首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
郭振华  陈红汉  赵彦超  刘建章  陈雷 《现代地质》2007,21(4):712-718,737
流体包裹体是保存在储层中的微小流体样品,包含有丰富的地质信息。通过对鄂尔多斯盆地塔巴庙区块18口井的62块流体包裹体样品进行荧光观察和显微测温,认为该区上古生界地层共发生过6期流体活动,均与油气成藏有关,并以第二期—第六期的天然气充注为主。结合埋藏史分析可知,油气成藏分别发生在距今190~150Ma的早侏罗世中期—中侏罗世晚期,150~124Ma的中侏罗世晚期—早白垩世早期,124~101Ma的早白垩世早期—早白垩世中期,101~86Ma的早白垩世中期—早白垩世中末期和86~70Ma的早白垩世中末期—早白垩世末期。其中,早侏罗世中期—中侏罗世晚期为油气充注的初始阶段,中侏罗世晚期—早白垩世早期为轻质油的主要成藏时期,中侏罗世晚期至早白垩世末为研究区内目的层天然气的主要成藏时期。  相似文献   

2.
《China Geology》2022,5(3):359-371
To accelerate the achievement of China’s carbon neutrality goal and to study the factors affecting the geologic CO2 storage in the Ordos Basin, China’s National Key R&D Programs propose to select the Chang 6 oil reservoir of the Yanchang Formation in the Ordos Basin as the target reservoir to conduct the geologic carbon capture and storage (CCS) of 100000 t per year. By applying the basic theories of disciplines such as seepage mechanics, multiphase fluid mechanics, and computational fluid mechanics and quantifying the amounts of CO2 captured in gas and dissolved forms, this study investigated the effects of seven factors that influence the CO2 storage capacity of reservoirs, namely reservoir porosity, horizontal permeability, temperature, formation stress, the ratio of vertical to horizontal permeability, capillary pressure, and residual gas saturation. The results show that the sensitivity of the factors affecting the gas capture capacity of CO2 decreases in the order of formation stress, temperature, residual gas saturation, horizontal permeability, and porosity. Meanwhile, the sensitivity of the factors affecting the dissolution capture capacity of CO2 decreases in the order of formation stress, residual gas saturation, temperature, horizontal permeability, and porosity. The sensitivity of the influencing factors can serve as the basis for carrying out a reasonable assessment of sites for future CO2 storage areas and for optimizing the design of existing CO2 storage areas. The sensitivity analysis of the influencing factors will provide basic data and technical support for implementing geologic CO2 storage and will assist in improving geologic CO2 storage technologies to achieve China’s carbon neutralization goal.©2022 China Geology Editorial Office.  相似文献   

3.
北山—阿拉善地区侏罗纪盆地受近东西向断层的控制,为东西向展布的断陷湖盆;盆地经历了早、中侏罗世断陷、晚侏罗世坳陷及其以后的改造三大阶段。目前控制侏罗系展布的断层有正断层、逆冲断层和反转断层等。白垩纪盆地受北东向断层的控制,对侏罗纪盆地进行了叠合改造。两个时代的盆地在空间上存在翘倾叠合、叠合保存、部分叠合改造三种干涉方式。盆地的叠合保存区对侏罗系烃源岩埋藏较好,对油气形成有利。  相似文献   

4.
Carbon Capture and Storage (CCS) is one of the effective means to deal with global warming, and saline aquifer storage is considered to be the most promising storage method. Junggar Basin, located in the northern part of Xinjiang and with a large distribution area of saline aquifer, is an effective carbon storage site. Based on well logging data and 2D seismic data, a 3D heterogeneous geological model of the Cretaceous Donggou Formation reservoir near D7 well was constructed, and dynamic simulations under two scenarios of single-well injection and multi-well injection were carried out to explore the storage potential and CO2 storage mechanism of deep saline aquifer with real geological conditions in this study. The results show that within 100 km2 of the saline aquifer of Donggou Formation in the vicinity of D7 well, the theoretical static CO2 storage is 71.967 × 106 tons (P50), and the maximum dynamic CO2 storage is 145.295 × 106 tons (Case2). The heterogeneity of saline aquifer has a great influence on the spatial distribution of CO2 in the reservoir. The multi-well injection scenario is conducive to the efficient utilization of reservoir space and safer for storage. Based on the results from theoretical static calculation and the dynamic simulation, the effective coefficient of CO2 storage in deep saline aquifer in the eastern part of Xinjiang is recommended to be 4.9%. This study can be applied to the engineering practice of CO2 sequestration in the deep saline aquifer in Xinjiang.  相似文献   

5.
结合CO_2地质利用与封存技术机理,在国际权威潜力评估公式的基础上,系统地提出了适合中国地质背景的次盆地尺度CO_2封存潜力评估方法及关键参数取值。同时,以四川盆地为例,依次开展了枯竭油田地质封存与CO_2强化石油开采、枯竭气田与CO_2强化采气、不可采煤层地质封存与CO_2驱替煤层气,以及咸水层地质封存技术的CO_2地质封存潜力。结果表明,四川盆地利用深部咸水层与枯竭天然气田CO_2地质封存潜力最大,期望值分别达154.20×10~8t和53.73×10~8t。其中,枯竭天然气田因成藏条件好、勘探程度高、基础建设完善,为四川盆地及其周边利用枯竭气田CO_2地质封存技术实现低碳减排提供了早期示范机会。CO_2地质利用与封存潜力评估方法,对进一步开展全国次盆地尺度理论封存潜力评估与工程规划具有重要意义。  相似文献   

6.
The utilization of anthropogenic CO2 for enhanced oil recovery (EOR) can significantly extend the production life of an oil field, and help in the reduction of atmospheric emission of anthropogenic CO2 if sequestration is considered. This work summarizes the prospect of EOR and sequestration using CO2 flooding from an Indian mature oil field at Cambay basin through numerical modelling, simulation and pressure study based on limited data provided by the operator. To get an insight into CO2-EOR and safe storage process in this oil field, a conceptual sector model is developed and screening standard is proposed keeping in mind the major pay zone of the producing reservoir. To construct the geomodel, depth maps, well positions and coordinates, well data and well logs, perforation depths and distribution of petrophysical properties as well as fluid properties provided by the operator, has been considered. Based on the results from the present study, we identified that the reservoir has the potential for safe and economic geological sequestration of 15.04×106 metric ton CO2 in conjunction with a substantial increase in oil recovery of 10.4% of original oil in place. CO2-EOR and storage in this mature field has a bright application prospect since the findings of the present work could be a better input to manage the reservoir productivity, and the pressure field for significant enhancement of oil recovery followed by safe storage.  相似文献   

7.
对鄂尔多斯盆地上古生界68口井110块流体包裹体样品的荧光观察,60口井75块样品的显微测温、测盐等系统分析结果表明,该区上古生界砂岩储层发生过6期热流体活动,均与油气成藏有关,并以第2~6期的天然气成藏为主.结合埋藏史分析可知,油气成藏分别发生在距今220~190 Ma(T3中期-J1中期)、190~150 Ma(J1中期-J2中期)、150~130 Ma(J2中期-J2末期)、130~113 Ma(J2末期-K1中早期)、113~98 Ma(K1中早期-K1中晚期)、98~72 Ma(K1中晚期-K1末期),并认为早侏罗世中期-中侏罗世末期、中侏罗世末期-早白垩世末期是鄂尔多斯盆地上古生界天然气的主要成藏时期.  相似文献   

8.
《地学前缘(英文版)》2020,11(6):2309-2321
Carbon capture and storage (CCS) has been proposed as a potential technology to mitigate climate change. However, there is currently a huge gap between the current global deployment of this technology and that which will be ultimately required. Whilst CO2 can be captured at any geographic location, storage of CO2 will be constrained by the geological storage potential in the area the CO2 is captured. The geological storage potential can be evaluated at a very high level according to the tectonic setting of the target area. To date, CCS deployment has been restricted to more favourable tectonic settings, such as extensional passive margin and post-rift basins and compressional foreland basins. However, to reach the adequate level of deployment, the potential for CCS of regions in different tectonic settings needs to be explored and assessed worldwide. Surprisingly, the potential of compressional basins for carbon storage has not been universally evaluated according to the global and regional carbon emission distribution. Here, we present an integrated source-to-sink analysis tool that combines comprehensive, open-access information on basin distribution, hydrocarbon resources and CO2 emissions based on geographical information systems (GIS). Compressional settings host some of the most significant hydrocarbon-bearing basins and 36% of inland CO2 emissions but, to date, large-scale CCS facilities in compressional basins are concentrated in North America and the Middle East only. Our source-to-sink tool allows identifying five high-priority regions for prospective CCS development in compressional basins: North America, north-western South America, south-eastern Europe, the western Middle East and western China. We present a study of the characteristics of these areas in terms of CO2 emissions and CO2 storage potential. Additionally, we conduct a detailed case-study analysis of the Sichuan Basin (China), one of the compressional basins with the greatest CO2 storage potential. Our results indicate that compressional basins will have to play a critical role in the future of CCS if this technology is to be implemented worldwide.  相似文献   

9.
Analysing the provenance changes of synorogenic sediments in the Turpan‐Hami basin by detrital zircon geochronology is an efficient tool to examine the uplift and erosion history of the easternmost Tian Shan. We present detrital zircon U‐Pb analysis from nine samples that were collected within marginal lacustrine Middle‐Late Jurassic and aeolian‐fluvial Early Cretaceous strata in the basin. Middle‐Early Jurassic (159–172 Ma) zircons deriving from the southern Junggar dominated the Middle Jurassic sample from the western Turpan‐Hami basin, whereas Permian‐Carboniferous (270–330 Ma) zircons from the Bogda mountains were dominant in the Late Jurassic to Early Cretaceous samples. Devonian‐Silurian (400–420 Ma) and Triassic (235–259 Ma) zircons from the Jueluotage and Harlik mountains constituted the subordinate age groups in the Late Jurassic and Early Cretaceous samples from the eastern basin respectively. These provenance transitions provide evidence for uplift of the Bogda mountains in the Late Jurassic and the Harlik mountains since the Early Cretaceous.  相似文献   

10.
木里盆地有机质热演化异常及其演化史   总被引:2,自引:0,他引:2  
孟元林 Zhihu.  Y 《地质论评》1999,45(2):135-141
本文讨论了木里盆地中株罗统有机质热演化异常的特征及其成因,并用盆地模拟研究了其演化史,研究表明,不仅在煤一段和煤二段之间存在着反希尔特定律的现象,而且煤二段及其上覆地层烃源岩的有机质成熟度也高于其下的煤一段及下伏地层烃源岩,这种有机质演化热异常是由热蚀变作用引起的,热演化史的研究表明,木时盆地中株罗统在晚侏罗世进入生油门限,开始生油,在白垩纪末期,由于地下水热水的上涌,使煤二段及其上覆地层的有机质  相似文献   

11.
中侏罗世-早白垩世华北地台东部的北黄海盆地受古亚洲构造体制向滨太平洋构造体制转换的影响,其构造演化经历了伸展-反转挤压-伸展的转变.构造体制的差异不但表现在大地构造性质及其产生的地质效应上,也表现在盆地沉积特征、古生物及古气候等方面.本文以北黄海盆地东部坳陷X1井中侏罗统至下白垩统为研究对象,利用泥岩元素地球化学特征对...  相似文献   

12.
This paper reports on the regional screening, selection and geological characterisation of a potential on-shore CO2 storage site (saline aquifer) in north-eastern Germany. The main objective of this study was to identify and investigate a candidate storage site, capable to accommodate the total amount of approximately 400 million tons of CO2. Such a volume is produced by a modern, lignite-fired power plant within its operation lifetime of approximately 40 years. Within north-eastern Germany, several saline aquifers of Triassic, Jurassic and Cretaceous age have been evaluated with respect to their regional occurrence, storage potential and basic reservoir properties. Subsequent to a ranking, considering different criteria, the anticlinal structure Schweinrich holding suitable saline aquifers of the uppermost Triassic and lowest Jurassic has been selected from a number of identified candidate sites. According to results of the geological site characterisation, including structural geological investigations and 3D reservoir modelling, the structure Schweinrich seems to be a suitable site for industrial large scale CO2 storage. Further data acquisition (new wells and 3D seismics) and research (more detailed and comprehensive modelling) is needed in order to prove the structural integrity of the storage site and assure long-term safety.  相似文献   

13.
Li  Huanan  Qin  Quande 《Natural Hazards》2017,88(2):1197-1209

In China, carbon capture and storage (CCS) is recognized as one of the most promising technologies through which to achieve a large reduction in CO2 emissions in future. The choice among different CCS technologies is critical for large-scale applications. With the aim of developing instructive policy suggestions for CCS development, this study proposed an interval programming model to select the optimal CCS technology among the different CCS technologies available in China. The analysis results indicate that the selection of CO2 capture technologies should be based on the actual situation of the project and industry being targeted. If the government implements mandatory CO2 emission reductions, storage in deep saline aquifers is the optimal choice for CO2 sequestration when oil prices are low and the number of available CO2 emission permits is large. In contrast, enhanced oil recovery is the optimal choice when oil prices increase and the availability of CO2 emission permits decreases. It is critical that the government reduce the operating cost and the cost of CO2 capture in particular.

  相似文献   

14.
The polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu deposits in the Kapan, Alaverdi and Mehmana mining districts of Armenia and the Nagorno–Karabakh region form part of the Tethyan belt. They are hosted by Middle Jurassic rocks of the Lesser Caucasus paleo-island arc, which can be divided into the Kapan Zone and the Somkheto–Karabakh Island Arc. Mineralization in Middle Jurassic rocks of this paleo-island arc domain formed during the first of three recognized Mesozoic to Cenozoic metallogenic epochs. The Middle Jurassic to Early Cretaceous metallogenic epoch comprises porphyry Cu, skarn and epithermal deposits related to Late Jurassic and Early Cretaceous intrusions. The second and third metallogenic epochs of the Lesser Caucasus are represented by Late Cretaceous volcanogenic massive sulfide (VMS) deposits with transitional features towards epithermal mineralization and by Eocene to Miocene world-class porphyry Mo–Cu and epithermal precious metal deposits, respectively.The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are poorly understood and previous researchers named them as copper–pyrite, Cu–Au or polymetallic deposits. Different genetic origins were proposed for their formation, including VMS and porphyry-related scenarios. The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are characterized by diverse mineralization styles, which include polymetallic veins, massive stratiform replacement ore bodies at lithological contacts, and stockwork style mineralization. Sericitic, argillic and advanced argillic alteration assemblages are widespread in the deposits which have intermediate to high-sulfidation state mineral parageneses that consist of tennantite–tetrahedrite plus chalcopyrite and enargite–luzonite–colusite, respectively. The ore deposits are spatially associated with differentiated calc-alkaline intrusions and pebble dykes are widespread. Published δ34S values for sulfides and sulfates are in agreement with a magmatic source for the bulk sulfur whereas published δ34S values of sulfate minerals partly overlap with the isotopic composition of contemporaneous seawater. Published mineralization ages demonstrate discrete ore forming pulses from Middle Jurassic to the Late Jurassic–Early Cretaceous boundary, indicating time gaps of 5 to 20 m.y. in between the partly subaqueous deposition of the host rocks and the epigenetic mineralization.Most of the described characteristics indicate an intrusion-related origin for the ore deposits in Middle Jurassic rocks of the Lesser Caucasus, whereas a hybrid VMS–epithermal–porphyry scenario might apply for deposits with both VMS- and intrusion-related features.The volcanic Middle Jurassic host rocks for mineralization and Middle to Late Jurassic intrusive rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone show typical subduction-related calc-alkaline signature. They are enriched in LILE such as K, Rb and Ba and show negative anomalies in HFSE such as Nb and Ta. The ubiquitous presence of amphibole in Middle Jurassic volcanic rocks reflects magmas with high water contents. Flat REE patterns ([La/Yb]N = 0.89–1.23) indicate a depleted mantle source, and concave-upward (listric-shaped) MREE–HREE patterns ([Dy/Yb]N = 0.75–1.21) suggest melting from a shallow mantle reservoir. Similar trace element patterns of Middle Jurassic rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone indicate that these two tectonic units form part of one discontinuous segmented arc. Similar petrogenetic and ore-forming processes operated along its axis and Middle Jurassic volcanic and volcanosedimentary rocks constitute the preferential host for polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu mineralization, both in the Somkheto–Karabakh Island Arc and the Kapan Zone.  相似文献   

15.
Afghanistan consists largely of a series of continental fragments that, moving northward, docked and accreted to the southern proto-Asia continent. The tectonization of the accreted terranes is generally severe and petroleum prospects are limited essentially to the 48,000 mi2 (124,000 km2) North Afghanistan basin. This basin represents the Afghan portion of the Turanian platform, plus the orogenic belt around its southern and eastern perimeter. Exploration to date is judged to be preliminary in character, with some 5 trillion cubic feet (TCF) of gas and 80 million barrels of oil being discovered by 1980. There are two types of traps: Mesozoic low-amplitude drapes or tilted fault blocks, and Neogene highamplitude folds. Appreciable reservoirs are limited to three horizons—Upper Jurassic, Lower Cretaceous, and Paleogene—of which the Lower Cretaceous is considered to be the best. Source rock is confined largely to the Lower and Middle Jurassic shales. Upper Jurassic evaporites form a barrier between the Jurassic source shales and the Lower Cretaceous reservoirs and Neogene folds. There appear to be five principal plays, and estimated total recoverable petroleum in them is 300 million barrels of oil, 9.6 TCF of gas, and 145 million barrels of condensate.  相似文献   

16.
We review the geological and geophysical structural framework of the deep Black Sea and Caspian Sea basins. Based on seismic evidence and subsidence history, we conclude that the deep basins have an oceanic crust formed in a marginal sea environment. We propose that the present deep basins are remnants of a much greater marginal sea formed during three separate episodes during the Mesozoic: in the Middle Jurassic, Upper Jurassic and Late Cretaceous. A tentative sketch of the geologic evolution of the area is presented. The marginal sea reached its greatest extent in the Early Tertiary when it was about 900 km wide and 3000 km long. The central part of the marginal sea has since disappeared during the collision between the Arabian promontory and the Eurasian margin.  相似文献   

17.
Carbon dioxide enhanced oil recovery (CO2-EOR) has been widely applied to the process of carbon capture, utilization, and storage (CCUS). Here, we investigate CO2–oil–water–rock interactions under reservoir conditions (100 °C and 24 MPa) in order to understand the fluid–rock interactions following termination of a CO2-EOR project. Our experimental results show that CO2-rich fluid remained the active fluid controlling the dissolution–precipitation processes in an oil-undersaturated sandstone reservoir; e.g., the dissolution of feldspar and calcite, and the precipitation of kaolinite as well as solid phases comprising O, Si, Al, Na, C, and Ti. Mineral dissolution rates were reduced in the case that mineral surfaces were coated by oil. Mineral wettability and composition, and oil saturation were the main controls on the exposed surface area of grains, and mineral wettability in particular led to selective dissolution. In addition, the permeability of the reservoir decreased substantially due to the precipitation of kaolinite and solid-phase particles, and due to the clogging of less soluble mineral particles released by the dissolution of K-feldspar and carbonate cement, whereas porosity increased. The results provide insight into potential formation damage resulting from CO2-EOR projects.  相似文献   

18.
《International Geology Review》2012,54(15):1842-1863
ABSTRACT

The late Mesozoic magmatic record within the Erguna Block is critical to evaluate the tectonic history and geodynamic evolution of the Great Xing’an Range, NE China. Here, we provide geochronological and geochemical data on Late Jurassic–Early Cretaceous plutonic-volcanic rocks in the northern Erguna Block and discuss their origin within a regional tectonic framework. Late Mesozoic magmatism in the Erguna Block can be divided into two major periods: Late Jurassic (162–150 Ma) and Early Cretaceous (140–125 Ma). Late Jurassic quartz monzonite and dacite show adakite characteristics such as high Al2O3, high Sr, and steeply fractionated REE patterns. Contemporary granitoids and rhyolites are also characterized by strong enrichment of light rare earth elements (LREE) and significant depletion in heavy rare earth elements (HREE), but with more pronounced negative Eu anomalies. Early Cretaceous trachytes and monzoporphyries exhibit moderate LREE enrichment and relatively flat HREE distributions. Coeval granites and rhyolites have transitional signatures between A-type and fractionated I-type felsic rocks. Both Late Jurassic and Early Cretaceous rocks have distinctive negative Nb, Ta, and Ti anomalies, and positive zircon εHf(t) values, suggesting that these magmas were derived from partial melting of Meso-Neoproterozoic accreted lower crust, although melting occurred at a variety of crustal levels. The transition from adakite to non-adakite magmatism reflects continued crustal thinning from Late Jurassic to Early Cretaceous. Our data, together with recently reported isotopic data for plutonic and volcanic rocks, as well as geochemical data, in NE China, suggest that Late Jurassic–Early Cretaceous magmatism in the Erguna Block was possibly induced by post-collisional extension after closure of the Mongol-Okhotsk Ocean.  相似文献   

19.
北羌塘盆地晚中生代地层:早白垩世海相地层的发现   总被引:5,自引:0,他引:5  
针对羌塘盆地是否存在早白垩世海相沉积,以那底岗日地区主干剖面为依托,结合胜利河、托纳木、长蛇山等已初步判断为早白垩世的油页岩剖面为辅助剖面,采用古生物化石定年和同位素定年相结合的研究方法,对胜利河-托纳木地区原初步定为晚侏罗世-早白垩世的海相地层时代作了进一步研究,结果表明,其时代为早白垩世。这些海相地层在胜利河-托纳木地区广泛分布,但岩性组合存在一定的差异,在胜利河-长蛇山地区为油页岩,厚度最大,向东逐渐变薄,过渡为页岩沉积,向西过渡为灰岩沉积。区域上该套地层对下伏油气藏的保存具有重要意义。  相似文献   

20.
Documenting geographic distribution and spatial linkages between CO2 sources and potential sinks in areas with significant levels of CO2 emissions is important when considering carbon-management strategies such as geologic sequestration or enhanced oil recovery (EOR). For example, the US Gulf Coast overlies a thick succession (>6,000 m [>20,000 ft]) of highly porous and permeable sandstone formations separated by thick, regionally extensive shale aquitards. The Gulf Coast and Permian Basin also have a large potential for EOR, in which CO2 injected into suitable oil reservoirs could be followed by long-term storage of CO2 in nonproductive formations below reservoir intervals. For example, >6 billion barrels (Bbbl) of oil from 182 large reservoirs is technically recoverable in the Permian Basin as a result of miscible-CO2 flooding. The Gulf Coast also contains an additional 4.5 Bbbl of oil that could be produced by using miscible CO2. Although the CO2 pipeline infrastructure is well-developed in the Permian Basin, east Texas and the Texas Gulf Coast may have a greater long-term potential for deep, permanent storage of CO2 because of thick brine-bearing formations near both major subsurface and point sources of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号