首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
This study is an attempt to clarify the subsurface geological settings at Abu Darag area in the N part of the Gulf of Suez through the analysis of the available seismic data. The time contour maps of three different reflectors (Top Kareem, Within Rudeis and Top Nukhul) present in this area were constructed and several structures were detected. Generally, the area is considered as a tilted fault block dipping in NE-SW direction and it is dissected by different faults. Major and minor NW-SE faults are the strongest trend in the area while other fault trends are with very weak magnitude and limited extent. All these fault trends restrict between them some high and low areas. Also, two geo-seismic sections were built to confirm the structural prospects on Top Nukhul time contour map.  相似文献   

2.
The Gulf of Suez is characterized by the presence of many hydrocarbon-bearing fields including reservoirs ranging in age from the Palaeozoic to the Tertiary. East Morgan oil field is one of the promising oil fields which are located in the southern part of the Gulf of Suez and tapping hydrocarbon deposits and potentials of the Miocene age. The purpose of this work is to evaluate the Miocene sediments of the Asl and Hawara Formations in East Morgan oil field (western sub-basin) through carrying out an integrated petrophysical, seismic structural and sequence stratigraphy study. Quantitative well logging analyses are carried out over Asl and Hawara Formations to throw light over their hydrocarbon potentiality. Good oil saturation is exhibited by the sand sections of Asl Formation, and fair to good are assigned for those of Hawara Formation in the Belayim dip province. On the other hand, a little hydrocarbon saturation is represented by both formations to the south of the study area in the Morgan accommodation zone (MAZ). The estimated petrophysical parameters of Asl reservoir throughout the study area range between 4 % and 10 % for effective porosity, 18 % and 89 % for shale volume and 2 % and 48 % for hydrocarbon saturation. Meanwhile, the ranges of 1–8 %, 20–98 % and 2–32 % are given for Hawara Formation for effective porosity, shale volume and hydrocarbon saturation, respectively. The lateral distribution maps show that the central and the western parts of the MAZ attain the best petrophysical parameters and hydrocarbon potentiality. Seismic facies analysis, structural framework and depositional history of the study area were studied through interpreting the seismic reflection data of 27 seismic profiles. A number of geo-seismic cross sections are constructed and interpreted to investigate the structural setting of the study area and clarify the main structural elements that affect the hydrocarbon bearing reservoirs. A group of simple NW–SE step-like normal faults, parallel to the Clysmic trend, is found cutting through the reservoir rocks at the bottom layers of the section (Rudeis Formation) and extending upwards to overlying layers (Zeit Formation). Some graben- and horst-shaped structures are found and usually bounded by two sets of oppositely dipping normal step-like cross faults. The seismic facies and sequence analysis revealed that the Miocene rocks are subdivided into two major third-order depositional sequences (S1 and S2), separated by two major depositional sequence boundaries (DSB1 and DSB2). The first sequence (S1, Lower–Middle Miocene rocks) is of prime interest, as it encounters the main hydrocarbon reservoirs in the study area (Asl and Hawara Formations that are equivalent to Rudeis Formation). The seismic facies of this sequence are characterized by low to moderate amplitude, discontinuous horizons and bounded by the depositional sequence boundary (DSB1) at the top. The reflection geometry at the cycle boundaries is considered as erosional truncation, toplaps and even concordant along the upper boundary of the cycle. The external form of these sediments is considered as sheet-like and wedge-shaped units. The entrapment of hydrocarbons seems to be of a combined effect of the stratigraphic and structural elements. It appears clear that both of the step-like structural fault system and the lateral variation of facies are the key parameters that control the accumulation of hydrocarbon in this area and in East Morgan field as a whole.  相似文献   

3.
October Field is one of the most prolific offshore oil fields in the Gulf of Suez of Egypt. It consists of a number of marine platforms and produces oil from different reservoirs of different geological ages from the Lower Cretaceous to the Miocene. The aim of this study was to enhance a seismic-log evaluational procedure to evaluate the Miocene-aged Asl and Hawara Formations which encounter the main hydrocarbon and source rock potentials in the area North of October Oil Field. The well logging data, the borehole seismic data, and the velocity surveys are all used in this study. A number of synthetic seismograms are constructed and interpreted together with the deduced seismic impedance and reflection coefficient data for many wells in the study area. In addition, a comprehensive velocity analysis is performed using the seismic times and the computed average and interval velocities. These seismic-derived parameters are primarily used in recognizing and locating precisely the marl and sand sections of Asl Formation which show low to middle amplitudes. Furthermore, a quantitative well logging analysis is carried out over Asl and Hawara Formations to shed light over their hydrocarbon potentiality. Good oil saturation is exhibited by the Asl sand section which reaches to more than 90% in the southern parts of the study area. The petrophysical characters of this sand are very good in terms of good effective porosity (9% to13%), low shale volume (V sh?<?5%), and high oil saturation (S h?>?85%). The sections of the Asl marl and the Hawara shale on the other hand are considered completely wet. An integrated model making use of the seismic- and log-derived properties is applied over the two studied formations for better understanding the reservoir of interest. Many relations are constructed between velocity, seismic impedance, and the rock pore spaces on one hand and between the velocity, lithology, and fluid content on the other hand. This study revealed that the sand section attains very good oil-bearing potentiality in the study area and proved that the application of an integrated model of the log- and seismic-derived properties led to an enhanced evaluation of the Asl and Hawara Formations, good discrimination between their lithological components besides precise differentiation from the overlying Middle to Late Miocene sections.  相似文献   

4.
5.
Ras Fanar field is one of the largest oil-bearing carbonate reservoirs in the Gulf of Suez. The field produces from the Middle Miocene Nullipore carbonate reservoir, which consists mainly of algal-rich dolomite and dolomitic limestone rocks, and range in thickness between 400 and 980 ft. All porosity types within the Nullipore rocks have been modified by diagenetic processes such as dolomitization, leaching, and cementation; hence, the difficulty arise in the accurate determination of certain petrophysical parameters, such as porosity and permeability, using logging data only. In this study, artificial neural networks (ANN) are used to estimate and predict the most important petrophysical parameters of Nullipore reservoir based on well logging data and available core plug analyses. The different petrophysical parameters are first calculated from conventional logging and measured core analyses. It is found that pore spaces are uniform all over the reservoirs (17–23%), while hydrocarbon content constitutes more than 55% and represented mainly by oil with little saturations of secondary gasses. A regular regression analysis is carried out over the calculated and measured parameters, especially porosity and permeability. Fair to good correlation (R <65%) is recognized between both types of datasets. A predictive ANN module is applied using a simple forward backpropagation technique using the information gathered from the conventional and measured analyses. The predicted petrophysical parameters are found to be much more accurate if compared with the parameters calculated from conventional logging analyses. The statistics of the predicted parameters relative to the measured data, show lower sum error (<0.17%) and higher correlation coefficient (R >80%) indicating that good matching and correlation is achieved between the measured and predicted parameters. This well-learned artificial neural network can be further applied as a predictive module in other wells in Ras Fanar field where core data are unavailable.  相似文献   

6.
Application of geographic information systems and remote sensing are a powerful tool for the assessment of risk and management of flood hazards. By using these techniques to extract new drainage network with more details to prepare natural hazard maps which may help decision makers and planners to put suitable solutions reducing the impact of these hazards. Ras Sudr city and surrounding area had been attacked by flash floods of Wadi Sudr and Wadi Wardan which are nearly perpendicular to the eastern side of the Gulf of Suez, Egypt, and many infrastructures had destroyed. GIS techniques and remote sensing are used to find the interrelation between the morphometric parameters by using statistical correlation to determine the area under varying flood conditions. The results of morphometric parameters and the new data of last flood which occurred on 17-18th January 2010 indicate that the two basins are threatened by the risk of flash floods and Wadi Wardan is more risky than Wadi Sudr.  相似文献   

7.
The bottom of the magnetized crust determined from the spectral analysis of magnetic anomaly is interpreted as a level of the Curie point isotherm. A spectral analysis technique was used to estimate the depth of the magnetic anomalies sources (Curie point depth analysis) of the eastern shore of the Gulf of Suez, Egypt. The depth to the tops and centers of the magnetic anomalies are calculated by azimuthally averaged power spectrum method for the whole area. The results obtained suggests from this study showed that the average depth to the top of the crustal block ranges between 1.15 and 1.9 km, whereas the average depth to the center of the deepest crustal block ranges between 9.1 and 12.7 km. Curie point depths in the study area range between 14.5 km in the northwestern part of the study area and 26 km in the southeastern part of the study area. The results imply a high geothermal gradient (34.7 °C/km) and corresponding high heat flow value (72.87 mW/m2) in the northwestern part of the study area. The southeastern part of the study area displays a low geothermal gradient (24.26 °C/km) and low heat flow value (50.9 mW/m2). These results are consistent with the existence of the possible promising geothermal reservoir in the eastern shore of the Gulf of Suez especially at Hammam Faraun area.  相似文献   

8.
Kh. S. Zaky 《Geotectonics》2017,51(6):625-652
Shear fractures, dip-slip, strike-slip faults and their striations are preserved in the pre- and syn-rift rocks at Gulf of Suez and northwestern margin of the Red Sea. Fault-kinematic analysis and paleostress reconstruction show that the fault systems that control the Red Sea–Gulf of Suez rift structures develop in at least four tectonic stages. The first one is compressional stage and oriented NE–SW. The average stress regime index R' is 1.55 and SHmax oriented NE–SW. This stage is responsible for reactivation of the N–S to NNE, ENE and WNW Precambrian fractures. The second stage is characterized by WNW dextral and NNW to N–S sinistral faults, and is related to NW–SE compressional stress regime. The third stage is belonging to NE–SW extensional regime. The SHmax is oriented NW–SE parallel to the normal faults, and the average stress regime R' is equal 0.26. The NNE–SSW fourth tectonic stage is considered a counterclockwise rotation of the third stage in Pliocene-Pleistocene age. The first and second stages consider the initial stages of rifting, while the third and fourth represent the main stage of rifting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号