首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A 30 ka paleo-climate record of the Boise area, Idaho, USA has been delineated using groundwater stable isotopic compositions. Groundwater ages are modern (cold batholith), 5-15 ka (thermal batholith) , 10-20 ka (frontal fault) , and 20-30 ka (Snake River plain thermal). The stable isotopic composition of groundwaters have been used as a surrogate for the stable isotopic composition of precipitation. Using δ2H and δ18O compositions, local groundwater lines (LGWL's) were defined for each system. Each LGWL has been evaluated with defined slopes of 6.94 and 8, respectively, and resulting deuterium excess values (d) were found for each groundwater system for each slope. Time dependent changes in moisture source humidity and temperature, and Boise area recharge temperatures, calculated from stable isotopic data and the deuterium excess factors, agree with previous paleo-climate studies. Results indicate that from the last glacial maximum to the present time the humidity over the ocean moisture source increased by 9%, sea surface temperature at the moisture source increased 6-7°C, and local Boise temperature increased by 4-5°C. A greater increase of temperature at the moisture source as compared to the Boise area may impart be due to a shift in the moisture source area.  相似文献   

2.
Calcium and magnesium concentrations in seawater have varied over geological time scales. On short time scales, variations in the major ion composition of seawater influences coccolithophorid physiology and the chemistry of biogenically produced coccoliths. Validation of those changes via controlled laboratory experiments is a crucial step in applying coccolithophorid based paleoproxies for the reconstruction of past environmental conditions. Therefore, we examined the response of two species of coccolithophores, Emiliania huxleyi and Coccolithus braarudii, to changes in the seawater Mg/Ca ratio (≈0.5 to 10 mol/mol) by either manipulating the magnesium or calcium concentration under controlled laboratory conditions. Concurrently, seawater Sr/Ca ratios were also modified (≈2 to 40 mmol/mol), while keeping salinity constant at 35. The physiological response was monitored by measurements of the cell growth rate as well as the production rates of particulate inorganic and organic carbon, and chlorophyll a. Additionally, coccolithophorid calcite was analyzed for its elemental composition (Sr/Ca and Mg/Ca) as well as isotope fractionation of calcium and magnesium (Δ44/40Ca and Δ26/24Mg). Our results reveal that physiological rates were substantially influenced by changes in seawater calcium rather than magnesium concentration within the range estimated to have occurred over the past 250 million years when coccolithophores appear in the fossil record. All physiological rates of E. huxleyi decreased at a calcium concentration above 25 mmol L−1, whereas C. braarudii displayed a higher tolerance to increased seawater calcium concentrations. Partition coefficient of Sr was calculated as 0.36 ± 0.04 (±2σ) independent of species. Partition coefficient of Mg2+ increased with increasing seawater Ca2+ concentrations in both coccolithophore species. Calcium isotope fractionation was constant at 1.1 ± 0.1‰ (±2σ) and not altered by changes in seawater Mg/Ca ratio. There is a well-defined inverse linear relationship between calcium isotope fractionation and partition coefficient of Sr2+ in all experiments, suggesting similar controls on both proxies in the investigated species. Magnesium isotope ratios were relatively stable for seawater Mg/Ca ratios ranging from 1 to 5, with a higher degree of fractionation in Emiliania huxleyi (by ≈0.2‰ in Δ26/24Mg). Although Mg/Ca ratios in the calcite of coccolithophores and foraminifera are similar, the former have considerably higher Δ26/24Mg (by >+3‰), presumably due to differences in calcification mechanisms between the two taxa. These observations suggest, a physiological control over magnesium elemental and isotopic fractionation during the process of calcification in coccolithophores.  相似文献   

3.
4.
The Arabian Sea is characterized today by a well-developed and perennial oxygen minimum zone (OMZ) at mid-water depths. The Indian margin where the OMZ impinges provides sediment records ideal to study past changes in the OMZ intensity and its vertical extent in response to the changes of monsoon-driven primary productivity and intermediate water ventilation. Benthic foraminifera, depending upon their adaptation capabilities to variation in sea floor environment and microhabitat preferences, develop various functional morphologies that can be potentially used in paleoenvironmental reconstruction. In this study, we analysed benthic foraminiferal morphogroups in assemblage records of the last 30 ka in a sediment core collected from the lower OMZ of the Indian margin (off Goa). In total, nine morphogroups within two broadly classified epifaunal and infaunal microhabitat categories are identified. The abundance of morphogroups varies significantly during the late Glacial, Deglacial and Holocene. It appears that monsoon wind driven organic matter flux, and water column ventilation governing the OMZ intensity and sea-bottom oxygen condition, have profound influence on structuring the benthic foraminiferal morphogroups. We found a few morphogroups showing major changes in their abundances during the periods corresponding to the northern hemisphere climatic events. Benthic foraminifera with planoconvex tests are abundant during the cold Heinrich events, when the sea bottom was oxygenated due to a better ventilated, weak OMZ; whereas, those having tapered/cylindrical tests dominate during the last glacial maximum and the Holocene between 5 and 8 ka BP, when the OMZ was intensified and poorly ventilated, leading to oxygen-depleted benthic environment. Characteristically, increased abundance of taxa with milioline tests during the Heinrich 1 further suggests enhanced ventilation attributed probably to the influence of oxygen-rich Antarctic Intermediate Water (AAIW).  相似文献   

5.
The timing of the local last glacial maximum in the mountains of the Northern Iberian Peninsula is not synchronous with the global Last Glacial Maximum (LGM) probably due to the marginal position of the Northern Iberian Peninsula within the European continent. The study of a Cantabrian massif, the Asón platform and summits, provides new data on the extent and timing of the local last glaciation. Here we can place the last maximal extent of glaciers during Early Würm, according to OSL dating on till samples. The main glaciers developed at least between 78-65 ka BP, well centred on MIS 4 and even the transition to MIS 5. The erosive efficacy of these glaciers decreased later, ca. 45–40 ka BP, until they abruptly disappeared from the edges of the massif. A new ice advance left well-defined moraines at the edges of the massif’s internal depressions, indicating a tongue disjunction phase with two glacier sub-stages, probably one at the beginning of the cooling ca. 27–25 ka BP, followed by a retreat and another glacial advance ca. 21–18 ka BP. After these episodes the glaciers disappeared from the Asón Mountains and only some residual glaciers were formed that may be related to the LGM.  相似文献   

6.
Two multi-year oxygen isotope (δ18O) records were obtained from archaeological Ostrea angasi shells, confirming the potential of this species to provide valuable environmental records for the late Holocene period in southeastern Australia. High-resolution δ18Oshell samples from the O. angasi clearly display a seasonal variability, offering insight into past climate conditions in a region where such information is presently limited.

The oxygen isotope record in O. angasi reflects a combined temperature–salinity signal. Observations of δ18Oshell data from modern specimens are used as a point of reference to assist in decoupling these two influences, with the two archaeological samples compared with the δ18Oshell profile of four modern O. angasi. Assuming similar paleo- δ18Owater values at the collection sites, data from these archaeological shells present a record of temperatures during the period of their growth that are consistently lower than modern day, with mean annual temperatures ~2°C cooler.  相似文献   


7.
We compare several statistical routines that may be used to calculate δ18Osw and SSS from paired coral Sr/Ca and δ18O measurements. Typically, the δ18Ocoral-SST relationship is estimated by linear regression of coral δ18O vs. SST. If this method is applied, evidence should be given that at a particular site SST and SSS do not co-vary. In the tropical oceans, SST and δ18Osw (SSS) often co-vary, and this will bias the estimate of the regression slope of δ18Ocoral-SST. Using a stochastic model, we show that covariance leads to a bias in the coefficients of the univariate regression equations. As the slope of the δ18Ocoral-SST relationship has known, we propose to insert this value for γ1 in the regression models. This requires that the constants of the regression equations are removed. To omit the constants, we propose to center the regression equations (i.e., to remove the mean values from the variables). The statistical error propagation is calculated to assess our ability to resolve past variations in δ18Osw (SSS). At Tahiti, we find that the combined analytical uncertainties of coral δ18O and Sr/Ca equal the amplitude of the seasonal cycle of δ18Osw (SSS). Therefore, we cannot resolve the seasonal cycle of SSS at Tahiti. At Timor, the error of reconstructed δ18Osw (SSS) is lower than the magnitude of seasonal variations of δ18Osw (SSS), and the seasonal cycle of δ18Osw (SSS) can be resolved.  相似文献   

8.
Karst rocks from the Huanglong Formation exposed at the margin of the Eastern Sichuan Basin can be divided into four types:slightly corroded, moderately corroded porous, intensely corroded brecciated and intensely corroded and replaced secondary calcic karstic rocks. The carbon, oxygen and strontium isotope compositions of the various karst rocks are analyzed systematically and compared to rocks without karst corrosion. The results indicate that(1) the Huanglong Formation in the eastern Sichuan Basin was a restricted bay supplied and controlled by freshwater in which mudmicrite and mud-dolomicrite exhibit low δ13C and δ18O values and high 87Sr/86 Sr ratios;(2) all types of karstic rocks in the paleokarst reservoirs of the Huanglong Formation in the research area are affected by atmospheric freshwater with the δ13C and δ18O values and 87Sr/86 Sr ratios in the original formation approaching those of atmospheric freshwater, which reflects ancient hydrological conditions, fluid properties, isotopic source and the fractionation effect;(3) the intensely corroded and replaced secondary limestone is affected by a variety of diagenetic fluids, often reflected by δ13C and δ18O values, while the 87Sr/86 Sr ratios exhibit the strong degree of the corrosion;(4) after comparing the 87Sr/86 Sr ratios of each type of karst rock, the diagenetic fluids are determined to be mainly atmospheric freshwater, and depending on the strength of corrosion, and the low 87Sr/86 Sr ratio fluids in the layer will participate in the karst process. The carbon, oxygen, and strontium isotopes of different karstic reservoirs can provide meaningful geochemical information for forecasting and evaluating the development and distribution rules of the Huanglong Formation at the margin of the eastern Sichuan Basin in time and space.  相似文献   

9.
The effect of seasonally reversing monsoons in the northern Indian Ocean is to impart significant changes in surface salinity(SS).Here,we report SS changes during the last 32 kyr in the Lakshadweep Sea(southeastern Arabian Sea)estimated from paired measurements of δ~(18)O and sea surface temperature(SST)using Globigerinoides sacculifer,an upper mixed layer dwelling foraminifera.The heaviest δ~(18)O_(G.sacculifer)(-0.07±0.08‰)is recorded between 23 and 15 ka,which could be defined as the last glacial maxi...  相似文献   

10.
Carbon and oxygen isotope compositions has been studied in dolomites of the Syukeevo gypsum deposit located in the Eastern Russian Plate. Values of δ13C in the dolomites vary from 0.3 to 6.6 ‰; δ18O, from 28.0 to 36.6‰. It is shown that the dolomites were formed in the epicontinental evaporitic basin in different paleoecological settings. This led to the formation of diverse lithological types of dolomites with peculiar isotope-geochemical features.  相似文献   

11.
The Northern Prince Gustav Ice Stream located in Prince Gustav Channel, drained the northeastern portion of the Antarctic Peninsula Ice Sheet during the last glacial maximum. Here we present a chronology of its retreat based on in situ produced cosmogenic 10Be from erratic boulders at Cape Lachman, northern James Ross Island. Schmidt hammer testing was adopted to assess the weathering state of erratic boulders in order to better interpret excess cosmogenic 10Be from cumulative periods of pre-exposure or earlier release from the glacier. The weighted mean exposure age of five boulders based on Schmidt hammer data is 12.9 ± 1.2 ka representing the beginning of the deglaciation of lower-lying areas (< 60 m a.s.l.) of the northern James Ross Island, when Northern Prince Gustav Ice Stream split from the remaining James Ross Island ice cover. This age represents the minimum age of the transition from grounded ice stream to floating ice shelf in the middle continental shelf areas of the northern Prince Gustav Channel. The remaining ice cover located at higher elevations of northern James Ross Island retreated during the early Holocene due to gradual decay of terrestrial ice and increase of equilibrium line altitude. Schmidt hammer R-values are inversely correlated with 10Be exposure ages and could be used as a proxy for exposure history of individual granite boulders in this region and favour the hypothesis of earlier release of boulders with excessive 10Be concentrations from glacier directly at this site. These data provide evidences for an earlier deglaciation of northern James Ross Island when compared with other recently presented cosmogenic nuclide based deglaciation chronologies, but this timing coincides with rapid increase of atmospheric temperature in this marginal part of Antarctica.  相似文献   

12.
Neoproterozoic juvenile crust is exposed in the Eastern Desert of Egypt, between the Nile and the Red Sea, forming the basement to Cambrian and younger sedimentary strata in the northernmost part of the Arabian–Nubian Shield (ANS). In order to reveal how the crust of this vast region was formed, four examples of widespread Neoproterozoic (653–595 Ma) calc-alkaline and alkaline intrusive rocks in the northwestern most exposures, in the NE Desert of Egypt (NED) were studied. Single zircon Hf–O isotopic compositions of these intrusives were used to characterize the Neoproterozoic syn- and post-collisional granitoids in the NED. The ~ 653 Ma Um Taghir syn-tectonic granodiorite (I-type) displays isotopic characteristics of a depleted mantle source, such as high εHf(t) (+ 9.1 to + 11.2) and mantle δ18O (mean = + 5.12‰). In contrast, the ca. ~ 600 Ma post-collision A-type granites (Al-Missikat, Abu Harba, and Gattar) show slightly higher δ18O values (+ 5.15 to 6.70) and slightly lower εHf(t) values (+ 6.3 to + 10.6, mean = + 8.6). We interpret these isotopic data to reflect melting of a juvenile Neoproterozoic mantle source that assimilated slightly older Neoproterozoic crustal material during magma mixing. The involvement of crustal component is also supported by Hf-crustal model ages (0.67–0.96 Ga) and by the occurrence of xenocrystic zircons with U–Pb ages older than the crystallization ages, indicating melting of predominantly Late Neoproterozoic crustal protoliths.  相似文献   

13.
《Quaternary Science Reviews》2004,23(7-8):919-934
Speleothem fluid inclusions potentially provide vital data on the paleohydrological conditions in glacial and interglacial periods. We show here that δD analyses of fluid inclusions from speleothems in three caves in the Eastern Mediterranean region (Israel) provide a basis for understanding hydrological and temperature variations in the last 140 ka. Using measured δD fluid inclusion values and temperature ranges constrained by the present-day Mediterranean Meteoric Water Line (MMWL) and the global MWL, we show a strong compatibility between the land and marine temperature records, with the highest land temperatures occurring at 120–130 ka (17–22°C) and the present (18°C) and the lowest temperatures during the LGM, about 10°C lower than present. Interglacial waters are constrained to follow the MMWL and most glacial waters also plot close to the MMWL, with a slight shift towards the MWL. However, during two remarkable brief periods at the termination of the LGM, the waters plot on the MWL, suggesting that both sharp cooling and an increase in relative humidity above the EM Sea reduced d-excess values to those of the global system.  相似文献   

14.
The genus Assilina is a taxon within the Nummulitacea that appeared early in the Ypresian (Early Eocene) and continued until the end of the Lutetian (Middle Eocene). Thus, this taxon could be useful for the chronostratigraphy of this time interval. Lower Eocene rocks in southern Galala, Egypt are exposed at Bir Dakhl. This section includes marl sediments with debris flow shallow-marine facies deposits laid down during early Eocene times and includes fossils of large foraminifera: Assilina placentula Deshayes, 1838 and Nummulites burdigalensis de la Harpe, 1926. These are systematically treated, described and illustrated. Nummulites burdigalensis belongs to the N. burdigalensis group, and Assilina placentula belongs to the group of Assilina exponens. This assumption is based on qualitative morphology and quantitative measurements. Both species, together with Operculina libyca Schwager, 1883, enable the assignment of the Bir Dakhl (D5-40 Section) to the Early Eocene, Ypresian (SBZ10 of Serra- Kiel et al., 1998) supporting an earlier opinion that Assilina placentula belongs to that zone in the calibrated larger foraminiferal biostratigraphic zonation.  相似文献   

15.
Deuterium and oxygen isotope fractionations between liquid and vapor water were experimentally-determined during evaporation of a NaCl solution (35 g L−1) as a function of water temperature and wind velocity. In the case of a null wind velocity, slopes of δD18O trajectories of residual waters hyperbolically decrease with increasing water temperatures in the range 23-47 °C. For wind velocities ranging from 0.8 to 2.2 m s−1, slopes of the δD18O trajectories linearly increase with increasing wind velocity at a given water temperature. These experimental results can be modeled by using Rayleigh distillation equations taking into account wind-related kinetics effects. Deuterium and oxygen isotope compositions of water inclusions trapped by the precipitated halite crystals were determined by micro-equilibration techniques.These isotopic compositions accurately reflect those of the surrounding residual waters during halite growth. Isotopic compositions of water inclusions in twenty natural halites from the Messinian Realmonte mine in Sicily suggest precipitation temperatures of that match the homogenization temperatures obtained by microthermometry (median = 34 ± 5 °C). The similarity between the measured and experimental slopes of the δD18O evaporation trajectories suggests that the effect of wind was negligible during the genesis of these halite deposits. Hydrogen and oxygen isotope compositions of water inclusions from Realmonte halite also define a linear trend whose extrapolation until intersection with the Mediterranean Meteoric Water Line allows the characterization of the water source with δD and δ18O values of −70 ± 10‰ and −11.5 ± 1.5‰, respectively. These results reveal that the huge amounts of salts deposited in Sicily result from the evaporation of seawater mixed with a dominant fraction (?50%) of meteoric waters most likely deriving from alpine fluvial discharge.  相似文献   

16.
17.
We dissolved Boulder Creek Granodiorite in a plug flow reactor for 5794 h at pH = 1 and T = 25 °C. The primary purpose of the experiment was to identify controls on dissolved δ44/40Ca, δ44/42Ca, and δ26/24Mg values during granite weathering. Herein, we also examine the origin of Ca and Mg isotopic variability among minerals composing the Boulder Creek Granodiorite, and we constrain fundamental characteristics of granite weathering important for quantifying the elemental and isotopic geochemistry of the reactor output. Nine Ca-bearing minerals display an 8.80‰ range of δ44/40Ca values and a 0.51‰ range of δ44/42Ca values. Three Mg-bearing minerals display a 1.53‰ range of δ26/24Mg values. These ranges expressed at the mineralogical scale are higher than the ranges thus far reported for bulk igneous rocks. Most of the δ44/40Ca variability reflects 40Ca enrichment in K-feldspar, and to a lesser extent, biotite, due to the radioactive decay of 40K over the 1.7 Ga age of the rock, whereas the entire range of δ44/42Ca values reflects mass-dependent isotope fractionation during igneous differentiation and crystallization. The range of δ26/24Mg values may represent either fractionation during the chloritization of biotite or interaction of the Boulder Creek Granodiorite with Mg-rich metamorphic fluids having low δ26/24Mg values.The elemental and isotopic composition of the reactor output varied substantially during the experiment. We synthesize the mineralogical and fluid data using coupled mass-conservation equations solved at non-steady-state. Model calculations reveal an intricate balance between increasing specific surface area and decreasing mineral concentrations. While surface area normalized dissolution rate constants were time-invariant, specific surface area increased as a power-law function of time through positive feedbacks between mechanical disaggregation, chemical dissolution, and mineral depletion. Variations in dissolved δ44/40Ca, δ44/42Ca, and δ26/24Mg values reflect conservative mixing rather than fractionation. Apatite and calcite initially control δ44/40Ca and δ44/42Ca values, followed by biotite, titanite, epidote, hornblende, and plagioclase. The release of radiogenic 40Ca clearly defines the period where biotite dissolution dominates. The brucite layer of chlorite initially controls δ26/24Mg values, followed by biotite, the TOT layer of chlorite, and hornblende. Through direct isotopic tracking, these results demonstrate that trace minerals, such as apatite and calcite in the case of Ca and brucite in the case of Mg, dominate elemental release during the incipient stages of granite weathering. The results further show that biotite dissolution dominates the middle stages of granite weathering and that plagioclase dissolution only becomes important during relatively late stages. The Ca and Mg isotope variations associated with these stages are distinct and potentially resolvable in soil mineral weathering studies.  相似文献   

18.
Doklady Earth Sciences - Multiproxy investigation of sediment core AF-0731 from the Mendeleev Rise revealed several epochs of high bioproductivity corresponding to climate amelioration and surface...  相似文献   

19.
For the first time 18O and 13C values from carbonates and D values of individual n-alkanes were used to reconstruct palaeohydrological conditions in a lagoon at the southern margin of the Central European Zechstein Basin (CEZB). A 12-m core covering the complete Ca2 interval and adjacent anhydrites (A1 and A2) was analyzed for 18O and 13C values of dolomitized carbonates and D values of individual n-alkanes. 18Ocarb values (+2 to +5 vs. VPDB) were strongly influenced by evaporation and temporal freshwater input into the lagoon. The 13Ccarb values (–1 to +4 vs. VPDB) were controlled mainly by changes in primary production. Both isotopic ratios show an inverse relationship throughout most of the core, contradicting diagenetic alteration, since 13Ccarb values are not altered significantly during dolomitization. Assuming a temperature range of 35–40 °C in the lagoon, 18Ocarb values of +2.5 to +8 (vs. VSMOW) for the lagoonal water can be reconstructed. The lagoon may have desiccated twice during the Ca2 interval, as indicated by very high 18Ocarb and low 13Ccarb values, coinciding with increasing amount of anhydrite in the analyzed sample. These events seem to reflect not just local but a regional intra-Ca2 cyclicity. Measured D values of the short-chain n-alkanes, namely n-C16 and n-C18 which are widely used as indicators for photosynthetic bacterial and algal input, reflect the isotopic composition of the lagoonal water. Assuming constant fractionation during incorporation of hydrogen into lipids of –160, an average D value of +70 (vs. VSMOW) can be reconstructed for the lagoonal water, accounting for very arid conditions. The long-chain n-alkanes n-C27, n-C28, n-C29 and n-C30, thought to be derived from the leaf waxes of terrestrial higher plants, were shown to be depleted in D relative to the short-chain alkanes, therefore indicating a different hydrogen source. Terrestrial plants in arid areas mainly use water supplied by precipitation. By using a smaller fractionation of –120 due to evaporation processes in the leaves, reconstructed values vary between –74 and –9 (vs. VSMOW). These values are not indicating extremely arid conditions, implying that the long-chain n-alkanes were transported trough wind and/or rivers into the lagoon at the Zechstein Sea coast. Dwater values, reconstructed using the n-C16 alkane and 18O water values, independently reconstructed on the same sample using the temperature dependant fractionation for dolomites are good agreement and suggest high amounts of evaporation affecting the coastal lagoon. Altogether, our results indicate that hydrogen isotopic ratios of n-alkanes give information on their origin and are a useful proxy for palaeoclimatic reconstruction.  相似文献   

20.
《Applied Geochemistry》2001,16(9-10):1269-1284
Chemistry of major and minor elements, 87Sr/86Sr, δD, and δ18O of oilfield waters, and 87Sr/86Sr of whole rock were measured from Paleozoic strata in the Central Tarim basin, NW China. The aim is to elucidate the origin and migration of formation water and its relation to petroleum migration. High salinity oilfield waters in Carboniferous, Silurian and Ordovician reservoirs have maintained the same Na/Cl ratio as seawater, indicative of subaerially evaporated seawater. Two possible sources of evaporitic water are Carboniferous (CII) and Cambrian, both of which contain evaporitic sediments. Geographic and stratigraphic trends in water chemistry suggest that most of the high salinity water is from the Cambrian. Strontium, H and O isotopes as well as ion chemistry indicate at least 3 end member waters in the basin. High-salinity Cambrian evaporitic water was expelled upward into Ordovician, Silurian and Carboniferous reservoirs along faults and fractures during compaction and burial. Meteoric water has likely invaded the section throughout its history as uplift created subaerial unconformities. Meteoric water certainly infiltrated Silurian and older strata during development of the CIII unconformity and again in recent times. Modern meteoric water enters Carboniferous strata from the west and flows eastward, mixing with the high salinity Cambrian water and to a lesser degree with paleometeoric water. The third end member is highly radiogenic, shale-derived water which has migrated eastward from the Awati Depression to the west. Enrichment of Ca and Sr and depletion of K, Mg, and SO4 relative to the seawater evaporation trajectory suggest waters were affected by albitization of feldspars, dolomitization, illitization of smectite, and SO4 reduction. The mixing of meteoric water occurred subsequently to seawater evaporation, main water-rock interactions, and brine migration. The direction of brine migration is consistent with that of petroleum migration, suggesting water and petroleum have followed the same migration pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号