共查询到20条相似文献,搜索用时 15 毫秒
1.
Ramya Sanam Paras R. Pujari C. Padmakar Chandrakant Jangam Pawan K. Labhasetwar 《Arabian Journal of Geosciences》2016,9(17):696
The present study is an attempt to assess the impact of a saline waste lagoon on the near subsurface through electrical resistivity tomography (ERT). Resistivity and IP imaging data have been collected on profiles close to the lagoon and at a far off location (control location). Water samples have been collected from the lagoon and a municipality drinking well close to it and analysed for the water chemistry. The geoelectrical sections indicate very low resistivity formations in the near subsurface in the vicinity of the lagoon as compared to the control profile. The water chemistry data from the monitoring well close to the profile also indicates very high total dissolved solids (8658 mg/L) and qualitatively supports the contamination of the near subsurface. The conductive formations in the vicinity of the lagoon can be attributed to the overflow from the lagoon or the seepage. 相似文献
2.
3.
Data for the Waimea Plains, New Zealand indicate that the lower confined groundwater aquifer is hydraulically homogeneous and that shallow groundwater levels inland are affected mostly by anthropogenic processes, while those near the coast are affected more by sea level variation. Analysis of long-term data for New Zealand indicates that sea level has increased continuously, but trends are not spatially uniform. Results from non-parametric trend analysis show that rising trends for groundwater levels are predominant in the shallow aquifer both inland on the Waimea Plains and, for recent years, near the coast, while decreasing trends are evident in the underlying confined aquifer near the coast. Groundwater level change in the shallow aquifer appears to be more affected by climate change than the lower confined aquifer. Correlation analysis indicated that groundwater levels are more affected by rainfall during the rainy season than the dry season and more influenced by rainfall inland than near the coast. Groundwater level declines in the lower confined aquifer near the coast, which has its major recharge area inland in the catchment, may be substantially affected by groundwater abstraction in inland areas as well as sea level variation, but there are little evidences of seawater intrusion. Meanwhile, groundwater recharge over the catchment area has great influence on rising groundwater levels in the shallow aquifer and its recharge is estimated to be 417.8 mm/year using chloride concentrations of precipitation and groundwater. 相似文献
4.
Rohana Chandrajith Dinusha Chaturangani Sumith Abeykoon Johannes A. C. Barth Robert van Geldern E. A. N. V. Edirisinghe C. B. Dissanayake 《Environmental Earth Sciences》2014,72(3):867-877
The Panama coastal aquifer system is an important water resource in the southeast coast of Sri Lanka that provides adequate supplies of water for agriculture and domestic uses. One of the biggest threats to these fragile aquifers is the sea water intrusion. In this study, recharging mechanism and geochemical evaluation of groundwater in the coastal sandy aquifer of Panama were evaluated using chemical and stable isotope techniques. Thirty groundwater samples were collected and analyzed for their major ion concentrations and stable isotope ratios of oxygen (18O/16O) and hydrogen (D/H). All studied samples showed a ranking of major anions in the order Cl? > HCO 3 ? > SO 4 2? > N-NO3 ? while cations showed a decreasing order of abundance with Na+ > Ca2+ > Mg2+ > K+. Dominant groundwater hydrogeochemical types were Na–Cl and mixed Ca–Mg–Cl. Results of saturation index calculations indicate that the investigated groundwater body was mostly saturated with respect to calcite, dolomite and gypsum. In addition, stable isotope and geochemical data suggest that fresh groundwater in the aquifer is recharged mainly by local precipitation with slight modification from evaporation and saline water intrusions. Isotope data suggest that mixing of salt water with freshwater occurs in aquifers which are located towards the lagoon. Since the communities in the study area depend entirely on groundwater, an understanding of the hydrogeochemical characteristics of the aquifer system is extremely important for the better water resource management in the region. 相似文献
5.
L. G. Santhosh G. L. Sivakumar Babu 《Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards》2018,12(3):234-252
The selection of landfill sites for municipal solid waste (MSW) disposal involves consideration of geological, hydrological and environmental parameters which exhibit large spatial variability. Therefore, it is necessary to define, to what extent the chosen sites are reliable such that the probability of environmental pollution and health risks to population is minimal. In the present study, groundwater vulnerability to contamination has been assessed using the standard DRASTIC method. The results showed that the study region has 9.45% of very less, 32.94% of less, 25.47% of moderate, 22.79% of high and 9.35% of very high vulnerable zones. The study also revealed that none of the landfills are located in safe zones. This suggests that it requires proper remedial measures to avoid environmental pollution. A landfill site selection process has been carried out using the Analytical Hierarchy Process integrated with Geographical Information System tools. The obtained results showed that only 3.59?km2 (0.08%) of the total area is suitable for landfills. The reliability analysis of the site suitability revealed that landfills are located at unreliable locations where the probability of risk to environmental pollution is high. The presented approach assists decision-makers in selecting reliable locations for the safe disposal of MSW. 相似文献
6.
C. Singaraja S. Chidambaram P. Anandhan M. V. Prasanna C. Thivya R. Thilagavathi J. Sarathidasan 《Arabian Journal of Geosciences》2014,7(3):939-950
A hydrogeochemical study was conducted in Thoothukudi district situated in the southeast coast of Tamil Nadu, India to identify the influence of saltwater intrusion and suitability of groundwater for domestic and agricultural purposes. Scattered studies of this coastal region have reported signs of seawater intrusion, salt pan and industrial activity together with natural weathering process. To have a holistic picture of geochemical processes in the entire district, a total of 135 groundwater samples were collected and analyzed for major cations and anions. The geochemical parameters were compared with world and Indian standards and it was found that most samples are unsuitable for drinking purpose. The geochemical facies of the groundwater showed Na–Cl as the dominant water type indicating the saline nature of the groundwater. Chadda’s plots show that most of the samples fall in the Na–Cl type of water due to seawater intrusion. The samples were classified with parameters like sodium absorption ratio, residual sodium carbonate, total hardness, chloride, index to base exchange, electrical conductivity and facies to determine their suitability for irrigation purpose. It was inferred that the samples falling along the coast are not suitable for the irrigation purpose. The seawater-mixing percentage indicates that strong mixing was observed in the near shore and at the proximity of the salt pan. The permanent hardness was predominant in all the samples compared to the carbonate hardness reducing its domestic usability. 相似文献
7.
Presence of polycyclic aromatic hydrocarbons (PAHs) in the soil and water is of serious environmental concern as they are carcinogenic in nature. The present study was carried out with an aim to identify the presence of PAHs in groundwater of Chennai, Tamil Nadu, India. This is an industrialised area where petrochemical storage tanks are located. Groundwater sampling was carried out in the years 2001, 2011 and 2012 to understand the variation in PAHs content in this area. Concentration of major ions, pH and EC were measured during the year 2001. Of the 24 groundwater samples collected in the year 2001, most of them were alkaline and 62.5 % were not permissible for drinking based on pH and EC, respectively. Influence of seawater was the major reason for the Na–Cl dominant nature of groundwater. TPH and PAHs analysis of groundwater carried out in 2001 and 2011, and physical examination of groundwater in 2012 indicate the increased level of contamination in the eastern part of the study area. The contamination in the eastern part persists because of the fact that groundwater is flowing towards the east and also due to the presence of petrochemical storage tanks near the coast. Thus this area is affected by PAHs pollution which has endured over the past 50 years. An underground storage tank that was functioning in this area was closed about 50 years ago and leakage of PAHs from this tank was reported in the year 1993. However, the present study indicates the decrease in the area of zone of pollution, possibly due to natural flushing of groundwater zone. 相似文献
8.
9.
A data-driven approach for analyzing dynamics of tide–aquifer interaction in coastal aquifer systems
Analysis of tidal effects on aquifer systems plays an important role in coastal aquifer management owing to various hydrological,
engineering and environmental problems in coastal areas. Using the real-world data of unconfined and confined aquifers, a
data-driven approach is presented in this study for the analysis of tide–aquifer interaction in coastal aquifers. Six analytical
tide–aquifer interaction models were selected which take into account the effects of vertical beach, sloping beach, tidal
loading, aquifer leakage, outlet capping, and combined leakage and outlet capping on tide-induced groundwater fluctuations.
The tide–aquifer interaction datasets were obtained from the Konan groundwater basin (unconfined aquifer) of Japan and the
Dridrate groundwater basin (confined aquifer) of Morocco. The analysis of the results obtained by the sloping beach model
revealed that for a given beach slope, the amplitude of groundwater level increases with an increase in aquifer diffusivity
and a decrease in aquifer thickness. However, no significant effect of beach slope was observed in this study at unconfined
sites for all the datasets. The influence of tidal loading was found to be considerably less for all the three confined sites.
Further, the analysis of the results of the leakage model indicated that with an increase in leakage into the aquifer, the
amplitude of groundwater level as well as the phase shift (time lag) decreases. Of all the confined and unconfined datasets,
only two confined sites were found to be affected by outlet capping. Overall, it is concluded that the coastal beach bordering
the Konan basin is not significantly sloping, the contribution of tidal loading to tide-induced groundwater fluctuations in
the Dridrate aquifer is not appreciable, and that the aquifer leakage and outlet capping do not exist at the unconfined sites
under investigation. 相似文献
10.
Antonio Cardona Carlos Gutierrez-Ojeda Manuel Martínez-Morales Gerardo Ortiz-Flores Luis González-Hita 《Environmental Earth Sciences》2018,77(23):785
The Cuatrociénegas area is useful for the investigation of the effect of groundwater extraction in the Chihuahuan freshwater xeric ecoregion. It has been investigated at this time using a selection of geochemical indicators (major, minor and trace elements) and δ34S data, to characterize the origin of groundwater, the main geochemical processes and the mineral/groundwater interactions controlling the baseline geochemistry. The area is composed of limestones of Mesozoic age, with a composite thickness of about 500 m, overlaid by basin fill (poorly consolidated young sediments). Substantial water extraction and modification of natural discharges from the area along the last century have produced a detrimental impact on ecosystem structure and function. Water–rock interactions, mixing and evaporative processes dominate the baseline groundwater quality. Natural recharge is HCO3–Ca type in equilibrium with calcite, low salinity (TDS?<?500 mg/L), Cl? lower than 11 mg/L and average Li+ concentration of 0.005 mg/L. Along the groundwater flow systems, δ34S evidence and mass transfer calculations indicate that Cretaceous gypsum dissolution and dedolomitization reactions adjust water composition to the SO4–Ca type. The increase of water–rock interaction is reflected by Cl? values increase (average 68 mg/L), TDS up to about 1500 mg/L and an average Li+ concentration of 0.063 mg/L. Calculations with chemical geothermometers indicate that temperature at depth could be at maximum of 15–20 °C higher than field-measured temperature for pozas. After groundwater is discharged to the surface, chemical evolution continues; water evaporation, CO2 degassing and precipitation of minerals such as gypsum, calcite and kaolinite represent the final processes and reactions controlling water chemical composition. 相似文献
11.
Electrical geophysical surveys in the mode of vertical electrical soundings (VES) and continuous vertical electrical soundings (CVES) were conducted in the León-Chinandega plains, northwestern Nicaragua, in order to obtain detailed information about the geometry of the different hydrogeological layers in the aquifer and depth to the basement. A total of 51 VES were carried out within the plains. The results show a complex structure towards the north east of the area, and the southwestern part of the plains presents a smoother stratification. The geoelectrical measurements and borehole information indicate that the basement topography is characterized by hills and deep valleys with highly variable basement depths. Fifty CVES where done in a smaller area in the center of the plain. The resistivity data yielded considerable information revealing the existence of two main geo-electrical units. The combined interpretation of geological and geophysical data shows an environment typical of sedimentary volcanic coastal plains. The information collected during this investigation provides valuable data for estimating the fresh-water resources of the León-Chinandega aquifer system and for development of a groundwater management plan. 相似文献
12.
《Journal of African Earth Sciences》2011,61(5):337-345
Two geophysical techniques were integrated to map the groundwater aquifers on complex geological settings, in the crystalline basement terrain in northeast Nuba Mountains. The water flow is structurally controlled by the northwest–southeast extensional faults as one of several in-situ deformational patterns that are attributed to the collision of the Pan-African oceanic assemblage of the Nubian shield against the pre-Pan African continental crust to the west. The structural lineaments and drainage systems have been enhanced by the remote sensing technique. The geophysical techniques used are: vertical electrical soundings (VES) and electrical resistivity tomography (ERT), in addition to hydraulic conductivity measurements. These measurements were designed to overlap in order to improve the producibility of the geophysical data and to provide a better interpretation of the hydrogeological setting of the aquifer complex structure. Smooth and Block inversion schemes were attempted for the observed ERT data to study their reliability in mapping the different geometries in the complex subsurface. The VES data was conducted where ERT survey was not accessible, and inverted smoothly and merged with the ERT in the 3D resistivity grid. The hydraulic conductivity was measured for 42 water samples collected from the distributed dug wells in the study area; where extremely high saline zones were recorded and have been compared to the resistivity values in the 3D model. 相似文献
13.
The coastal alluvial plain of Sarno River (Campania Region, southern Italy) is a very rich environment that has experienced a long history of changes due to both natural phenomena such as eustatic sea-level variations and deposition of volcanoclastic sediments, and human civilizations who populated this area since historical times. As a result, it is characterized by complex stratigraphic sequences and groundwater flow systems. The architecture of the multi-layered aquifer system in a sample area, located in a densely urbanized sector at the mouth of Sarno River, was reconstructed. Starting from the analysis of stratigraphic log data and laboratory geotechnical measurements, the lithostratigraphical-unit sequence was retrieved and a realistic three-dimensional (3D) model of the hydrogeological heterogeneity was obtained. The results of a detailed 2D electrical resistivity tomography survey were used to support the analysis of the spatial heterogeneity of the aquifer system in a sector characterized by lack of log data. The integration of hydrogeological and geophysical data allowed for the reconstruction of a 3D hydrogeophysical model of the multi-layered system, which electrically characterizes and geometrically identifies two aquifers. Finally, piezometric-level measurements validated the hydrogeological–geophysical model and showed the effectiveness of the methodology. 相似文献
14.
15.
This study shows that the intrusive rocks distributed in the Aoyiqieke-Tamuqi area on the southern margin of the Tarim Block are composed of gabbro, diorite, granodiorite and granite, which constitute regionally a nearly EW-trending tectono-magmatic belt. Petrochemically the diorite, granodiorite and granite belong to the calc-alkaline, high-K series, with Na2O/K2O ratios varying between 0.83 and 2.63. M/F ratios in the diorite are within the range of 0.44–0.70 and those of the granodiorite ( granite) are 0.45–0.87. Petrochemistry data show that the intrusive complexes are of the I type and their ΣREE is slightly variable, within the range of 178.31–229.01 × 10−6. The LREE/HREE ratios of the diorite and granite are 3.78–5.13 and 6.69–7.66, respectively. The plutons usually show moderate negative Eu anomalies with δEu values ranging from 0.53 to 0.82, showing almost no difference among different rocks. The (La/Yb)N values of diorite and granite are 12.39−14.86 and 22.07−26.03, respectively. The diorite and granite possess very similar REE distribution patterns, indicating that they were both derived from the same source. As for their trace element ratios, the diorite has higher Nb/Ta ratios than the granite, which are 15.73−17.16 and 12.03−15.01, respectively. It can be seen that the Nb/Ta ratios of the diorite are much closer to the average mantle (17.5). Their Zr/Hf ratios are very close to each other, within the range of 29−34. Th/Y ratios in the diorite are 0.42−0.80 (all less than unity) while those of the granite are 1.02−2.04. Some difference is also noticed in Ti/V between the diorite and the granite (52.6−54.2 for the former and 52.6−54.2 for the latter). As compared with ocean ridge granites, both diorite and granite are characterized by remarkable LILE enrichment, as well as by moderate negative Ba and postive Ce anomalies. The contents of Nb and Ta in the diorite and granite are equivalent to those of the ocean ridge granites, but the contents of Zr, Hf, Sm, Y, and Yb are all lower than those of the ocean ridge granites, indicating that these granites are similar to the island-arc granites of Chile. From their geochemical characteristics, it is considered that the intrusive rocks in the area studied were formed in an island-arc environment at the continental margin. 相似文献
16.
Michel Michaelovitch de Mahiques Rubens Cesar Lopes Figueira Alexandre Barbosa Salaroli Daniel Pavani Vicente Alves Cristina Gonçalves 《Environmental Earth Sciences》2013,68(4):1073-1087
The Cananéia–Iguape system consists of a complex of estuarine and lagoonal channels located in the coastal region of southeastern Brazil known as Lagamar, a Biosphere Reserve recognized by the United Nations Educational, Scientific and Cultural Organization (UNESCO) in 1991. The area suffered dramatic environmental changes along the last ca. 150 years initiated by the 1852 opening of an artificial channel, the Valo Grande, connecting the Ribeira de Iguape River to the estuarine system. Due to Au, Ag, Zn, and Pb mining activities that took place in the upstream regions of the Ribeira de Iguape River since the seventeenth century, the system has acted as a final destination of contaminated sediments. Analysis of cores located along the estuarine system revealed a history of contamination, with an increase of anthropogenic metal input between the decades of 1930 and 1990. The anthropogenic influence can be traced in locations as far as 20 km from the mouth of the artificial channel. 相似文献
17.
Sahebrao Sonkamble 《Journal of the Geological Society of India》2014,84(2):209-220
The vulnerability of the shallow aquifer system for saline water intrusion has been evaluated using the classical tools at a coastal area, southern India. Groundwater samples (N=144) from Quaternary aquifer system within 25 km2 area in pre- and post-monsoon seasons were analyzed for major ion chemistry including Electrical Conductivity (EC). The hydrochemical parameters are examined applying classical irrigation suitability tools. Based on their weight percentages (ratios in meq/l) the dominance of cations and anions was established as Na-Cl and Ca-SO4 type. Results show that high hydraulic conductivity (10?2 to 1 cm/s) of the sandy aquifer enhanced the vertical recharge leading to major spatial distribution suitable for irrigation use in post-monsoon. The overexploitation of groundwater resources has generated reversal of hydraulic gradient enhancing salinity intrusion from marine sources in pre-monsoon. Further, the Differential Global Positioning System (DGPS) survey and water level measurements are assessed to demarcate the study area into zones of water table ‘above mean sea level (amsl)’ and ‘below mean sea level (bmsl)’. It was deduced that, the industrial effluent and seawater were the prime sources of groundwater salinity of water table ‘amsl’ and ‘bmsl’ zones, respectively. The area up to 600 m from marine source is found vulnerable which is falling under ‘Unsuitable’ category of irrigation classifications. The remedial measures are also framed to protect further extension of aquifer vulnerability for sustainable agriculture. 相似文献
18.
19.
Freshwater–saline water interactions were evaluated in a coastal region influenced by external forces including tidal fluctuations and seasonal rainfall variations. Five different coastal zones were considered on Jeju Island, South Korea, and electrical conductivity (EC) profiles from the monitoring wells were examined to identify the configuration of the freshwater–saline water interface. There appeared to be discrepancies among EC profiles measured at different points in time. To analyze the dynamic behavior of freshwater–saline water interactions, groundwater level measurements and multi-depth EC and temperature probes were used to obtain time-series data; the data showed that water level, EC and temperature were influenced by both tidal fluctuations and heavy rainfall. The effects of oceanic tide on EC and temperature differed with depth due to hydraulic properties of geologic formations. A spectral filter was used to eliminate the effects of tidal forces and provide information on the influence of heavy rainfall on water level, EC and temperature. Heavy rainfall events caused different patterns and degrees of variation in EC and temperature with depth. The time-series data of EC and temperature in the subsurface at various depths enable greater understanding of the interaction processes between fresh and saline water. 相似文献
20.
Dynamic variation in the saltwater–freshwater transition zone below a seafront beach in South Korea was investigated with long-term monitoring of the groundwater in relation to the precipitation, wave height, and tide. Correlation, spectral analysis, and regression analysis of monitoring data were performed to deduce the relationships between these factors. The general shape of the transition zone was affected by the seasonal groundwater levels, but temporary fluctuations were predominantly affected by local rising-groundwater-level events. The distinct increases in the groundwater level were closely related to the wave height. Different patterns of electrical conductivity (EC) change were detected in the shallow and deep zones, and these differences indicated that the transition zone was highly dynamic. The EC values at shallow depths were temporarily increased by the wave setup and tidal fluctuations during the rising-groundwater events, but the EC at greater depths was reduced by the seaward or downward movement of the relative freshwater. In exceptional cases, during extreme increases in the groundwater level resulting from seawater flooding, the rapid downward flow of the flooding saltwater through the well bore caused synchronous EC fluctuations at all depths. 相似文献