首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gulf of Aqaba is considered seismically as one of the most active zones of the Dead Sea Transform region. The main shock of the 1995 Gulf of Aqaba earthquake sequence is considered as the largest shock in the (surface wave magnitude Ms?=?7.2) since the sixteenth century. The present study is a trial to detect the probabilistic seismic hazard analysis (PSHA) for Nuweiba site. Data used for this study was a combination of both historical and recent instrumental data. Results of the hazard assessment, expressed as in the worst case scenario, reveal that Nuweiba is exposed to the occurrence of a maximum credible earthquake of magnitude $ m_{{\max }} ~ = ~7.4 \pm 0.31 $ , at hypocentral distance of 15.6?±?10 km. For structure with the return period of 100 years, with a 90% probability of exceedance, the maximum expected earthquake magnitude (ML) is 5.9 in this lifetime. The possibility of the maximum peak ground acceleration at the Nuweiba site is 0.41 g. Results of the hazard assessment can be used as an input data to assess the seismic risk for site of interest.  相似文献   

2.
Coda wave attenuation is estimated for Qeshm Island which is located in the southeastern part of Zagros. For this purpose, the aftershocks of Qeshm earthquake in November 27, 2005, recorded within an epicentral distance less than 100 km, have been used. More than 829 earthquakes were recorded by a local temporary network consisting of 16 short period stations installed after a week after the main shock for ~10 weeks. The coda quality factor, Q c, was estimated using the single-backscattering model in frequency bands of 0.5–24 Hz. In this research, lateral and vertical variations of coda Q in Qeshm Island are explored. In Qeshm Island, absence of significant lateral variation of coda Q is observed. To investigate the attenuation variation with depth, the coda Q value was calculated for coda time windows with different lengths (5, 10, 15, 20, 25, and 30 s). It is observed that coda Q increases with depth. However, in our study area, the rate of increase of coda Q with depth is not uniform. Beneath Qeshm Island, the rate of increase of coda Q is greater at depths less than ~40 km compared with those of larger depths. This is indicating the existence of a low attenuation anomalous structure under the ~40-km depth which may be correlated with the Moho depth in this region. The average frequency relation for this region is Q c = 36 ± 1.2f 0.94 ± 0.039 at a 5 s-lapse time window length and Q c = 110 ± 1.8f 0.88 ± 0.09 at a 30-s lapse time window length.  相似文献   

3.
An earthquake of magnitude 6.9 (M w) occurred in the Sikkim region of India on September 18, 2011. This earthquake is recorded on strong-motion network in Uttarakhand Himalaya located about 900 km away from the epicenter of this earthquake. In this paper acceleration record from six far-field stations has been used to compute the source parameters of this earthquake. The acceleration spectra of ground motion at these far-field stations are strongly affected by both local site effects and near-site anelastic attenuation. In the present work the spectrum of S-phase recorded at these far-field stations has been corrected for anelastic attenuation at both source and site and the site amplification terms. Site amplifications at different stations and near-site shear wave attenuation factor have been computed by the technique of inversion of acceleration spectra given by Joshi et al. (Pure Appl Geophys 169:1821–1845, 2012a). For estimation of site amplification and shear wave quality factor [Q β (f)] at the recording sites, ten local events recorded at various stations between July 2011 and December 2011 have been used. The obtained source spectrum from acceleration records is compared with the theoretical source spectrum defined by Brune (J Geophys Res 76:5002, 1970) at each station for both horizontal components of the records. Iterative forward modeling of theoretical source spectrum gives the average estimate of seismic moment (M o), source radius (r o) and stress drop (Δσ) as (3.2 ± 0.8) × 1026 dyne cm, 13.3 ± 0.8 km and 59.2 ± 8.8 bars, respectively, for the Sikkim earthquake of September 18, 2011.  相似文献   

4.
The b-value of the Gutenberg–Richter’s frequency–magnitude relation and the p-value of the modified Omori law, which describes the decay rate of aftershock activity, were investigated for more than 500 aftershocks in the Aksehir-Afyon graben (AAG) following the 15 December 2000 Sultandagi–Aksehir and the 3 February 2002 Çay–Eber and Çobanlar earthquakes. We used the Kandilli Observatory’s catalog, which contains records of aftershocks with magnitudes ≥2.5. For the Çobanlar earthquake, the estimated b-values for three aftershock sequences are in the range 0.34 ≤  b ≤ 2.85, with the exception of the one that occurred during the first hour (4.77), while the obtained p-values are in the range 0.44 ≤ p ≤ 1.77. The aftershocks of the Sultandagi earthquake have a high p-value, indicating fast decay of the aftershock activity. A regular increase of b can be observed, with b < 1.0 after 0.208 days for the Çay–Eber earthquake. A systematic and similar increase and decrease pattern exists for the b- and p-values of the Çobanlar earthquakes during the first 5 days.  相似文献   

5.
The earthquake hazard parameters and earthquake occurrence probabilities are computed for the different regions of the North Anatolia Fault Zone (NAFZ) using Bayesian method. A homogenous earthquake catalog for M S magnitude which is equal or larger than 4.0 is used for a time period between 1900 and 2015. Only two historical earthquakes (1766, M S = 7. 3 and 1897, M S = 7. 0) are included in Region 2 (Marmara Region) where a large earthquake is expected in the near future since no large earthquake has been observed for the instrumental period. In order to evaluate earthquake hazard parameters for next 5, 10, 20, 50, 100 years, M max (maximum regional magnitude), β value, λ (seismic activity or density) are computed for the different regions of NAFZ. The computed M max values are changed between 7.11 and 7.89. While the highest magnitude value is calculated in the Region 9 related to Tokat-Erzincan, the lowest value in the Region 10 including the eastern of Erzincan. The “quantiles” of “apparent” and “true” magnitudes of future time intervals of 5, 10, 20, 50, and 100 years are calculated for confidence limits of probability levels of 50, 70 and 90 % of the 10 different seismic source regions. The region between Tokat and Erzincan has earthquake hazard level according to the determined parameters. In this region the expected maximum earthquake size is 7.8 with 90 % occurrence probability in next 100 years. While the regional M max value of Marmara Region is computed as 7.61, expected maximum earthquake size is 7.37 with 90 % occurrence probability in next 100 years.  相似文献   

6.
China has a long history of earthquake records. The Shanxi rift system (SRS) is situated along the axial zone of the domal uplift of the Shanxi Highlands and is the boundary between the Ordos block and the North China Plain block. Strong earthquakes in the SRS have been recorded since the thirteenth century. In our work, we applied the Bayesian probability method using extreme value distribution of earthquake occurrences to estimate the seismic hazard in the SRS. The seismic moment, slip rate, earthquake recurrence rate, and magnitude were considered as the basic parameters for computing the Bayesian prior estimates of the seismicity. These estimates were then updated in terms of Bayes’ theorem and historical estimates of seismicity in the SRS. The probability of occurrence of $M_{\text{s}} = 5.0$ for Z1, Z2, and Z3 is less than 0.3, 0.1, and 0.6, respectively (T = 5 years). The probability of the occurrence of M  $\ge$  8.0 is small for the whole SRS. The selection of upper bound magnitude probably influences the result, and the upper bound magnitude of Z1, Z2, and Z3 may be 7.5, 7.0, and 8.5, respectively. We obtained the values of the magnitude of completeness M c (3.2) and the Gutenberg–Richter b value before applying the Bayesian extreme value distribution of earthquake occurrences method.  相似文献   

7.
The composition, abundance, biomass, and life history of mysid species were investigated and described for the first time in the Maryland Coastal Bays (38° N, 75° W), Mid-Western Atlantic, using data collected from 2010 to 2013. Three species of mysids were collected, with Neomysis americana being the most abundant species (maximum mean abundance 6.7 ± 6.4 numbers (nos.) m?2 in July 2013 and biomass 2.78 ± 2.76-mg dry weight (DW) m?2 in July 2012). Americamysis bahia was the second most abundant species (maximum mean abundance: 0.7 ± 0.4 nos. m?2 and biomass: 0.23 ± 0.14 mg DW m?2 in March 2012). Metamysidopsis swifti made up 0.02 to 2 % of mysids and were found in samples collected mainly from southern Chincoteague Bay close to that Bay’s inlet in the fall of 2012. The two most abundant mysid species reproduced continuously from March to July (Neomysis) and May to October (Americamysis). N. americana had larger body and brood sizes than A. bahia. Mysids were relatively low in abundance in late summer, a period of relatively high biomass of fish predators, than during other seasons, suggesting that intense predation might be controlling their abundance. The increase in mysid abundance in the fall following their disappearance in late summer without evidence of reproductive activities suggests species migration from coastal waters into the Maryland Coastal Bays. This annual mysid subsidy perhaps helps to sustain their populations within the bays.  相似文献   

8.
Seismic source characteristics in the Kachchh rift basin and Saurashtra horst tectonic blocks in the stable continental region (SCR) of western peninsular India are studied using the earthquake catalog data for the period 2006–2011 recorded by a 52-station broadband seismic network known as Gujarat State Network (GSNet) running by Institute of Seismological Research (ISR), Gujarat. These data are mainly the aftershock sequences of three mainshocks, the 2001 Bhuj earthquake (M w 7.7) in the Kachchh rift basin, and the 2007 and 2011 Talala earthquakes (M w ≥ 5.0) in the Saurashtra horst. Two important seismological parameters, the frequency–magnitude relation (b-value) and the fractal correlation dimension (D c) of the hypocenters, are estimated. The b-value and the D c maps indicate a difference in seismic characteristics of these two tectonic regions. The average b-value in Kachchh region is 1.2 ± 0.05 and that in the Saurashtra region 0.7 ± 0.04. The average D c in Kachchh is 2.64 ± 0.01 and in Saurashtra 2.46 ± 0.01. The hypocenters in Kachchh rift basin cluster at a depth range 20–35 km and that in Saurashtra at 5–10 km. The b-value and D c cross sections image the seismogenic structures that shed new light on seismotectonics of these two tectonic regions. The mainshock sources at depth are identified as lower b-value or stressed zones at the fault end. Crustal heterogeneities are well reflected in the maps as well as in the cross sections. We also find a positive correlation between b- and D c-values in both the tectonic regions.  相似文献   

9.
An instrumental earthquake catalog covering the time span between 1903 and 2007 and for the area bounded by 32°N–38°N and 35°E–43°E has been compiled in this research. The catalog has a magnitude of completeness (M c ) with 3.5. Least squares and statistical probability Gumbel’s techniques with different approaches have been applied on the instrumental events in order to assess the average recurrence time periods for different earthquake magnitudes. The constants a and b of Gutenberg-Richter and the average recurrence times have been computed firstly for the study area and secondly for the central and northern parts of Dead Sea fault system. The different statistical computations using Knopoff and Kagan formalism are generally in agreement and suggest an average recurrence time of 203 years for an earthquake of magnitude 7 for the region. The occurrence of large well-documented historical earthquakes in Lebanon and western Syria, the existence of active fault segments, the absence of large earthquakes during the study period, the increasing number of the low-magnitude earthquakes, and the continued accumulation of the strain since 1900 indicate therefore the probability of an earthquake occurrence of a large magnitude. This should be permanently taken into consideration in seismic hazard assessment on the local and regional scales.  相似文献   

10.
Hamdache  M.  Pel&#;ez  J. A.  Kijko  A.  Smit  A. 《Natural Hazards》2016,86(2):273-293

We estimate the energetic and spatial characteristics of seismicity in the Algeria–Morocco region using a variety of seismic and statistical parameters, as a first step in a detailed investigation of regional seismic hazard. We divide the region into five seismotectonic regions, comprising the most important tectonic domains in the studied area: the Moroccan Meseta, the Rif, the Tell, the High Plateau, and the Atlas. Characteristic seismic hazard parameters, including the Gutenberg–Richter b-value, mean seismic activity rate, and maximum possible earthquake magnitude, were computed using an extension of the Aki–Utsu procedure for incomplete earthquake catalogs for each domain, based on recent earthquake catalogs compiled for northern Morocco and northern Algeria. Gutenberg–Richter b-values for each zone were initially estimated using the approach of Weichert (Bull Seismol Soc Am 70:1337–1346, 1980): the estimated b-values are 1.04 ± 0.04, 0.93 ± 0.10, 0.72 ± 0.03, 0.87 ± 0.02, and 0.77 ± 0.02 for the Atlas, Meseta, High Plateau, Rif, and Tell seismogenic zones, respectively. The fractal dimension D 2 was also estimated for each zone. From the ratio D 2/b, it appears that the Tell and Rif zones, with ratios of 2.09 and 2.12, respectively, have the highest potential earthquake hazard in the region. The Gutenberg–Richter relationship analysis allows us to derive that in the Tell and Rif, the number of earthquake with magnitude above Mw 4.0, since 1925 normalized to decade and to square cell with 100-km sides is equal to 2.6 and 1.91, respectively. This study provides the first detailed information about the potential seismicity of these large domains, including maximum regional magnitudes, characteristics of spatial clustering, and distribution of seismic energy release.

  相似文献   

11.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   

12.
Tibetan Plateau (TP) is the highest and most extensive plateau in the world and has been known as the roof of the world, and it is sensitive to climate change. The researches of CO2 fluxes (F C) in the TP region play a significant role in understanding regional and global carbon balance and climate change. Eddy covariance flux measurements were conducted at three sites of south-eastern TP comprising Dali (DL, cropland ecosystem), LinZhi (LZ, alpine meadow ecosystem) and Wenjiang (WJ, cropland ecosystem); amongst those DL and LZ are located in plateau region, while WJ is in plain region. Dynamics of F C and influences of vegetation, meteorological (air temperature, photosynthetically active radiation, soil temperature and soil water content) and terrain factors (altitude) were analysed on the basis of data taken during 2008. The results showed that, in the cool sub-season (March, April, October and December), carbon sink appeared even in December with fluxes of (?0.021 to ?0.05) mg CO2 m?2 s?1 and carbon source only in October (0.03 ± 0.0048) mg CO2 m?2 s?1 in DL and WJ site. In LZ site, carbon sink was observed in April: (?0.036 ± 0.0023) mg COm?2 s?1 and carbon sources in December and March (0.008–0.010 mg CO2 m?2 s?1). In the hot sub-season (May–August), carbon source was observed only in May with (0.011 ± 0.0022), (0.104 ± 0.0029) and (0.036 ± 0.0017) fluxes in LZ, DL and WJ site, respectively, while carbon sinks with (?0.021 ± 0.0041), (?0.213 ± 0.0007) and (?0.110 ± 0.0015) mg CO2 m?2 s?1 fluxes in LZ, DL, and WJ, respectively. Comparing with plain region (WJ), carbon sinks in plateau region (DL and LZ) lasted for a longer time, and the absorption sum was large and up to (–357.718 ± 0.0054) and (?371.111 ± 0.0039) g C m?2 year?1, respectively. The LZ site had the weakest carbon sink with (?178.547 ± 0.0070) g C m?2 year?1. Multivariate analysis of covariance showed that altitude (AL) as an independent factor explained 39.5 % of F C (P < 0.026). F C had a quadratic relationship with Normalized difference vegetation index (NDVI) (R 2 ranges from 0.485 to 0.640 for three sites), an exponential relationship with soil temperature at 5-cm depth (ST 5) at night time and a quadratic relationship with air temperature (T a) at day time. Path analysis indicated that photosynthetically active radiation (PAR), sensible heat fluxes (H) and other factors all had direct or indirect effects on F C in all of the three tested sites around the south-eastern TP.  相似文献   

13.
We estimate the energetic and spatial characteristics of seismicity in the Algeria–Morocco region using a variety of seismic and statistical parameters, as a first step in a detailed investigation of regional seismic hazard. We divide the region into five seismotectonic regions, comprising the most important tectonic domains in the studied area: the Moroccan Meseta, the Rif, the Tell, the High Plateau, and the Atlas. Characteristic seismic hazard parameters, including the Gutenberg–Richter b-value, mean seismic activity rate, and maximum possible earthquake magnitude, were computed using an extension of the Aki–Utsu procedure for incomplete earthquake catalogs for each domain, based on recent earthquake catalogs compiled for northern Morocco and northern Algeria. Gutenberg–Richter b-values for each zone were initially estimated using the approach of Weichert (Bull Seismol Soc Am 70:1337–1346, 1980): the estimated b-values are 1.04 ± 0.04, 0.93 ± 0.10, 0.72 ± 0.03, 0.87 ± 0.02, and 0.77 ± 0.02 for the Atlas, Meseta, High Plateau, Rif, and Tell seismogenic zones, respectively. The fractal dimension D 2 was also estimated for each zone. From the ratio D 2/b, it appears that the Tell and Rif zones, with ratios of 2.09 and 2.12, respectively, have the highest potential earthquake hazard in the region. The Gutenberg–Richter relationship analysis allows us to derive that in the Tell and Rif, the number of earthquake with magnitude above Mw 4.0, since 1925 normalized to decade and to square cell with 100-km sides is equal to 2.6 and 1.91, respectively. This study provides the first detailed information about the potential seismicity of these large domains, including maximum regional magnitudes, characteristics of spatial clustering, and distribution of seismic energy release.  相似文献   

14.
The regional time- and magnitude-predictable model has been applied successfully in diverse regions of the world to describe the occurrence of main shocks. In the current study, the model has been calibrated against the historical and instrumental catalog of Iranian earthquakes. The Iranian plateau is divided into 15 seismogenic provinces; then, the interevent times for strong main shocks have been determined for each one. The empirical relations reported by Papazachos et al. (Tectonophysics 271:295–323, 1997a) for the Alpine–Himalayan belt (including Iran) were adopted except for the constant terms that were calculated separately for every seismotectonic area. By using the calibrated equations developed for the study area and taking into account the occurrence time and magnitude of the last main shocks in each seismogenic source, the time-dependent conditional probabilities of occurrence P(?t) of the next main shocks during next 10, 20, 30, 40 and 50 years as well as the magnitude of the expected main shocks (M f) have been estimated. The immediate probability (within next 10 years) of a large main shock is estimated to be high and moderate (>35 %) in all regions except zones 9 (M f = 5.8) and 15 (M f = 6.1). However, it should be noted that the probabilities have been estimated for different M f values in 15 regions. Comparing the model predictions with the actual earthquake occurrence rates shows the good performance of the model for Iranian plateau.  相似文献   

15.
The November 27, 2005 Qeshm Island earthquake (Mw 6.0) occurred along the Zagros Thrust and Fold Belt which accommodates about half of the deformation caused by the Arabian and Eurasian Plates convergence. As typical for the belt, the earthquake was associated with buried reverse faulting and produced no surface rupture. Here, teleseismic broadband P velocity waveforms of the earthquake are inverted to obtain coseismic finite-fault slip distribution of the earthquake. It is obtained that rupture was controlled by failure of a single asperity with largest displacement of approximately 0.6 m, which occurred at a depth of 9 km. The slip model indicated radial rupture propagation from the hypocentre and confirmed blind reverse faulting within deeper part (below the depth of 6 km) of the sedimentary cover above the Hormuz Salt, lying between the cover and the basement, releasing a seismic moment of about 1.3?×?1018 Nm (MW?=?6.0). The results also confirm that the Hormuz Salt behaves as a barrier for rupture propagation to the basement below and occurrence of the aftershock activity downdip from the rupture within the Hormuz Salt. Calculated Coulomb stress variations caused by the coseismic rupture indicates stress coupling between the 2005 Qeshm Island earthquake and both the largest aftershock several hours later and the 2008 Qeshm Island earthquake (MW?=?5.9). The stress calculations further indicated stress load at the depth range (15–20 km) of the well-located aftershocks, corresponding to depths of the Hormuz Salt and top of the basement and providing plausible explanation for occurrence of the aftershocks within those layers.  相似文献   

16.
High-pressure in situ X-ray diffraction experiment of Fe- and Al-bearing phase D (Mg0.89Fe0.14Al0.25Si1.56H2.93O6) has been carried out to 30.5 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the P–V data yields values of V 0 = 86.10 ± 0.05 Å3; K 0 = 136.5 ± 3.3 GPa and K′ = 6.32 ± 0.30. If K′ is fixed at 4.0 K 0 = 157.0 ± 0.7 GPa, which is 6% smaller than Fe–Al free phase D reported previously. Analysis of axial compressibilities reveals that the c-axis is almost twice as compressible (K c  = 93.6 ± 1.1 GPa) as the a-axis (K a  = 173.8 ± 2.2 GPa). Above 25 GPa the c/a ratio becomes pressure independent. No compressibility anomalies related to the structural transitions of H-atoms were observed in the pressure range to 30 GPa. The density reduction of hydrated subducting slab would be significant if the modal amount of phase D exceeds 10%.  相似文献   

17.
Geometric parameters are useful for characterizing earthquake-triggered landslides. This paper presents a detailed statistical analysis on this issue using the landslide inventory of the 2013, Minxian, China Mw 5.9 earthquake. Based on GIS software and a 5-m resolution DEM, geometric parameters of 635 coseismic landslides (with areas larger than 500 m2) were obtained, including height, length, width, reach angle (arc tangent of the height-length ratio), and aspect ratio (length-width ratio). The fitting relationship of height and length from these data is H = 0.6164L + 0.4589, with an average reach angle of 31.65°. The landslide aspect ratios concentrate in the range of 1.4~2.6, with an average of 2.11. According to the plane geometric shapes and aspect ratios, the landslides are classified into four categories: transverse landslide (LA1, L/W ≤ 0.8), isometric landslide (LA2, 0.8 < L/W ≤ 1.2), longitudinal landslide (LA3, 1.2 < L/W ≤ 3), and elongated landslide (LA4, L/W > 3). Statistics of these four types of landslides versus ten classified control factors (elevation, slope angle, slope aspect, curvature, slope position, distance to drainages, lithology, seismic intensity, peak ground acceleration, and distance to seismogenic fault) are used to examine their possible correlations and the landslide-prone areas, which would be helpful to the landslide disaster mitigation in the affected area.  相似文献   

18.
Chemical and isotopic compositions were analyzed in porewater squeezed from a clayey aquitard in Jiangsu coastal plain, eastern China, to interpret the salinity origin, chemical evolution and water-mass mixing process. A strong geochemical fingerprint was obtained with an aligned Cl/Br ratio of 154 in the salinized aquitard porewater over a wide Cl? concentration range (396–9,720 mg/L), indicating that porewater salinity is likely derived from a mixing with old brine with a proportion of less than 20%. Very small contributions of brine exerted limited effects on water stable isotopes. The relationships between porewater δ18O and δD indicate that shallow and intermediate porewaters could be original seawater and were subsequently diluted with modern meteoric water, whereas deep porewaters with depleted stable isotopic values were probably recharged during a cooler period and modified by evaporation and seawater infiltration. The cation–Cl relationship and mineralogy of associated strata indicate that porewater has been chemically modified by silicate weathering and ion-exchange reactions. 87Sr/86Sr ratios of 0.7094–0.7112 further confirm the input source of silicate minerals. Numerical simulations were used to evaluate the long-term salinity evolution of the deep porewater. The alternations of boundary conditions (i.e., the third aquifer mixed with brine at approximately 70 ka BP, followed by recharge of glacial meltwater at 20–25 ka BP, and then mixing with Holocene seawater at 7–10 ka BP) are responsible for the shift in porewater salinity. These timeframes correspond with the results of previous studies on ancient marine transgression-regression in Jiangsu coastal plain.  相似文献   

19.
Seismic hazard analysis of the northwest Himalayan belt was carried out by using extreme value theory (EVT). The rate of seismicity (a value) and recurrence intervals with the given earthquake magnitude (b value) was calculated from the observed data using Gutenberg–Richter Law. The statistical evaluation of 12,125 events from 1902 to 2017 shows the increasing trend in their inter-arrival times. The frequency–magnitude relation exhibits a linear downslope trend with negative slope of 0.8277 and positive intercept of 4.6977. The empirical results showed that the annual risk probability of high magnitude earthquake M?≥?7.7 in 50 years is 88% with recurrence period of 47 years, probability of M?≤?7.5 in 50 years is 97% with recurrence period of 27 years, and probability of M?≤?6.5 in 50 years is 100% with recurrence period of 4 years. Kashmir valley, located in the NW Himalaya, encompasses a peculiar tectonic and structural setup. The patterns of the present and historical seismicity records of the valley suggest a long-term strain accumulation along NNW and SSE extensions with the decline in the seismic gap, posing a potential threat of earthquakes in the future. The Kashmir valley is characterized by the typical lithological, tectono-geomorphic, geotechnical, hydrogeological and socioeconomic settings that augment the earthquake vulnerability associated with the seismicity of the region. The cumulative impact of the various influencing parameters therefore exacerbates the seismic hazard risk of the valley to future earthquake events.  相似文献   

20.
The Lonquimay volcanic complex (LVC) in the high Southern Andes comprises a stratocone and NE-trending flank-cone alignments. Numerous effusive and explosive volcanic eruptions characterize its post-glacial magmatic activity. Our tephrostratigraphic record, pre-dating the four historically documented eruptions, comprises 22 dated pyroclastic deposits that are used to constrain repose time distribution and eruption probability of the LVC magmatic system. Statistical examination of the stratigraphy-based eruption time series yields probabilities of 20–50 % for at least one explosive (VEI ≥ 3) eruption within the next 100 years as of 2011. The tephra deposits are subdivided into three petrographic groups: a felsic group (Lonquimay colored-pumice tephra, LCPT), an intermediate population (Lonquimay gray pumice tephra, LGPT), and a mafic member (Lonquimay dark scoria tephra, LDST). The distribution of these petrographic groups through the LVC tephrostratigraphy is linked to the observed changes in repose times. LDST-deposits as well as deposits compositionally zoned from LCPT to LGPT dominate the lower part of the stratigraphy for which recurrence times are short (RTmean = 417 ± 169a). Deposits younger than 6,000 b2k (years before 2000 AD) have dominantly LCPT and minor LDST compositions, no longer contain LGPT, and repose times are significantly longer (RTmean = 1,350 ± 310a). We interpret the change in eruption regime to result from a rearrangement in the magma storage and plumbing system. Thermobarometric calculations based on cpx–liquid equilibria and amphibole compositions reveal three distinct magma storage levels: the mafic LDST derive from mid crustal storage (P mean = 476 ± 95 MPa, T mean = 1,073 ± 24 °C), felsic LCPT mainly erupted from upper-crustal level (P mean = 86 ± 49 MPa, T mean = 936 ± 24 °C), whereas LGPT samples yield intermediate storage depths (P mean = 239 ± 100 MPa, T mean = 1,013 ± 17 °C). Magma contributions from this intermediate reservoir are restricted to >6,000 b2k when the Lonquimay plumbing system was in a regime of short repose times; disappearance of the intermediate reservoir coincides with the change to longer repose times between eruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号