首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
等距离球面高斯投影   总被引:4,自引:0,他引:4  
针对传统高斯投影直接基于等角横切圆柱投影而带来的不能直接用球面坐标换算等问题,研究了一种运用等距离球面进行投影的高斯投影,即等距离球面高斯投影。借助等距离纬度正反解公式,推导了等距离球面高斯投影的正反解公式,分析了其经纬线变形情况;基于投影公式,计算和分析了等距离球面高斯投影的长度变形、角度变形、面积变形及子午线收敛角等参数;最后与传统高斯投影进行比较,说明了该投影的可用性。  相似文献   

2.
This paper is devoted to the spherical and spheroidal harmonic expansion of the gravitational potential of the topographic masses in the most rigorous way. Such an expansion can be used to compute gravimetric topographic effects for geodetic and geophysical applications. It can also be used to augment a global gravity model to a much higher resolution of the gravitational potential of the topography. A formulation for a spherical harmonic expansion is developed without the spherical approximation. Then, formulas for the spheroidal harmonic expansion are derived. For the latter, Legendre’s functions of the first and second kinds with imaginary variable are expanded in Laurent series. They are then scaled into two real power series of the second eccentricity of the reference ellipsoid. Using these series, formulas for computing the spheroidal harmonic coefficients are reduced to surface harmonic analysis. Two numerical examples are presented. The first is a spherical harmonic expansion to degree and order 2700 by taking advantage of existing software. It demonstrates that rigorous spherical harmonic expansion is possible, but the computed potential on the geoid shows noticeable error pattern at Polar Regions due to the downward continuation from the bounding sphere to the geoid. The second numerical example is the spheroidal expansion to degree and order 180 for the exterior space. The power series of the second eccentricity of the reference ellipsoid is truncated at the eighth order leading to omission errors of 25 nm (RMS) for land areas, with extreme values around 0.5 mm to geoid height. The results show that the ellipsoidal correction is 1.65 m (RMS) over land areas, with maximum value of 13.19 m in the Andes. It shows also that the correction resembles the topography closely, implying that the ellipsoidal correction is rich in all frequencies of the gravity field and not only long wavelength as it is commonly assumed.  相似文献   

3.
建立达州市中心城区CGCS2000坐标系时,投影变形值已经大于2.5 cm/km ,需要根据城市中心离中央子午线的距离和城市平均高程面,确定了建立达州市相对独立坐标系的方案,通过边长的高程归化和高斯投影改化,最终解算出地方椭球基于2000国家大地坐标系的椭球参数。  相似文献   

4.
《测量评论》2013,45(70):357-363
Abstract

There are no proper projections for use in geodetic work in a country which has great extensions both in latitude and longitude. For, if a single projection of any kind be applied in such a case, the linear and angular distortions would be so great at the boundary that it is very difficult or even impossible to apply the corrections to them. In order to render it possible for any projection to be applied, the area in question should be divided either into strips bounded by meridians or into zones bounded by parallels. In the former case the Transverse Mercator or Gauss’ projection may be used, while in the latter, the Lambert conformal projection is the most suitable. China is such a country as that mentioned above. It covers an area extending from 16°N. to 53°N. in latitude and of no less than sixty-five degrees in longitude. The problem of choosing a projection for geodetic work depends only on how the area is to be divided. It has been decided by the Central Land Survey of China to adopt the Lambert conformal projection as the basis for the co-ordinate system, and, in order to meet the requirements of geodetic work, the whole country is subdivided into eleven zones bounded by parallels including a spacing of 3½ degrees in latitude-difference. To each of these zones is applied a Lambert projection, properly chosen so as to fit it best. The two standard parallels of the projection are situated at one-seventh of the latitude-difference of the zone from the top and bottom. Thus, the spacing between the standard parallels is 2½ degrees. This gives a maximum value of the scale factor of less than one part in four thousand, thus reducing the distortions of any kind to a reasonable amount. The area between these parallels belongs to the zone proper, while those outside are the overlapping regions with the adjacent ones. All the zones can be extended indefinitely both eastwards and westwards to include the boundaries of the country.  相似文献   

5.
Time-varying Stokes coefficients estimated from GRACE satellite data are routinely converted into mass anomalies at the Earth’s surface with the expression proposed for that purpose by Wahr et al. (J Geophys Res 103(B12):30,205–30,229, 1998). However, the results obtained with it represent mass transport at the spherical surface of 6378 km radius. We show that the accuracy of such conversion may be insufficient, especially if the target area is located in a polar region and the signal-to-noise ratio is high. For instance, the peak values of mean linear trends in 2003–2015 estimated over Greenland and Amundsen Sea embayment of West Antarctica may be underestimated in this way by about 15%. As a solution, we propose an updated expression for the conversion of Stokes coefficients into mass anomalies. This expression is based on the assumptions that: (i) mass transport takes place at the reference ellipsoid and (ii) at each point of interest, the ellipsoidal surface is approximated by the sphere with a radius equal to the current radial distance from the Earth’s center (“locally spherical approximation”). The updated expression is nearly as simple as the traditionally used one but reduces the inaccuracies of the conversion procedure by an order of magnitude. In addition, we remind the reader that the conversion expressions are defined in spherical (geocentric) coordinates. We demonstrate that the difference between mass anomalies computed in spherical and ellipsoidal (geodetic) coordinates may not be negligible, so that a conversion of geodetic colatitudes into geocentric ones should not be omitted.  相似文献   

6.
The Meissl scheme for the geodetic ellipsoid   总被引:2,自引:1,他引:1  
We present a variant of the Meissl scheme to relate surface spherical harmonic coefficients of the disturbing potential of the Earth’s gravity field on the surface of the geodetic ellipsoid to surface spherical harmonic coefficients of its first- and second-order normal derivatives on the same or any other ellipsoid. It extends the original (spherical) Meissl scheme, which only holds for harmonic coefficients computed from geodetic data on a sphere. In our scheme, a vector of solid spherical harmonic coefficients of one quantity is transformed into spherical harmonic coefficients of another quantity by pre-multiplication with a transformation matrix. This matrix is diagonal for transformations between spheres, but block-diagonal for transformations involving the ellipsoid. The computation of the transformation matrix involves an inversion if the original coefficients are defined on the ellipsoid. This inversion can be performed accurately and efficiently (i.e., without regularisation) for transformation among different gravity field quantities on the same ellipsoid, due to diagonal dominance of the matrices. However, transformations from the ellipsoid to another surface can only be performed accurately and efficiently for coefficients up to degree and order 520 due to numerical instabilities in the inversion.  相似文献   

7.
梁磊  于锦海  万晓云 《测绘学报》2019,48(2):185-190
本文推导的椭球谐系数和球谐系数相互之间转换关系的核心思想是在ε~2量级下利用Legendre函数的正交性,从球谐系数求解的积分表示出发,将积分中的椭球坐标变量与球坐标变量相互转换,从而得出椭球谐系数与球谐系数之间的转换关系。本文导出的转换关系有以下优点:①对于第二类Legendre函数的计算采用Laurent级数表示,使计算第二类Legendre函数更为简单;②保留了ε~2量级下,导出的转换关系相比文献[2]的形式更简单,满足物理大地测量边值问题线性化的要求;③顾及了余纬和归化余纬的区别。  相似文献   

8.
Assuming that the gravity anomaly and disturbing potential are given on a reference ellipsoid, the result of Sjöberg (1988, Bull Geod 62:93–101) is applied to derive the potential coefficients on the bounding sphere of the ellipsoid to order e 2 (i.e. the square of the eccentricity of the ellipsoid). By adding the potential coefficients and continuing the potential downward to the reference ellipsoid, the spherical Stokes formula and its ellipsoidal correction are obtained. The correction is presented in terms of an integral over the unit sphere with the spherical approximation of geoidal height as the argument and only three well-known kernel functions, namely those of Stokes, Vening-Meinesz and the inverse Stokes, lending the correction to practical computations. Finally, the ellipsoidal correction is presented also in terms of spherical harmonic functions. The frequently applied and sometimes questioned approximation of the constant m, a convenient abbreviation in normal gravity field representations, by e 2/2, as introduced by Moritz, is also discussed. It is concluded that this approximation does not significantly affect the ellipsoidal corrections to potential coefficients and Stokes formula. However, whether this standard approach to correct the gravity anomaly agrees with the pure ellipsoidal solution to Stokes formula is still an open question.  相似文献   

9.
斜轴变形椭球高斯投影方法   总被引:1,自引:0,他引:1  
边少锋  刘强  李忠美  李厚朴 《测绘学报》2015,44(10):1071-1077
针对东西跨度较大的线路,借助最小二乘法建立斜轴参考椭球,以减小高斯投影横坐标;通过坐标系转换理论,推导出测区在各坐标系下的空间直角坐标,进而确定测区相对于斜轴参考椭球上的大地坐标;利用椭球变换法建立斜轴变形椭球以减小因高程引起的投影变形。以某铁路线为例,可知"斜轴变形椭球高斯投影方法"可大大减小投影后横轴方向分量,避免高斯投影分带现象,同时有效减小高程及其引起的投影变形。该方法数学模型严谨、运算过程清晰,便于编制相关软件,可投入工程使用。  相似文献   

10.
The Bruns formula is generalized to three dimensions with the derivation of equations expressing the height anomaly vector or the geoid undulation vector as a function of the disturbing gravity potential and its spatial derivatives. It is shown that the usual scalar Bruns formula provides not the separation along the normal to the reference ellipsoid but the component of the relevant spatial separation along the local direction of normal gravity. The above results which hold for any type of normal potential are specialized for the usual Somigliana-Pizzetti normal field so that the components of the geoid undulation vector are expressed as functions of the parameters of the reference ellipsoid, the disturbing potential and its spatial derivatives with respect to three types of curvilinear coordinates, ellipsoidal, geodetic and spherical. Finally the components of the geoid undulation vector are related to the deflections of the vertical in a spherical approximation.  相似文献   

11.
为真正实现大城市中的精密定位 ,提出了直接采用区域性椭球面上的测地坐标代替高斯平面直角坐标以作控制网点平面位置的表述 ,分析了测地坐标系的优良性质 ,阐述了采用测地坐标系实现大城市精密定位的原理和方法 ,初步探索了其应用的可行性  相似文献   

12.
Through each of two known points on the ellipsoid a geodesic is passing in a known azimuth. We solve the problem of intersection of the two geodesics. The solution for the latitude is obtained as a closed formula for the sphere plus a small correction, of the order of the eccentricity of the ellipsoid, which is determined by numerical integration. The solution is iterative. Once the latitude is obtained, the longitude is determined without iteration.  相似文献   

13.
The mixed spherical map projections of equiareal, cylindric type are based upon the Lambert projection and the sinusoidal Sanson–Flamsteed projection. These cylindric and pseudo-cylindric map projections of the sphere are generalized to the ellipsoid of revolution (biaxial ellipsoid). They are used in consequence by two lemmas to generate a horizontal and a vertical weighted mean of equiareal cylindric map projections of the ellipsoid of revolution. Its left–right deformation analysis via further results leads to the left–right principal stretches/eigenvalues and left–right eigenvectors/eigenspace, as well as the maximal left–right angular distortion for these new mixed cylindric map projections of ellipsoidal type. Detailed illustrations document the cartographic synergy of mixed cylindric map projections. Received: 23 April 1996 / Accepted: 19 April 1997  相似文献   

14.
蒋会平  谭树东  胡海 《测绘学报》2016,45(2):241-249
椭球面三角形外心到3个相邻顶点的大地线距离都相等。面向椭球面空间的外心大地坐标的求解对于椭球面Voronoi图的生成和椭球面Delaunay三角网的构造具有重要作用。利用基于地图代数理论的矢栅结合方法,首先基于地图代数测地变换建立高精度椭球面空间距离场,再通过边界跟踪配对确定外心所在的栅格范围,最后通过数值计算内插生成初始等距点并不断逼近外心的精确大地坐标。试验结果表明,采用本文方法求解的椭球面三角形外心大地坐标,在103~104 km跨度内其定位误差小于0.001m,且算法非常适用于海量空间数据的高精度快速计算。  相似文献   

15.
两种测地坐标系之间的坐标转换   总被引:10,自引:0,他引:10  
施一民  冯琰 《测绘学报》2002,31(Z1):22-26
从数学上论证以长度量为坐标参数的测地坐标系与大地坐标系能够成为表述3维欧氏空间中点位的正则坐标系的条件及限定区域,然后着重阐述了测地坐标系与大地坐标系相互转换的基本原理和方法,并用算例验证了其正确性,从而为进一步实现测地坐标系应用于DEM和3 DGIS建模提供了可能,这就为最终解决在统一的真3维坐标系统中建立DEM和3 DGIS奠定了基础.  相似文献   

16.
提出了在局部区域的椭球面上建立数字高程模型的原理和方法。这种椭球面的DEM是在区域性椭球面上基于新大地坐标系建立的,不同于现有的基于投影平面的DEM。由于未经过从椭球面到平面的投影,从而杜绝了投影变形,也消除了平面位置与水准高程之间作为3维坐标的不兼容性。在具体建模中,直接基于与测区平均高程面最优拟合的区域性椭球面,采用格网DEM的建模方法来建立椭球面DEM。  相似文献   

17.
 The problems of intersection on the sphere and ellipsoid are studied. On the sphere, the problem of intersection along great circles is explicitly solved. On the ellipsoid, each of the problems of intersection along arcs of constant azimuth, normal sections and geodesic lines is solved without any limitation on arc length. In the last case the solution is based on the Newton–Raphson method of iteration including numerical integration. Received: 11 April 2001 / Accepted: 3 September 2001  相似文献   

18.
World Geodetic Datum 2000   总被引:7,自引:1,他引:6  
 Based on the current best estimates of fundamental geodetic parameters {W 0,GM,J 2,Ω} the form parameters of a Somigliana-Pizzetti level ellipsoid, namely the semi-major axis a and semi-minor axis b (or equivalently the linear eccentricity ) are computed and proposed as a new World Geodetic Datum 2000. There are six parameters namely the four fundamental geodetic parameters {W 0,GM,J 2,Ω} and the two form parameters {a,b} or {a,ɛ}, which determine the ellipsoidal reference gravity field of Somigliana-Pizzetti type constraint to two nonlinear condition equations. Their iterative solution leads to best estimates a=(6 378 136.572±0.053)m, b=(6 356 751.920 ± 0.052)m, ɛ=(521 853.580±0.013)m for the tide-free geoide of reference and a=(6 378 136.602±0.053)m, b=(6 356 751.860±0.052)m, ɛ=(521 854.674 ± 0.015)m for the zero-frequency tide geoid of reference. The best estimates of the form parameters of a Somigliana-Pizzetti level ellipsoid, {a,b}, differ significantly by −0.39 m, −0.454 m, respectively, from the data of the Geodetic Reference System 1980. Received: 1 February 1999 / Accepted: 31 August 1999  相似文献   

19.
An operational algorithm for computation of terrain correction (or local gravity field modeling) based on application of closed-form solution of the Newton integral in terms of Cartesian coordinates in multi-cylindrical equal-area map projection of the reference ellipsoid is presented. Multi-cylindrical equal-area map projection of the reference ellipsoid has been derived and is described in detail for the first time. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid are selected and the gravitational potential and vector of gravitational intensity (i.e. gravitational acceleration) of the mass elements are computed via numerical solution of the Newton integral in terms of geodetic coordinates {,,h}. Four base- edge points of the ellipsoidal mass elements are transformed into a multi-cylindrical equal-area map projection surface to build Cartesian mass elements by associating the height of the corresponding ellipsoidal mass elements to the transformed area elements. Using the closed-form solution of the Newton integral in terms of Cartesian coordinates, the gravitational potential and vector of gravitational intensity of the transformed Cartesian mass elements are computed and compared with those of the numerical solution of the Newton integral for the ellipsoidal mass elements in terms of geodetic coordinates. Numerical tests indicate that the difference between the two computations, i.e. numerical solution of the Newton integral for ellipsoidal mass elements in terms of geodetic coordinates and closed-form solution of the Newton integral in terms of Cartesian coordinates, in a multi-cylindrical equal-area map projection, is less than 1.6×10–8 m2/s2 for a mass element with a cross section area of 10×10 m and a height of 10,000 m. For a mass element with a cross section area of 1×1 km and a height of 10,000 m the difference is less than 1.5×10–4m2/s2. Since 1.5× 10–4 m2/s2 is equivalent to 1.5×10–5m in the vertical direction, it can be concluded that a method for terrain correction (or local gravity field modeling) based on closed-form solution of the Newton integral in terms of Cartesian coordinates of a multi-cylindrical equal-area map projection of the reference ellipsoid has been developed which has the accuracy of terrain correction (or local gravity field modeling) based on the Newton integral in terms of ellipsoidal coordinates.Acknowledgments. This research has been financially supported by the University of Tehran based on grant number 621/4/859. This support is gratefully acknowledged. The authors are also grateful for the comments and corrections made to the initial version of the paper by Dr. S. Petrovic from GFZ Potsdam and the other two anonymous reviewers. Their comments helped to improve the structure of the paper significantly.  相似文献   

20.
《测量评论》2013,45(11):297-303
Abstract

The Gold Coast, including that portion of Togoland which is mandated to Great Britain, comprises an area of 91,843 square miles lying between the parallels 4° 45′ N. and 11°N. and the meridians 1° 10′ E. and 3° 10′ W. The greater part of the southern area is covered with dense forest, but in the north the forest gradually opens out to more open “orchard-bush”, while in the extreme north the country consists of rolling plains covered with tall elephant-grass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号