首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental results on the spectral identification of new infrared absorption features and the changes of their absorbances produced through vacuum ultraviolet-extreme ultraviolet (VUV-EUV) photon-induced chemical reactions in the C2H2-H2O mixed ices at 10 K are obtained. To the best of our knowledge, this is the first time that EUV photons have been employed in the study of the photolysis of ice analogues. Two different compositions, i.e., C2H2:H2O=1:4 and 1:1, were investigated in this work. A tunable intense synchrotron radiation light source available at the Synchrotron Radiation Research Center, Hsinchu, Taiwan, was employed to provide the required VUV-EUV photons. In this study, the photon wavelengths selected to irradiate the icy samples corresponded to the prominent solar hydrogen, helium, and helium ion lines at 121.6 nm, 58.4 nm, and 30.4 nm, respectively. The photon dosages used were typically in the range of 1×1015 to 2×1017 photons. Molecular species produced and identified in the ice samples at 10 K resulting from VUV-EUV photon irradiation are mainly CO, CO2, CH4, C2H6, CH3OH, and H2CO. In addition to several unidentified features, we have tentatively assigned several absorption features to HCO, C3H8, and C2H5OH. While new molecular species were formed, the original reactants, i.e., H2O and C2H2, were detectably depleted due to their conversion to other species. The new chemical species produced by irradiation of photons at 30.4 nm and 58.4 nm can be different from those produced by the 121.6-nm photolysis. In general, the product column density of CO reaches saturation at a lower photon dosage than that of CO2. Furthermore, the production yield of CO is higher than that of CO2 in the photon irradiation. In the present study, we also observe that the photon-induced chemical reaction yields are high using photons at 30.4 and 58.4 nm. The results presented in this work are essential to our understanding of chemical synthesis in ice analogues, e.g., the cometary-type ices and icy satellites of planetary systems.  相似文献   

2.
New maps of martian water vapor and hydrogen peroxide have been obtained in November-December 2005, using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infra Red Telescope facility (IRTF) at Mauna Kea Observatory. The solar longitude Ls was 332° (end of southern summer). Data have been obtained at 1235-1243 cm−1, with a spectral resolution of 0.016 cm−1 (R=8×104). The mean water vapor mixing ratio in the region [0°-55° S; 345°-45° W], at the evening limb, is 150±50 ppm (corresponding to a column density of 8.3±2.8 pr-μm). The mean water vapor abundance derived from our measurements is in global overall agreement with the TES and Mars Express results, as well as the GCM models, however its spatial distribution looks different from the GCM predictions, with evidence for an enhancement at low latitudes toward the evening side. The inferred mean H2O2 abundance is 15±10 ppb, which is significantly lower than the June 2003 result [Encrenaz, T., Bézard, B., Greathouse, T.K., Richter, M.J., Lacy, J.H., Atreya, S.K., Wong, A.S., Lebonnois, S., Lefèvre, F., Forget, F., 2004. Icarus 170, 424-429] and lower than expected from the photochemical models, taking in account the change in season. Its spatial distribution shows some similarities with the map predicted by the GCM but the discrepancy in the H2O2 abundance remains to be understood and modeled.  相似文献   

3.
Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10 to 1400 cm−1 (1000-7 μm). In this paper we analyze a zonally averaged set of CIRS spectra taken at the highest (0.48 cm−1) resolution, firstly to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the ν4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm−1. Stratospheric temperatures at 5 mbar are generally warmer in the north than the south by 7-8 K, while tropospheric temperatures show no such asymmetry. Both latitudinal temperature profiles however do show a pattern of maxima and minima which are largely anti-correlated between the two levels. We then use the derived temperature profiles to infer the vertical abundances of C2H2 and C2H6 by modeling tropospheric absorption (∼200 mbar) and stratospheric emission (∼5 mbar) in the C2H2ν5 and C2H6ν9 bands, and also emission of the acetylene (ν4+ν5)−ν4 hotband (∼0.1 mbar). Acetylene shows a distinct north-south asymmetry in the stratosphere, with 5 mbar abundances greatest close to 20° N and decreasing from there towards both poles by a factor of ∼4. At 200 mbar in contrast, acetylene is nearly flat at a level of ∼3×10−9. Additionally, the abundance gradient of C2H2 between 10 and 0.1 mbar is derived, based on interpolated temperatures at 0.1 mbar, and is found to be positive and uniform with latitude to within errors. Ethane at both 5 and 200 mbar shows increasing VMR towards polar regions of ∼1.75 towards 70° N and ∼2.0 towards 70° S. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors of 2.7 and 3.5, respectively, at latitude 70°. However, the lifetime of C2H6 in the stratosphere (3×1010 s at 5 mbar) is much longer than the dynamical timescale for meridional mixing inferred from Comet SL-9 debris (5-50×108 s), and therefore the rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite occurs, with the relatively short photochemical lifetime (3×107 s), compared to meridional mixing times, ensuring that the expected photochemical trends are visible.  相似文献   

4.
The dissociative recombination coefficients α for capture of electrons by H3+ and H5+ ions have been determined as a function of electron temperature Te using a microwave afterglow-mass spectrometer apparatus. At ion and neutral temperatures Tu+ = Tn = 240 K, the coefficient α (H3+) is found to vary slowly with Te at first, decreasing from 1.6 × 10?7 cm3/s at Te = 240 K to 1.2 × 10?7 cm3/s at Te = 500 K, thereafter falling as Te?1 over the range 500 K ? Te, ? 3000 K. These results, which have a ± 20% uncertainty, agree satisfactorily over the common energy range (0.03–0.36 eV) with the recombination cross sections determined in merged beam measurements by Auerbach et al. At T+ = Tn = 128 K, the coefficient α(H5+) is found to be (1.8 ± 0.3) × 10?6 [Te(K)/300]?0.69 cm3/s over the range 128 K ? Te ? 3000 K, with a more rapid decrease, as Te?1, between 3000 K and 5500 K. The implications of these results for modelling planetary atmospheres and interstellar clouds are briefly touched on.  相似文献   

5.
Analysis of observed spectrograms is based on comparison with synthetic spectra. The O2(b1Σ+g?X3Σ?g Atm. (1,1) band in high latitude auroras observed from the ground is found to be the strongest in the Δv = 0 sequence. It is enhanced with altitude relative to the N2 1P(2, 0)and N+2 M(2,0) bands, but the O2 Atm. (2, 2) band has an unexpected low intensity. The range of rotational temperatures of the O2 Atm. bands varies from approx. 200 to above 500 K which indicates that the altitude of the centroid of the emission region varies from about 100 km to the F-region. The highest temperature is found in the midday aurora associated with the magnetospheric cusp. Conspicuous relative variations between the intensities of N2 and O2 spectra are documented, but a satisfactory explanation of the variety is not given. Deviations of the observed O2 Atm. band intensities from the vibrational intensity distribution predicted by Franck-Condor factors indicate that the excitation of the O2 Atm. bands in aurora is not mainly due to particle impact on O2, and the contribution due to energy transfer from hot O(1D) atoms has to be found in future research.  相似文献   

6.
It is proposed that the available measurements of the O2(b1Σg+ ?X3Σg?) atmospheric bands both in the nightglow and in the laboratory indicate that the excitation mechanism is a two-step process rather than the direct three body recombination of atomic oxygen. It is shown that such a two-step mechanism can explain observations of the atmospheric bands both in altitude and intensity.  相似文献   

7.
A simultaneous night-time observation of NO3 and 03 has been made by means of a balloon-borne spectrophotometer pointing at the rising planet Venus. The spectrum recorded between 642 and 672 nm makes it possible to determine the NO3 and O3 absorptions in the 662 nm band and the Chappuis bands, respectively. The NO3 vertical distribution is deduced, and is found to reach a peak of (3.4 ± 0.4) 107 molecules cm?3at 35 km. Such an observational result can be interpreted in terms of a theoretical profile deduced from a one-dimension time-dependant photochemical model which takes account of the night-time stratospheric NO2, NO3 and N2O5 constituents and the latest kinetic and photochemical data for the rate constants.  相似文献   

8.
Extreme ultraviolet (EUV) resonance fluorescence of the (0,v″) bands of the c41Σu+X1Σg+ and the (1,v″) bands of the b1Σu+X1Σg+ transitions of N2 has been observed by photon excitation of N2 in the vicinity of 95.8 nm. The integrated fluorescence intensities of the c4X (0,v″) emission become saturated at N2 pressures higher than ∼0.16 mTorr. The emission features in the spectral region between 105 and 130 nm become progressively significant as the N2 pressure is increased. The (1,v″) progression for v″ up to 11 of the b′→X transition and two progressions of the Lyman-Birge-Hopfield (LBH) system have been identified. The multiple scattering processes apparently cause significant reduction in the c4X (0,0) emission rates. The present results may be useful in the explanation of the weak c4X (0,0) fluorescence as well as the significant c4X (0,v″) features in the dayglow of the Earth observed by the Far Ultraviolet Spectroscopic Explorer.  相似文献   

9.
An analysis is presented of photometric measurements of the NI (λ = 520nm),OI(λ = 630nm)and other emissions made at Nord, where the invariant latitude is Λ = 80°4. The time variations of the intensities are interpreted in the following way by comparison with simultaneous ground based or satellite measurements.The N(2D) atoms formed in the dayside cleft are carried by the neutral wind in a plume across the polar cap, so that the ratio of λ(630 nm) to λ(520 nm) intensities decreases along the plume with increasing distance from the source region.In the polar cap, but outside the plume region, 630 nm emission is produced by electron impact of polar rain and by substorms that reach high latitudes. Ionization produced at the same time, especially by the substorms, will produce further 630 nm emission through dissociative recombination. In any case, the region outside the plume may be regarded as a source region, with a high value of the ratio I(630)I(520). This explains in part the diurnal variations, since this ratio is depressed as Nord crosses the dayside plume.The electron energy along the oval increases progressively from the dayside to the nightside. The intensity ratio increases with increasing electron energy because N(2D) is quenched more rapidly than O(1D). Thus the ratio rises progressively from noon to midnight.An effect of the interplanetary magnetic field is superimposed on this pattern : as its North-South component Bz increases, the oval contracts so that Nord becomes nearer from the cleft source and the intensity ratio increases on the dayside. The inverse effect is also observed. On the nightside, negative Bz is associated with substorms that produce poleward expansions of the poleward oval boundary, that brings more energetic precipitation to Nord. This causes the intensity ratio to increase with decreasing Bz in a way that is opposite to that for the dayside.  相似文献   

10.
Numerous fluorescent emissions from the Herzberg bands of molecular oxygen lie in the spectral region 242–300 nm. This coincides with the wavelength range used by orbiting spectrometers which observe the Rayleigh backscattered spectrum of the earth for the purpose of monitoring the vertical distribution of stratospheric ozone. Model calculations indicate that Herzberg band emissions in the dayglow could provide significant contamination of the ozone measurements if the quenching rate of O2(A3Σ) is sufficiently small. This is especially true near 255 nm, where the most intense fluorescent emissions relative to the Rayleigh scattered signal are located and where past satellite measurements show a persistent excess radiance above that expected for a pure ozone absorbing and molecular scattering atmosphere. However, very small quenching rates are adequate to reduce the dayglow emission to negligible levels. Available laboratory data have not definitely established the quenching on the rate of O2(A3Σ) as a function of vibrational level, and such information is required before the Herzberg band contributions can be evaluated with confidence.  相似文献   

11.
The reactivity of C2(X1Σ+g) with simple saturated (CH4, C2H6 and C3H8) and unsaturated (C2H2 and C2H4) hydrocarbons has been studied in the gas phase over the temperature range 24-300 K using the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique. All reactions have been found to be very rapid in this temperature range and the rate coefficients are typically ?10−10 cm3 molecule−1 s−1 with the exception of methane for which the rate coefficient is one order of magnitude lower: ∼10−11 cm3 molecule−1 s−1. These results have been analyzed in terms of potential destruction sources of C2(X1Σ+g) in the atmospheres of Titan and the Giant Planets. It appears that the rate coefficient of the reaction 1C2 + CH4 should be updated with our new data and that reactions with C2H2, C2H4 and C2H6 should also be included in the existing photochemical models.  相似文献   

12.
A simple vibrational relaxation model which reproduces the observed altitude integrated vibrational distribution of the Herzberg I bands in the nightglow is used to derive the altitude profiles of the individual vibrational levels at 1 km intervals in the 85–115 km height range. The possible errors associated with using rocket-borne photometer measurements of a limited number of bands in the O2(A3Σu+?X3Σg?) system to infer the total Herzberg I emission profile are assessed.  相似文献   

13.
Laboratory measurements of the reaction of O2+ with NO from thermal energy to 0.6 eV in an Ar buffered flow drift tube agree with similar measurements made earlier in the same drift tube with He buffer. Since the O2+ ions are substantially vibrationally excited in Ar and not in He it follows that the reaction is not enhanced by vibrational excitation of the O2+.  相似文献   

14.
Lori M. Feaga  Melissa McGrath 《Icarus》2009,201(2):570-1189
An extensive set of HI Lyman-α images obtained with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) from 1997-2001 has been analyzed to provide information about the spatial and temporal character of Io's SO2 atmosphere. An atmospheric distribution map derived from the observations reveals that the sunlit SO2 atmosphere is temporally stable on a global scale, with only small local changes. An anti-/sub-jovian asymmetry in the SO2 distribution is present in all 5 years of the observations. The average daytime atmosphere is densest on the anti-jovian hemisphere in the equatorial regions, with a maximum equatorial column density of 5.0×1016 cm−2 at 140° longitude. The SO2 atmosphere also has greater latitudinal extent on the anti-jovian hemisphere as compared to the sub-jovian. The atmospheric distribution appears to be best correlated with the location of hot spots and known volcanic plumes, although small number statistics for the plumes limits the correlation.  相似文献   

15.
It is proposed that energy transfer from excited O2 contributes to the production of O(1S) in aurora. An analysis is presented of the OI5577 Å emission in an IBC II+ aurora between 90 and 130 km. The volume emission rate of the emission at these altitudes is consistent with the production rate of O(1S) by energy transfer to O(3P) from N2 in the A3Σ2+ state and O2 in the A3Σu+, C3Δc1Σu? states, the N2A state being populated by direct electron impact excitation and BA cascade and the excited O2 states by direct excitation. Above the peak emission altitude (~105 km), energy transfer from N2A is the predominant production mechanism for O(1S). Below it, the contribution from quenching of the O2 states becomes significant.  相似文献   

16.
R. Courtin  D. Gautier  A. Marten  V. Kunde 《Icarus》1983,53(1):121-132
The 12C/13C ratio in Jupiter has been derived from the analysis of the ν4 band of CH4 in the spectra recorded by the Voyager 1 IRIS experiment. It is found to be 160?55+40, i.e., 1.8?0.6+0.4 times the terrestrial value. Instrumental noise as well as systematic sources of error were taken into account for the estimate of the uncertainty. No plausible theory predicts such a difference between the values of the 12C/13C ratio in the inner solar system and in Jupiter. However, values of this ratio in the solar neighborhood 4.5 by ago inferred—through the use of models of chemical evolution of the Galaxy —from recent interstellar medium measurements are compatible with the present determination in Jupiter. The Jovian value, rather than the terrestrial one, could then be representative of the ratio in the primitive solar nebula.  相似文献   

17.
Far-IR (25-50 μm, 200-400 cm−1) nadir and limb spectra measured during Cassini's four year prime mission by the Composite InfraRed Spectrometer (CIRS) instrument have been used to determine the abundances of cyanogen (C2N2), methylacetylene (C3H4), and diacetylene (C4H2) in Titan's stratosphere as a function of latitude. All three gases are enriched at northern latitudes, consistent with north polar subsidence. C4H2 abundances agree with those derived previously from mid-IR data, but C3H4 abundances are about 2 times lower, suggesting a vertical gradient or incorrect band intensities in the C3H4 spectroscopic data. For the first time C2N2 was detected at southern and equatorial latitudes with an average volume mixing ratio of 5.5±1.4×10−11 derived from limb data (>3-σ significance). This limb result is also corroborated by nadir data, which give a C2N2 volume mixing ratio of 6±3×10−11 (2-σ significance) or alternatively a 3-σ upper limit of 17×10−11. Comparing these figures with photochemical models suggests that galactic cosmic rays may be an important source of N2 dissociation in Titan's stratosphere. Like other nitriles (HCN, HC3N), C2N2 displays greater north polar relative enrichment than hydrocarbons with similar photochemical lifetimes, suggesting an additional loss mechanism for all three of Titan's main nitrile species. Previous studies have suggested that HCN requires an additional sink process such as incorporation into hazes. This study suggests that such a sink may also be required for Titan's other nitrile species.  相似文献   

18.
We analyze observations of Comet IRAS-Araki-Alcock taken on 1983 May 10 to determine the spatial molecular abundance of C2 in the inner coma via the Δν = +1 Swan band sequence near 4690 Å; total molecular abundance for C2 is ~6 × 1027 molecules across a projected linear diameter of ~9700 km centered on the nucleus. These observations show a deficiency of C2 emission across a projected diameter of ~2000 km centered on the peak of continuum emission. Comet imagery reveals a sunward-pointing coma suggestive of an outburst of subsurface volatile ices through a nonvolatile surface crust as predicted for periodic comets. Moreover, such imagery suggests that Haser model scale lengths for C2 and its parent molecule, as derived from our observations, do not fit the data very well. Our results are discussed in terms of the then-developing instrument and observational constraints which applied at the time.  相似文献   

19.
We present near-IR spectra of solid CO2 in H2O and CH3OH, and find they are significantly different from that of pure solid CO2. Peaks not present in either pure H2O or pure CO2 spectra become evident when the two are mixed. First, the putative theoretically forbidden CO2 (2ν3) overtone near 2.134 μm (4685 cm−1), that is absent from our spectrum of pure solid CO2, is prominent in the spectra of H2O/CO2=5 and 25 mixtures. Second, a 2.74-μm (3650 cm−1) dangling OH feature of H2O (and a potentially related peak at 1.89 μm) appear in the spectra of CO2-H2O ice mixtures, but are probably not diagnostic of the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with H2O. Warming causes some peak positions and profiles in the spectrum of a H2O/CO2=5 mixture to take on the appearance of pure CO2. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 (2ν3) overtone near 2.134 μm (4685 cm−1) is not present in pure CO2 but prominent in mixtures, it may be a good observational (spectral) indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. These observations may be applicable to Mars polar caps as well as outer Solar System bodies.  相似文献   

20.
We have studied the excitation of the Cameron bands of carbon monoxide (a3πX1Σ+) by electron impact on CO and CO2. This investigation was prompted by a recent study of the Martian airglow by Conway (1981) who concluded that the cross section for the dissociative excitation of the Cameron bands is seven times larger than the laboratory value reported by Ajello (1971a) and by a perplexing inconsistency between the optical cross section and CO(a3π) time-of-flight experiments. We have found now that three factors have contributed to these discrepancies: (1) spectral contamination of the (1,4) Cameron band used by Ajello to normalize the entire Cameron band cross section, (2) major revisions in the magnitude of the CO(a3π) radiative lifetime, and (3) new insights into the effects of the CO(a3π) velocity distribution on the field of view of the emission experiments. The new results largely reconcile the TOF and emission measurements, but they also suggest that the calculated photoelectron fluxes in the Martian atmosphere may be too large by a factor of 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号