首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following our earlier definition of the rigorous orthometric height [J Geod 79(1-3):82–92 (2005)] we present the derivation and calculation of the differences between this and the Helmert orthometric height, which is embedded in the vertical datums used in numerous countries. By way of comparison, we also consider Mader and Niethammer’s refinements to the Helmert orthometric height. For a profile across the Canadian Rocky Mountains (maximum height of ~2,800 m), the rigorous correction to Helmert’s height reaches ~13 cm, whereas the Mader and Niethammer corrections only reach ~3 cm. The discrepancy is due mostly to the rigorous correction’s consideration of the geoid-generated gravity disturbance. We also point out that several of the terms derived here are the same as those used in regional gravimetric geoid models, thus simplifying their implementation. This will enable those who currently use Helmert orthometric heights to upgrade them to a more rigorous height system based on the Earth’s gravity field and one that is more compatible with a regional geoid model.  相似文献   

2.
Geopotential, dynamic, orthometric and normal height systems and the corrections related to these systems are evaluated in this paper. Along two different routes, with a length of about 5 kilometers, precise leveling and gravity measurements are done. One of the routes is in an even field while the other is in a rough field. The magnitudes of orthometric, normal and dynamic corrections are calculated for each route. Orthometric, dynamic, and normal height differences are acquired by adding the corrections to the height differences obtained from geometric leveling. The magnitudes of the corrections between the two routes are compared. In addition, by subtracting orthometric, dynamic, and normal heights from geometric leveling, deviations of these heights from geometric leveling are counted.  相似文献   

3.
Errors are introduced in orthometric height computations by the use of standard formulas to estimate mean gravity along the plumb line. Direct measurements of gravity between the Earth’s surface and sea level from bore hole gravimetry were used to determine the magnitude of these errors. For the seven cases studied, errors in orthometric height, due to the use of the Helmert method for computing mean gravity along the plumb line, were generally small (<2 cm). However, in one instance the error was substantial, being9.6 cm. The results verified the general validity of the Poincaré-Prey approach to estimation of gravity along the plumb line and demonstrated that the suggestion byVanicek (1980) that the air gradient is more appropriate is incorrect. With sufficient topographic information to compute terrain corrections, and density estimates from surface gravity, errors in mean gravity along the plumb line should contribute no more than 3cm to orthometric height computation.  相似文献   

4.
When height networks are being adjusted, many geodesists advocate the approach where the adjustment should be done by using geopotential numbers rather than the orthometric or normal heights used in practice. This is based on a conviction that neither orthometric nor normal heights can be used for the adjustment because these height systems are not holonomic, meaning–among other things–that height increments (orthometric or normal) when summed around a closed loop do not sum up to zero. If this was the case, then the two height systems could not be used in the adjustment; the non-zero loop closure would violate the basic, usually unspoken, assumption behind the adjustment, namely that the model claiming that height differences are observable is correct. In this paper, we prove in several different ways that orthometric and normal heights are theoretically just as holonomic as the geopotential numbers are, when they are obtained from levelled height differences using actual gravity values. This disposes of the argument that geopotential numbers should be used in the adjustment. Both orthometric and normal heights are equally qualified to be used in the adjustment directly.  相似文献   

5.
魏子卿 《测绘学报》2022,51(6):797-803
在空间大地测量时代,GNSS可以测定地面点的大地高,使重力扰动变成了直接观测量,以重力扰动为边界条件的第二边值问题在大地测量中得以实用化。它的解与GNSS组合正在成为一种颇有应用前景的海拔高测量方法。本文原理性地讨论了有两种不同边界面的球近似第二大地边值问题。第一种以地形面为边界面,给出了高程异常与地面垂线偏差的解析延拓解;第二种以参考椭球面为边界面,将其外部地形质量按照Helmert第二压缩法移至参考椭球面,然后将Hotine函数与从地球表面延拓至边界面的Helmert重力扰动进行卷积,并顾及地形间接影响,最后得到大地水准面高、椭球面垂线偏差、高程异常与地面垂线偏差的Helmert解。在讨论部分,进行了第二与第三大地边值问题的比较,提出了现有重力点高程从正高或正常高到大地高的改化方法,并展望了它的应用前景。  相似文献   

6.
This paper takes advantage of space-technique-derived positions on the Earth’s surface and the known normal gravity field to determine the height anomaly from geopotential numbers. A new method is also presented to downward-continue the height anomaly to the geoid height. The orthometric height is determined as the difference between the geodetic (ellipsoidal) height derived by space-geodetic techniques and the geoid height. It is shown that, due to the very high correlation between the geodetic height and the computed geoid height, the error of the orthometric height determined by this method is usually much smaller than that provided by standard GPS/levelling. Also included is a practical formula to correct the Helmert orthometric height by adding two correction terms: a topographic roughness term and a correction term for lateral topographic mass–density variations.  相似文献   

7.
The AUSGeoid09 model of the Australian Height Datum   总被引:8,自引:6,他引:2  
AUSGeoid09 is the new Australia-wide gravimetric quasigeoid model that has been a posteriori fitted to the Australian Height Datum (AHD) so as to provide a product that is practically useful for the more direct determination of AHD heights from Global Navigation Satellite Systems (GNSS). This approach is necessary because the AHD is predominantly a third-order vertical datum that contains a ~1 m north-south tilt and ~0.5 m regional distortions with respect to the quasigeoid, meaning that GNSS-gravimetric-quasigeoid and AHD heights are inconsistent. Because the AHD remains the official vertical datum in Australia, it is necessary to provide GNSS users with effective means of recovering AHD heights. The gravimetric component of the quasigeoid model was computed using a hybrid of the remove-compute-restore technique with a degree-40 deterministically modified kernel over a one-degree spherical cap, which is superior to the remove-compute-restore technique alone in Australia (with or without a cap). This is because the modified kernel and cap combine to filter long-wavelength errors from the terrestrial gravity anomalies. The zero-tide EGM2008 global gravitational model to degree 2,190 was used as the reference field. Other input data are ~1.4 million land gravity anomalies from Geoscience Australia, 1′ × 1′ DNSC2008GRA altimeter-derived gravity anomalies offshore, the 9′′ × 9′′ GEODATA-DEM9S Australian digital elevation model, and a readjustment of Australian National Levelling Network (ANLN) constrained to the CARS2006 mean dynamic ocean topography model. To determine the numerical integration parameters for the modified kernel, the gravimetric component of AUSGeoid09 was compared with 911 GNSS-observed ellipsoidal heights at benchmarks. The standard deviation of fit to the GNSS-AHD heights is ±222 mm, which dropped to ±134 mm for the readjusted GNSS-ANLN heights showing that careful consideration now needs to be given to the quality of the levelling data used to assess gravimetric quasigeoid models. The publicly released version of AUSGeoid09 also includes a geometric component that models the difference between the gravimetric quasigeoid and the zero surface of the AHD at 6,794 benchmarks. This a posteriori fitting used least-squares collocation (LSC) in cross-validation mode to determine a correlation length of 75 km for the analytical covariance function, whereas the noise was taken from the estimated standard deviation of the GNSS ellipsoidal heights. After this LSC surface fitting, the standard deviation of fit reduced to ±30 mm, one-third of which is attributable to the uncertainty in the GNSS ellipsoidal heights.  相似文献   

8.
A new gravimetric geoid model, USGG2009 (see Abbreviations), has been developed for the United States and its territories including the Conterminous US (CONUS), Alaska, Hawaii, Guam, the Commonwealth of the Northern Mariana Islands, American Samoa, Puerto Rico and the US Virgin Islands. USGG2009 is based on a 1′ × 1′ gravity grid derived from the NGS surface gravity data and the DNSC08 altimetry-derived anomalies, the SRTM-DTED1 3′′ DEM for its topographic reductions, and the global geopotential model EGM08 as a reference model. USGG2009 geoid heights are compared with control values determined at 18,398 Bench Marks over CONUS, where both the ellipsoidal height above NAD 83 and the Helmert orthometric height above NAVD 88 are known. Correcting for the ellipsoidal datum difference, this permits a comparison of the geoid heights to independent data. The standard deviation of the differences is 6.3 cm in contrast to 8.4 cm for its immediate predecessor— USGG2003. To minimize the effect of long-wavelength errors that are known to exist in NAVD88, these comparisons were made on a state-by-state basis. The standard deviations of the differences range from 3–5 cm in eastern states to about 6–9 cm in the more mountainous western states. If the GPS/Bench Marks-derived geoid heights are corrected by removing a GRACE-derived estimate of the long-wavelength NAVD88 errors before the comparison, the standard deviation of their differences from USGG2009 drops to 4.3 cm nationally and 2–4 cm in eastern states and 4–8 in states with a maximum error of 26.4 cm in California and minimum of −32.1 cm in Washington. USGG2009 is also compared with geoid heights derived from 40 tide-gauges and a physical dynamic ocean topography model in the Gulf of Mexico; the mean of the differences is 3.3 cm and their standard deviation is 5.0 cm. When USGG2009-derived deflections of the vertical are compared with 3,415 observed surface astro-geodetic deflections, the standard deviation of the differences in the N–S and E–W components are 0.87′′ and 0.94′′, respectively.  相似文献   

9.
The geoid gradient over the Darling Fault in Western Australia is extremely high, rising by as much as 38 cm over only 2 km. This poses problems for gravimetric-only geoid models of the area, whose frequency content is limited by the spatial distribution of the gravity data. The gravimetric-only version of AUSGeoid98, for instance, is only able to resolve 46% of the gradient across the fault. Hence, the ability of GPS surveys to obtain accurate orthometric heights is reduced. It is described how further gravity data were collected over the Darling Fault, augmenting the existing gravity observations at key locations so as to obtain a more representative geoid gradient. As many of the gravity observations were collected at stations with a well-known GRS80 ellipsoidal height, the opportunity arose to compute a geoid model via both the Stokes and the Hotine approaches. A scheme was devised to convert free-air anomaly data to gravity disturbances using existing geoid models, followed by a Hotine integration to geoid heights. Interestingly, these results depended very weakly upon the choice of input geoid model. The extra gravity data did indeed improve the fit of the computed geoid to local GPS/Australian Height Datum (AHD) observations by 58% over the gravimetric-only AUSGeoid98. While the conventional Stokesian approach to geoid determination proved to be slightly better than the Hotine method, the latter still improved upon the gravimetric-only AUSGeoid98 solution, supporting the viability of conducting gravity surveys with GPS control for the purposes of geoid determination. AcknowledgementsThe author would like to thank Will Featherstone, Ron Gower, Ron Hackney, Linda Morgan, Geoscience Australia, Scripps Oceanographic Institute and the three anonymous reviewers of this paper. This research was funded by the Australian Research Council.  相似文献   

10.
The rigorous determination of orthometric heights   总被引:1,自引:2,他引:1  
The main problem of the rigorous definition of the orthometric height is the evaluation of the mean value of the Earth’s gravity acceleration along the plumbline within the topography. To find the exact relation between rigorous orthometric and Molodensky’s normal heights, the mean gravity is decomposed into: the mean normal gravity, the mean values of gravity generated by topographical and atmospheric masses, and the mean gravity disturbance generated by the masses contained within geoid. The mean normal gravity is evaluated according to Somigliana–Pizzetti’s theory of the normal gravity field generated by the ellipsoid of revolution. Using the Bruns formula, the mean values of gravity along the plumbline generated by topographical and atmospheric masses can be computed as the integral mean between the Earth’s surface and geoid. Since the disturbing gravity potential generated by masses inside the geoid is harmonic above the geoid, the mean value of the gravity disturbance generated by the geoid is defined by applying the Poisson integral equation to the integral mean. Numerical results for a test area in the Canadian Rocky Mountains show that the difference between the rigorously defined orthometric height and the Molodensky normal height reaches ∼0.5 m.  相似文献   

11.
赫林  李建成  褚永海 《测绘学报》2017,46(7):815-823
GRACE、GOCE卫星重力计划的实施,对确定高精度重力场模型具有重要贡献。联合GRACE、GOCE卫星数据建立的重力场模型和我国均匀分布的649个GPS/水准数据可以确定我国高程基准重力位,但我国高程基准对应的参考面为似大地水准面,是非等位面,将似大地水准面转化为大地水准面后确定的大地水准面重力位为62 636 854.395 3m~2s~(-2),为提高高阶项对确定大地水准面的贡献,利用高分辨率重力场模型EGM2008扩展GRACE/GOCE模型至2190阶,同时将重力场模型和GPS/水准数据统一到同一参考框架和潮汐系统,最后利用扩展后的模型确定的我国大地水准面重力位为62 636 852.751 8m~2s~(-2)。其中组合模型TIM_R4+EGM2008确定的我国85高程基准重力位值62 636 852.704 5m~2s~(-2)精度最高。重力场模型截断误差对确定我国大地水准面的影响约16cm,潮汐系统影响约4~6cm。  相似文献   

12.
AUSGeoid2020 is a combined gravimetric–geometric model (sometimes called a “hybrid quasigeoid model”) that provides the separation between the Geocentric Datum of Australia 2020 (GDA2020) ellipsoid and Australia’s national vertical datum, the Australian Height Datum (AHD). This model is also provided with a location-specific uncertainty propagated from a combination of the levelling, GPS ellipsoidal height and gravimetric quasigeoid data errors via least squares prediction. We present a method for computing the relative uncertainty (i.e. uncertainty of the height between any two points) between AUSGeoid2020-derived AHD heights based on the principle of correlated errors cancelling when used over baselines. Results demonstrate AUSGeoid2020 is more accurate than traditional third-order levelling in Australia at distances beyond 3 km, which is 12 mm of allowable misclosure per square root km of levelling. As part of the above work, we identified an error in the gravimetric quasigeoid in Port Phillip Bay (near Melbourne in SE Australia) coming from altimeter-derived gravity anomalies. This error was patched using alternative altimetry data.  相似文献   

13.
We describe the computation of the first Australian quasigeoid model to include error estimates as a function of location that have been propagated from uncertainties in the EGM2008 global model, land and altimeter-derived gravity anomalies and terrain corrections. The model has been extended to include Australia’s offshore territories and maritime boundaries using newer datasets comprising an additional \({\sim }\)280,000 land gravity observations, a newer altimeter-derived marine gravity anomaly grid, and terrain corrections at \(1^{\prime \prime }\times 1^{\prime \prime }\) resolution. The error propagation uses a remove–restore approach, where the EGM2008 quasigeoid and gravity anomaly error grids are augmented by errors propagated through a modified Stokes integral from the errors in the altimeter gravity anomalies, land gravity observations and terrain corrections. The gravimetric quasigeoid errors (one sigma) are 50–60 mm across most of the Australian landmass, increasing to \({\sim }100\) mm in regions of steep horizontal gravity gradients or the mountains, and are commensurate with external estimates.  相似文献   

14.
为解决世界各国高程基准差异的问题,提出联合卫星重力场模型、地面重力数据、GNSS大地高、局部高程基准的正高或正常高,按大地边值问题法确定局部高程基准重力位差的方法。首先推导了利用传统地面"有偏"重力异常确定高程基准重力位差的方法;接着利用改化Stokes核函数削弱"有偏"重力异常的影响,并联合卫星重力场模型和地面"有偏"重力数据,得到独立于任何局部高程基准的重力水准面,以此来确定局部高程基准重力位差;最后利用GNSS+水准数据和重力大地水准面确定了美国高程基准与全球高程基准W0的重力位差为-4.82±0.05 m2s-2。  相似文献   

15.
The concept of an idealised earth having 1° averaged heights over its land surface is introduced as a means to improve upon the existing geopotential coefficient solutions without the use of additional observed data, in order to provide more precise knowledge of the earth’s gravity field in the form of 1° global geoid and 1° mean free-air gravity anomalies especially over the mountainous regions with the visible topography condensed into the actual geoid, first by referring them to the idealised earth and then by reducing the same to the actual earth on applying appropriate corrections for the differences between the two earths.  相似文献   

16.
最小二乘配置法中局部协方差函数的计算   总被引:3,自引:1,他引:2  
文汉江 《测绘科学》2000,25(3):37-39
随着 GPS日益广泛的应用及精度的不断提高 ,在有些实际应用中利用 GPS来代替传统的水准测量进行高程控制已成为可能 ,这也进一步提出了对高精度大地水准面的需求。快速傅立叶变换 (FFT)是目前计算大地水准面比较常用的方法之一 ,但需要将重力观测量进行内插得到规则格网上的平均重力异常。利用最小二乘配置法计算大地水准面可直接利用已有的观测值进行计算 ,同时可综合利用不同类型的数据 ,如重力异常和垂线偏差等计算大地水准面 ,因此最小二乘配置法仍有广泛的应用 ,但制约最小二乘配置应用的关键问题是局部协方差函数的计算。将主要讨论最小二乘配置法中局部协方差函数的计算 ,使所用的协方差函数能更好地反映已知的数据 ,从而获得更精确的结果。  相似文献   

17.
The objective of this study is to evaluate two approaches, which use different representations of the Earth’s gravity field for downward continuation (DC), for determining Helmert gravity anomalies on the geoid. The accuracy of these anomalies is validated by 1) analyzing conformity of the two approaches; and 2) converting them to geoid heights and comparing the resulting values to GPS-leveling data. The first approach (A) consists of evaluating Helmert anomalies at the topography and downward-continuing them to the geoid. The second approach (B) downward-continues refined Bouguer anomalies to the geoid and transforms them to Helmert anomalies by adding the condensed topographical effect. Approach A is sensitive to the DC because of the roughness of the Helmert gravity field. The DC effect on the geoid can reach up to 2 m in Western Canada when the Stokes kernel is used to convert gravity anomalies to geoid heights. Furthermore, Poisson’s equation for DC provides better numerical results than Moritz’s equation when the resulting geoid models are validated against the GPS-leveling. On the contrary, approach B is significantly less sensitive to the DC because of the smoothness of the refined Bouguer gravity field. In this case, the DC (Poisson’s and Moritz’s) contributes only at the decimeter level to the geoid model in Western Canada. The maximum difference between the geoid models from approaches A and B is about 5 cm in the region of interest. The differences may result from errors in the DC such as numerical instability. The standard deviations of the hHN for both approaches are about 8 cm at the 664 GPS-leveling validation stations in Western Canada.  相似文献   

18.
The separation between the reference surfaces for orthometric heights and normal heights—the geoid and the quasigeoid—is typically in the order of a few decimeters but can reach nearly 3 m in extreme cases. The knowledge of the geoid–quasigeoid separation with centimeter accuracy or better, is essential for the realization of national and international height reference frames, and for precision height determination in geodetic engineering. The largest contribution to the geoid–quasigeoid separation is due to the distribution of topographic masses. We develop a compact formulation for the rigorous treatment of topographic masses and apply it to determine the geoid–quasigeoid separation for two test areas in the Alps with very rough topography, using a very fine grid resolution of 100 m. The magnitude of the geoid–quasigeoid separation and its accuracy, its slopes, roughness, and correlation with height are analyzed. Results show that rigorous treatment of topographic masses leads to a rather small geoid–quasigeoid separation—only 30 cm at the highest summit—while results based on approximations are often larger by several decimeters. The accuracy of the topographic contribution to the geoid–quasigeoid separation is estimated to be 2–3 cm for areas with extreme topography. Analysis of roughness of the geoid–quasigeoid separation shows that a resolution of the modeling grid of 200 m or less is required to achieve these accuracies. Gravity and the vertical gravity gradient inside of topographic masses and the mean gravity along the plumbline are modeled which are important intermediate quantities for the determination of the geoid–quasigeoid separation. We conclude that a consistent determination of the geoid and quasigeoid height reference surfaces within an accuracy of few centimeters is feasible even for areas with extreme topography, and that the concepts of orthometric height and normal height can be consistently realized and used within this level of accuracy.  相似文献   

19.
Canadian gravimetric geoid model 2010   总被引:4,自引:1,他引:3  
A new gravimetric geoid model, Canadian Gravimetric Geoid 2010 (CGG2010), has been developed to upgrade the previous geoid model CGG2005. CGG2010 represents the separation between the reference ellipsoid of GRS80 and the Earth’s equipotential surface of $W_0=62{,}636{,}855.69~\mathrm{m}^2\mathrm{s}^{-2}$ W 0 = 62 , 636 , 855.69 m 2 s ? 2 . The Stokes–Helmert method has been re-formulated for the determination of CGG2010 by a new Stokes kernel modification. It reduces the effect of the systematic error in the Canadian terrestrial gravity data on the geoid to the level below 2 cm from about 20 cm using other existing modification techniques, and renders a smooth spectral combination of the satellite and terrestrial gravity data. The long wavelength components of CGG2010 include the GOCE contribution contained in a combined GRACE and GOCE geopotential model: GOCO01S, which ranges from $-20.1$ ? 20.1 to 16.7 cm with an RMS of 2.9 cm. Improvement has been also achieved through the refinement of geoid modelling procedure and the use of new data. (1) The downward continuation effect has been accounted accurately ranging from $-22.1$ ? 22.1 to 16.5 cm with an RMS of 0.9 cm. (2) The geoid residual from the Stokes integral is reduced to 4 cm in RMS by the use of an ultra-high degree spherical harmonic representation of global elevation model for deriving the reference Helmert field in conjunction with a derived global geopotential model. (3) The Canadian gravimetric geoid model is published for the first time with associated error estimates. In addition, CGG2010 includes the new marine gravity data, ArcGP gravity grids, and the new Canadian Digital Elevation Data (CDED) 1:50K. CGG2010 is compared to GPS-levelling data in Canada. The standard deviations are estimated to vary from 2 to 10 cm with the largest error in the mountainous areas of western Canada. We demonstrate its improvement over the previous models CGG2005 and EGM2008.  相似文献   

20.
Terrestrial free-air gravity anomalies form a most essential data source in the framework of gravity field determination. Gravity anomalies depend on the datums of the gravity, vertical, and horizontal networks as well as on the definition of a normal gravity field; thus gravity anomaly data are affected in a systematic way by inconsistencies of the local datums with respect to a global datum, by the use of a simplified free-air reduction procedure and of different kinds of height system. These systematic errors in free-air gravity anomaly data cause systematic effects in gravity field related quantities like e.g. absolute and relative geoidal heights or height anomalies calculated from gravity anomaly data. In detail it is shown that the effects of horizontal datum inconsistencies have been underestimated in the past. The corresponding systematic errors in gravity anomalies are maximum in mid-latitudes and can be as large as the errors induced by gravity and vertical datum and height system inconsistencies. As an example the situation in Australia is evaluated in more detail: The deviations between the national Australian horizontal datum and a global datum produce a systematic error in the free-air gravity anomalies of about −0.10 mgal which value is nearly constant over the continent  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号