quasi-specular scatter between λ = 13 and 116 cm at the same locations. Variations in the strength of the wavelength dependence are correlated with the sizes of lunar craters that lie near the upper size limit for the local steady-state distribution. This correlation is also consistent with variations in the curvature spectrum calculated from crater size-frequency distributions.  相似文献   

3.
A recent determination by D. R. Bates of the Rayleigh scattering cross section (σRS) for air from 0.2 to 1 μm leads to a simple empirical formula (λ in μm) σRS = 4.02 × 10?28λ4+xcm2 where x = 0.389λ + 0.09426λ ? 0.3228 for the spectral region 0.2 μm < λ < 0.55 μm ; the accuracy is within ±0.5%. From the visible at 0.55 μm to the infrared (i.r.) at 1 μm, the same accuracy can be obtained using a constant value, x = 0.04. The formula accounts for the degree of depolarization which varies with the wavelength according to the latest determination by Bates.  相似文献   

4.
A theory is presented for charged-particle collection by a cylindrical conducting object, such as a spacecraft or an electrostatic probe, which is moving transversely through a collisionless plasma, such as those in the upper atmosphere and space. The calculation is approximate, using symmetric potential profiles which are exact for the infinite-cylinder stationary case. Theoretical current predictions are presented for ratios of collector potential to electron thermal energy c/kTe from 0 to ?25, for ion-to-electron temperature ratios Ti/Tc = 1 and 0.5, ratio of collector radius to electron Debye length rc/λD from 0 to 100, and ratio of flow speed to ion thermal speed Si = U/(2kTi/mi12) from 0 to 10. Comparisons with existing exact calculations by other authors show that none of these fulfil all of the requirements for nontrivial comparison. Appropriate parameter ranges for future exact calculations are thereby suggested. These are as follows: (a) rc/λD should be large enough that the collector not be in or near orbit-limited conditions; (b) the ratio Si2/¦χc, i¦ of ion directed energy to potential energy change in the sheath, should be close to unity or if
Si2/¦χc,i¦? 1, then Si ? 1
.  相似文献   

5.
Six times of maxima of the ultrashort-period cepheid variable EH Librae were measured in 1980 May to June and in 1981 January, with a three-channel photocounting high-speed photoelectric photometer. These, together with all the photoelectric times of maxima over the past 30 years, are used to re-examine the nature of the change of the period. We found that we can fix the times of maxima by the following formula
Tmax = T0+P0E+12βE2+AsinEP0E0
where T0 = HJD 2433438.6088 and P0 = 0.0884132445 d represent the initial maximum epoch and the pulsation period, β = ?2.8 × 10?8/yr; A = 0.0015 d, P0 = 6251 d = 17.1 yr are the semi-amplitude and the period of the sine curve, and E is the number of periods elapsed since T0, and (E0 = 70700).If we interpret this 17.1 year periodicity as a modulation of the phase of maximum by binary motion, then the semi-amplitude of the orbital radial velocity variation is K = 2πasini/E0 = 0.45 km/s and the mass function is
f(m)=m32sin3i(m1m2)2=(asini)3E20=6 x 10?5M
  相似文献   

6.
Editorial     
The Galilean satellites Io, Europa, and Ganymede interact through several stable orbital resonances where λ1 ? 2λ2 + ω1 = 0, λ1 ? 2λ2 + ω2 = 180°, λ2 ? 2λ3 + ω2 = 0 and λ1 ? 3λ2 + 2λ3 = 180°, with λi being the mean longitude of the ith satellite and ωi the longitude of the pericenter. The last relation involving all three bodies is known as the Laplace relation. A theory of origin and subsequent evolution of these resonances outlined earlier (C. F. Yoder, 1979b, Nature279, 747–770) is described in detail. From an initially quasi-random distribution of the orbits the resonances are assembled through differential tidal expansion of the orbits. Io is driven out most rapidly and the first two resonance variables above are captured into libration about 0 and 180° respectively with unit probability. The orbits of Io and Europa expand together maintaining the 2:1 orbital commensurability and Europa's mean angular velocity approaches a value which is twice that of Ganymede. The third resonance variable and simultaneously the Laplace angle are captured into libration with probability ~0.9. The tidal dissipation in Io is vital for the rapid damping of the libration amplitudes and for the establishment of a quasi-stationary orbital configuration. Here the eccentricity of Io's orbit is determined by a balance between the effects of tidal dissipation in Io and that in Jupiter, and its measured value leads to the relation k1?1/Q1 ≈ 900kJ/QJ with the k's being Love numbers, the Q's dissipation factors, and f a factor to account for a molten core in Io. This relation and an upper bound on Q1 deduced from Io's observed thermal activity establishes the bounds 6 × 104 < QJ < 2 × 106, where the lower bound follows from the limited expansion of the satellite orbits. The damping time for the Laplace libration and therefore a minimum lifetime of the resonance is 1600 QJ years. Passage of the system through nearby three-body resonances excites free eccentricities. The remnant free eccentricity of Europa leads to the relation Q2/?2 ? 2 × 10?4 QJ for rigidity μ2 = 5 × 1011 dynes/cm2. Probable capture into any of several stable 3:1 two-body resonances implies that the ratio of the orbital mean motions of any adjacent pair of satellites was never this large.A generalized Hamiltonian theory of the resonances in which third-order terms in eccentricity are retained is developed to evaluate the hypothesis that the resonances were of primordial origin. The Laplace relation is unstable for values of Io's eccentricity e1 > 0.012 showing that the theory which retains only the linear terms in e1 is not valid for values of e1 larger than about twice the current value. Processes by which the resonances can be established at the time of satellite formation are undefined, but even if primordial formation is conjectured, the bounds established above for QJ cannot be relaxed. Electromagnetic torques on Io are also not sufficient to relax the bounds on QJ. Some ideas on processes for the dissipation of ideal energy in Jupiter yield values of QJ within the dynamical bounds, but no theory has produced a QJ small enough to be compatible with the measurements of heat flow from Io given the above relation between Q1 and QJ. Tentative observational bounds on the secular acceleration of Io's mean motion are also shown not to be consistent with such low values of QJ. Io's heat flow may therefore be episodic. QJ may actually be determined from improved analysis of 300 years of eclipse data.  相似文献   

7.
S.V. Gavrilov  V.N. Zharkov 《Icarus》1977,32(4):443-449
We calculate the Love numbers kn for n = 2 to 10, and determine the “gravitational noise” from tides. The new values k2 for Jupiter, Saturn, and Uranus yield new estimates for the planetary dissipation functions: QJ ? 2.5 × 104, QS ? 1.4 × 104, QU ? 5 × 103.  相似文献   

8.
The potential ? of the electric field at high latitudes has been obtained by solving numerically the second order differential equation in spherical coordinates:
?12(rσH?θ)θ+1rH?λ)λ+1rP?λ)θ?(σP?θ)λ=1r(rψθ)θ+1r2ψλλ
, where θ is colatitude, λ is longitude, σH and σP are the height-integrated Hall and Perdersen ionospheric conductivities, r = sinθ, and ψ is the current function. The boundary condition is ? = 0 on the geomagnetic parallel θ = 34°. Values of ψ are determined from geomagnetic field variations at the Earth's surface from geomagnetic field variations at the Earth's surface for various conditions in interplanetary space. σP and σH are taken to vary with season, local time, tilt of the geomagnetic dipole axis (UT), and intensity of corpuscular precipitation (the model proposed by Wallis and Budzinski, 1981). The model distributions of ?M and EM = -▽?m so obtained are compared with observational results. The feasibility has been demonstrated of interpreting the statistical results and individual measurement data in terms of a unified dynamic model of ionospheric electric fields. The model makes allowance for the changes of electromagnetic “weather” in interplanetary space.  相似文献   

9.
Previous studies based on radio scintillation measurements of the atmosphere of Venus have identified two regions of small-scale temperature fluctuations located in the vicinity of 45 and 60 km. A global study of the fluctuations near 60 km, which are consistent with wind-shear-generated turbulence, was conducted using the Pioneer Venus measurements. The structure constants of refractive index fluctuations cn2 and temperature fluctuations cT2 increase poleward, peak near 70° latitude, and decrease over the pole; cn2 varies from 2 × 10?15 to 1.5 × 10?14m23 and cT2 from 4 × 10?3 to 7 × 10?2°K2m?23. These results indicate greater turbulent activity at the higher latitudes. In the region near 45 km the refractive index fluctuations and the corresponding temperature fluctuations are substantially lower. Based on the analysis of one representative occultation measurement, cn2 = 2 × 10?16m?23and cT2 = 7.3 × 10?4°K2m?23 in the 45-km region. The fluctuations in this region also appear to be consistent with wind-shear-generated turbulence. The turbulence level is considerably weaker than that at 60 km; the energy dissipation rate ε is 4.9 × 10?5m2sec?3 and the small-scale eddy diffusion coefficient K is 2 × 103 cm2 sec?1.  相似文献   

10.
A ring current model has been obtained which permits calculations ofDst variations on the Earth's surface during magnetic storms. The changes in Dst are described by the equation
ddtDsto = F(EM)?Dstotau;
where Dsto = Dst-bp12+~tc; p = mnv2 is solar wind pressure; F(EM) is the function, controlled by the electromagnetic parameters of interplanetary medium, of injection into ring current ; τ is the constant of ring current decay. C = Cuτ?=18 nT, where C is the level of the Dst-variation field measurements; ? is the injection function characterizing the quasisteady-state injection of energy into the ring-current region. The constant Ç is determined from the condition that the change of the ring current energy from magnetic storm commencement to end should equal the difference between the injected and dissipated energy throughout the storm. The values of the factors b and τ were found by the method of minimizing the sum of the quadratic deviations of the calculated Dst from the values observed throughout the storm : b = 0.23 nT/(eV cm?3)12, τ = 8.2 h at Dst? ? 55 nT and τ = 5.8 h at -120 ? Dst ? — 55 nT. The injection function F(EM) is of the form F(EM) = d(Ey? A) at the values of the azimuthal component of the solar wind electric field Ey ? A, and F(EM) =0 at A?Ey.d = ? 1.2 × 10?3 Ts?1 (mV/m)?1 and A = ? 0.9 mV m?1 . Thus, the injection to ring current is possible at the northward Bz component of the IMF.  相似文献   

11.
We have collected data on 241 galaxies from 13 sources and made a statistical analysis after reduction to a uniform system. We found that the Hubble sequence is one of increasing MHMT and MHLB, these mean values increasing monotonically from .0016 and .024 at E to .084 and .83 at Im, but the dispersion is large.The HI content in barred spiral is greater than that in ordinary spirals, and this is consistent with their statistics of angular momentum and colour.The HI content is related to colour; it is greater in bluer systems. The large dispersion suggests that it also depends on some other factors, but these are smoothed out when averaged over each type, resulting in a linear relation between 〈log(MMMT and 〈(B ? VOT)〉. Unlike the colour-colour diagram, the large dispersion on the log (MHLB) ? (B ? V0T) is not related to peculiar galaxies.  相似文献   

12.
13.
New ion cyclotron whistlers which have the asymptotic frequency of one half the local proton gyrofrequency, Gp2, and the minimum (or equatorial) proton gyrofrequency, Gpm, along the geomagnetic field line passing through the satellite have been found in the low-latitude topside ionosphere from the spectrum analysis of ISIS VLF electric field data received at Kashima, Japan. Ion cyclotron whistlers with asymptotic frequency of Gpm or Gpm2 are observed only in the region of Bm >B2 or rarely Bm >B4, where B is the local magnetic field and Bm is the mini magnetic field along the geomagnetic field line passing through the satellite.The particles with one half the proton gyrofrequency may be the deuteron or alpha particle. Theoretical spectrograms of the electron whistlers (R-mode) and the ion cyclotron whistlers (L-mode) propagating along the geomagnetic field lines are computed for the appropriate distributions of the electron density and the ionic composition, and compared with the observed spectrograms.The result shows that the ion cyclotron whistler with the asymptotic frequency of Gp2 is the deuteron whistler, and that the ion cyclotron whistlers with the asymptotic frequency of Gpm or Gpm2 are caused by the trans-equatorial propagation of the proton or deuteron whistler from the other hemisphere.  相似文献   

14.
Daytime Pc 3–4 pulsation activities observed at globally coordinated low-latitude stations [SGC (L = 1.8,λ = 118.0°W), EWA(1.15,158.1°W), ONW(1.3,141.5°E)] are evidently controlled by the cone angle θXB of the IMF observed at ISEE 3. Moreover, the Pc 3–4 frequencies (?) at the low latitudes and high latitude (COL; L = 5.6 and λ = 147.9°W) on the ground and that of compressional waves at geosynchronous orbit (GOES 2; L = 6.67 and λ = 106.7°W) are also correlated with the IMFmagnitude(BIMF).The correlation of ? of the compressional Pc 3–4 waves at GOES 2 against BIMF is higher than those of the Pc 3–4 pulsations at the globally coordinated ground stations, i.e., γ = 0.70 at GOES 2, and (0.36,0.60,0.66,0.54) at (COL, SGC, EWA, ONW), respectively. The standard deviation (σn = ± Δ? mHz) of the observed frequencies from the form ? (mHz) = 6.0 × BIMF (nT) is larger at the ground stations than at GOES 2, i.e., Δ? = ± 6.6 mHz atGOES 2, and ±(13.9, 9.1, 10.7, 12.1) mHz at (COL, SGC, EWA, ONW), respectively. The correlations between the IMF magnitude BIMF and Pc 3–4 frequencies at the low latitudes are higher than that at the high latitude on the ground, which can be interpreted by a “filtering action” of the magnetosphere for daytime Pc 3–4 magnetic pulsations. The scatter plots of pulsation frequency ? against the IMF magnitude BIMF for the compressional Pc 3–4 waves at GOES 2 are restricted within the forms ? = 4.5 × BIMFand ? = 7.5 × BIMF. The frequency distribution is in excellent agreement with the speculation (scΩi = 0.3 ~ 0.5) of the spacecraft frame frequency of the magnetosonic right-hand waves excited by the anomalous ion cyclotron resonance with reflected ion beams with V6 = 650 ~ 1150 km s?1 in the solar wind frame observed by the ISEE satellite in the Earth's foreshock. These observational results suggest that the magnetosonic right-handed waves excited by the reflected ion beams in the Earth's foreshock are convected through the magnetosheath to the magnetopause, transmitted into the magnetosphere without significant changes in spectra, and then couple with various HM waves in the Pc 3–4 frequency range at various locations in the magnetosphere.  相似文献   

15.
In order to analyse the convective instability of the force-free magnetic field, an exact solution of the MHD equation for the magnetic field (1) together with the flow field (2) of constant speed V0 making an angle θ with the magnetic field, was chosen as the unperturbed state. The stability of the fields between two parallel conducting walls of seperation d was studied by a linear perturbation method, which led to the eigenvalue problem (12), X being given by (13). It was shown by an approximate variational method that instability will set in by the flow field if V0 is greater than 1/ 3 times Alfven velocity VA. For β=V2oV2A < 13, the stability of the force-free field (1) is not influenced by the flow field, which may still be significant in other respects. Perturbations transverse to the magnetic field were found to be the most unstable modes.  相似文献   

16.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

17.
The magnetopause, the boundary layer, or current sheath, which separates the magnetosphere from the solar wind, is the particular interaction considered in this paper.The collision free electron skin depth, ξe = cωpe, where c is the velocity of light and ωpe, is the plasma frequency, gives a classical measure of the penetration depth of a collisionless plasma by an electromagnetic field. This penetration depth is small compared with the dimensions of the magnetosphere and hence the boundary layer may be conveniently considered in one dimension.In General all one dimensional solutions lie within an order of magnitude of the value of ξe, the only exception being the important one, in which the electric field perpendicular to the current sheath plane is not present, either due to a particular trapped particle distribution or due to a short circuiting end effect. For this exception the thickness is increased by the factor (mii/me)12.The current sheath solutions discussed are equilibrium solutions but not necessarily stable equilibrium solutions.The extension of the models to three dimensions has a larger effect than might at first be expected. The effect may be intuitively understood as a consequence of flux conservation in the sheath. The one dimensional solutions then correspond to the current sheath profiles at the thinnest point of the three dimensional sheath.  相似文献   

18.
We propose a new heating mechanism of faculae. We think that the formation of faculae is a result of the Joule dissipation of the Hall current generated by the interaction of the convection field of granules in an active region and the inter-granular magnetic field. For a region to generate effectively Hall current, its characteristic length must be such that the magnetic Reynolds number is less than 1. The equation of energy balance in the facula region is
16σT3p(Tl ? Tp)nHPsaH? = Qnsmiux22inωi)
.For five observational models of faculae, we calculated the corresponding velocity fields, and the results are in basic agreement with the observed fields. The present mechanism explains the dependence of the facula brightness on the magnetic and velocity fields, the apparent distribution of the faculae on the solar disk and suggest a possible interpretation of the five structures of faculae.  相似文献   

19.
Some aspects of the interaction between metal bodies and streaming rarefied plasmas were studied in a newly constructed Plasma Wind Tunnel as part of an attempt to investigate (via simulation) phenomena relevant to the spacecraft/space plasma interaction. Detailed near-wake ion current profiles for both spherical and cylindrical bodies at different body potentials (φS) and at different plasma flow parameters are presented. Various features of the profiles can be correlated, at least qualitatively, with both plasma and body characteristics. For example, the width of the wake zone appears proportional to the Debye length (λD) and depends on the potential of the target body although it appears to be relatively insensitive to the ratio S = Vflow/(2kTeM+)12. The amplitude of the ion current peak(s) also appears proportional to λD while, for fixed φS, the location of the peak is directly related to S and possibly dependent upon body geometry. The general importance of body geometry is qualitatively demonstrated. In addition, a discussion of the relevance of the above studies to previous in situ data obtained from the Ariel I and Gemini/Agena missions is given.  相似文献   

20.
Special line shapes are derived fro the λ 1356 Å (5S0-3P) transition of atomic oxygen from metastable (5S0-3P) time-of-flight spectra produced by electron impact dissociative excitation of O2, CO2, CO, and NO, and they are compared with the broadened λ 1304 A resonance line shapes deduced by Poland and Lawrence (1973) from atomic oxygen absorption studies. The non-thermal line shapes for both airglow emission features are shown to have an effective width comparable to a 60,000 K thermal doppler line shape for an electron impact energy of 100eV. The variation of the effective line width with electron-impact energy from threshold to 300 eV is given. Since the effective line width of the resonance radiation produced by dissociative excitation is very large compared with the doppler absorption widths of the ambient O atoms at normal exospheric temperatures, the anomalously broadened resonance lines will propagate through a planetary atmosphere as though they were optically thin. Thus, electron-impact dissociation of CO and CO2 will contribute to the observed optically thin component of the λ 1304 Å emission in the upper atmospheres of Venus and Mars. However, the process cannot account for more than 10% of the observed optically thin emission because of the small magnitude of the excitation cross-section and the comparatively high-energy threshold for the process. The possibility that the source of the kinetically energetic O(3S) atoms is the dissociative recombination of vibrationally excited CO2+ ions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号