首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
气候变化和人类活动被认为是城市洪水演变的主要驱动因素,不同区域气候变化和城市化对洪水演变的影响不尽相同,科学识别城市洪水演变的关键驱动要素、量化气候变化与城市化对城市流域洪水演变的影响是城市洪水管理的重要依据。本文以高度城市化的北京市温榆河流域为例,以季节降雨量、气温、流域前期湿度、不透水面积比及流域内地下水埋深作为潜在驱动要素,对温榆河夏季不同概率的洪水建立GAMLSS模型,分析探讨城市流域洪水演变的主要驱动机制。研究结果表明:温榆河流域夏季不同概率的洪水在研究期均呈现出非一致性特性;城市不透水面积的扩张和降水是温榆河流域夏季洪水变化的主要驱动要素,不同等级洪水的变化具有不同的驱动机制,高于概率70%的小洪水的变化主要受到流域下垫面变化的影响,而小于概率45%的低频洪水的变化主要受降水的影响。  相似文献   

2.
Garg  Vaibhav  Anand  Aishwarya 《GeoJournal》2022,87(4):973-997

Rispana River flows through the heart of Dehradun, the capital city of Uttarakhand State, India. Uttarakhand had separated from Uttar Pradesh State in the year 2000; since then, Dehradun City has witnessed numerous changes. Both urban sprawl and densification were noticed, with around a 32% increase in population. The city had faced recurrent high runoff and urban flood situations in these last 2 decades. Therefore, the study was conducted to detect the change in land use/land cover (LULC), especially urbanization, through remote sensing data; and later to determine the impacts of such changes on the Rispana watershed hydrology. The LULC maps for the year 2003 and the 2017 were generated through supervised classification technique using the Landsat Series satellite datasets. The LULC change analysis depicted that mainly the urban settlement class increased with significant area among other classes from the year 2003–2017. It was noticed that majorly agriculture and fallow land (8.18 km2, which is 13.52% of total watershed area) converted to urban, increasing the impervious area. Almost all the municipal wards, falling in the Rispana watershed, showed urbanization during the said period, with an increase of as high as 71%. The change in LULC or effect of urbanization on the hydrological response of the watershed was assessed using the most widely used Natural Resources Conservation Services Curve Number method. It was noticed that the area under moderated runoff potential (approx. 10.23 km2) steeply increased during the lean season, whereas, high runoff potential zones (5 km2) increased significantly under wet season. Therefore, it was concluded that an increase in impervious surface resulted in high runoff generation. Further, such LULC change along with climate might lead to high runoff within the watershed, which the present storm drainage network could not withstand. The situation generally led to urban floods and affected urban dwellers regularly. Therefore, it is critical to assess the hydrological impacts of LULC change for land use planning and water resource management. Furthermore, under the smart city project, the local government has various plans to improve present infrastructure; therefore, it becomes necessary to incorporate such observations in the policies.

  相似文献   

3.
快速城市化显著改变了城市下垫面空间特征,对地表产汇流过程产生了重要影响。综述城市下垫面空间特征对地表产汇流过程的影响研究进展,以下垫面空间特征对产汇流过程的影响为主线,聚焦不透水面和微地形两类空间特征,总结城市下垫面空间特征及其表征方法;从不透水率与不透水面空间变化、数值模拟与物理实验等方面,分别梳理不透水面和微地形等空间特征对地表产汇流过程的影响研究成果。展望未来城市下垫面空间特征对地表产汇流过程的影响研究重点和发展方向,主要包括影响机理解析、主控空间特征参数识别与敏感性分析、城市水文效应适应性应对等,以期为快速城市化下城市水文效应解析和城市洪涝灾害防治提供一定参考。  相似文献   

4.
The potential impacts of valley fills associated with mountaintop removal/valley fill (MTR/VF) coal mining on downstream flooding in the coalfields of eastern Kentucky and adjacent states are a subject of public debate and scientific uncertainty. This study explored two aspects of this issue. First, hydrologic indices of relative runoff production and surface and subsurface flow detention were applied to conditions typical of headwater and low-order drainage basins in eastern Kentucky. Results show that there is a clear risk of increased flooding (greater runoff production and less surface flow detention) following MTR/VF operations, and suggest that, on balance, valley fills are more likely to increase rather than decrease flood potential. However, there is a wide range of outcomes, qualitatively and quantitatively. Flood risks can be increased or decreased, and the degree of either may vary markedly. The effects of MTR/VF mining on downstream peak flows are highly contingent on local pre- and post-mining conditions, and it would be unwise to apply generalizations to specific sites. Second, the occurrence of flash floods downstream of MTR/VF operations when nearby unmined areas did not flood or had less severe floods has frequently been explained (without supporting data) in terms of locally greater precipitation. The likelihood of such short-range variability of storm precipitation is evaluated by applying the state probability function to NEXRAD radar estimates of precipitation for two 2001 storms which produced flash floods in eastern Kentucky. The spatial structure of the storm precipitation indicates that at the scale of the analysis (pixel size of approximately 2 km) large local variations in storm precipitation are unlikely—that is, the probability of nearby hollows or low-order drainage basins receiving substantially different storm precipitation totals is low.  相似文献   

5.
In arid and semiarid areas, the only surface and groundwater recharge source is the runoff generated through flash floods. Lack of hydrological data in such areas makes runoff estimation extremely complicated. Flash floods are considered catastrophic phenomena posing a major hazardous threat to cities, villages, and their infrastructures. The objective of this study is to assess the flash flood hazard and runoff in Wadi Halyah and its sub-basins. Integration of morphometric parameters, geo-informatics, and hydrological models has been done to overcome the challenge of scarcity of data.Advanced Spaceborne Thermal Emission and Reflection (ASTER) data was used to prepare a digital elevation model (DEM) with 30-m resolution, and geographical information system (GIS) was used in the evaluation of network, geometry, texture, and relief features of the morphometric parameters. Thirty-eight morphometric parameters were estimated and have been linked together for producing nine effective parameters for evaluation of the flash flood hazard in the study basin.Flash flood hazard in Wadi Halyah and its sub-basins was identified and grouped into three classes depending on nine effective parameters directly influencing the flood prone areas. Calculated runoff volume of Wadi Halyah ranges from 26.7 × 106 to 111.4 × 106 m3 with an inundation area of 15 and 27 km2 at return periods of 5 and 100 years, respectively. Mathematical relationships among rainfall depth, runoff volume, infiltration losses, and rainfall excess demonstrate a strong directly proportional relationships with correlation coefficient of about 0.99.  相似文献   

6.
Estimating the potential direct runoff for urban watersheds is essential for flood risk mitigation and rainwater harvesting. Thus, this study aims to estimate the potential runoff depth based on the natural resources conservation service (NRCS) method and delineation of the watersheds in Riyadh, Saudi Arabia. To accomplish this objective, the geographic information systems (GIS) and remote sensing technique (RST) data were integrated to save time and improve analysis accuracy. The employed data include the digital elevation model (DEM), soil map, geology map, satellite images, and daily precipitation records. Accordingly, the hydrologic soil groups (HSG), the land use/land cover (LULC), and curve number (CN) were determined for each watershed in the study area. The results of this analysis show that the study area can be delineated into 40 watersheds with a total area of 8500 km2. Furthermore, the dominant HSG is group D, which represents about 71% of the total area. The LULC maps indicate four major land types in the entire study area: urban, barren land, agricultural land, and roads. The CN of the study area ranges from 64 to 98, while the weighted CN is 92 for the city. The rainfall-runoff analysis shows that the area has a high and very high daily runoff (35–50 and >?50 mm, respectively). Therefore, in this case, the runoff leads to flooding, especially in the urban area and agricultural lands.  相似文献   

7.

This article presents a field-based method to assess site- and rainfall-specific runoff coefficients to be expected for a given period of the year. The method is applied to recognize soil uses/covers leading to reduced runoff water supply of gullies in Kinshasa. The computation of the runoff coefficient needs an infiltration envelope, established on site during a period of interest, and a local pluviogram decomposed in pluviophases. Rainfall simulation is carried out in 35 representative urban sites located in gully runon areas to establish a site-specific infiltration envelope. The runoff coefficient of the 35 sites is calculated for 25 geomorphologically active rains recorded between 1975 and 2012. The results show that several site-specific characteristics control runoff coefficient. The first factor is the over-compaction of the soil. Earthen roads show a runoff coefficient of 96.0 %. The second factor is the presence of a lichen seal. Bare loose soil only colonized by a lichen seal shows a runoff coefficient of 40.7 %. For the other sites, the runoff coefficient is inversely proportional to the percentage of vegetation soil cover, a normally compacted bare soil having a runoff coefficient of up to 30 %, parcels with high grass or cultures providing complete coverage showing no runoff at all. However, mowed lawns develop an impervious root mat close to the surface and, therefore, do not follow this rule: They quickly produce runoff similar to the bare and compacted surfaces. Finally, the factor slope gradient is involved. The differences due to vegetation cover disappear gradually with decreasing slope. Below a slope gradient of 0.08 m m−1, the runoff coefficient is null on a bare surface. Currently, the critical rainfall for gullying in the high town of Kinshasa is 24.9 mm with a mean intensity of 21.8 mm h−1. Roads generate by far most runoff and, therefore, are considered as the primary reason for gullying. The other soil uses lead most of the time to much smaller runoff coefficients, but their relative contribution to the supply of gullies grows with rainfall increase in height and intensity. The results provide material for gully management and adaptation strategies and open perspectives for the development of an early warning system in the region of Kinshasa. The method shows potential for being applied in other urbanized environments.

  相似文献   

8.
在城区化过程中,由于人口快速成长且集中,随之而来的建筑物、道路等不透水面密度增加,导致地下水补给减少及破坏水文循环。为了解土地利用方式改变对长期水文量影响,建立一个适宜的城区水循环模式是非常重要的。选定台湾台北的六馆抽水站集水区进行分析,模式参数经过敏感度分析、率定与验证。采用改变不同透水铺面设置比例的方案,评估其对径流量、入渗量、蒸发散量的改变。并分析设置不同比例屋顶雨水贮集系统对地表径流量及供水量的改变。所建立的城区水循环模式是评估土地利用改变造成水文量的改变的一个有效工具,并可提供决策者做为城区土地利用决策的参考。  相似文献   

9.
A distributed object-based rainfall–runoff simulation (DORS) model with incorporation of detailed impervious surface-area (ISA) data, derived from digital true-color orthophotography data with high spatial resolution, was developed. This physically based model simulates hydrologic processes of precipitation interception, infiltration, runoff, evapotranspiration, change of soil moisture, change of water-table depth, runoff routing, groundwater routing, and channel-flow routing. The modeling processes take objects based on land-cover types as fundamental spatial units in order to reduce data volume, increase computational efficiency, strengthen representation of watersheds, and utilize the data in variable scales. US Geological Survey stream-gaging data were used to validate the temporal variation of simulated discharge within two watersheds in Rhode Island State. The ratio of absolute error to the mean and the Nash coefficient in the validation period are 7.2% and 0.90 for the first watershed, and 8.0% and 0.77 for the second watershed, respectively. The results indicate that the DORS model is able to capture the relationship between rainfall and runoff in the study area, and that it is applicable in the further study of ISA impacts on the water cycle and associated pollution problems. The results also demonstrate that the performance of the hydrologic simulation is improved with ISA data with high spatial resolution.  相似文献   

10.
Flash floods are the most common type of natural hazards that cause loss of life and massive damage to economic activities. During the last few decades, their impact increased due to rapid urbanization and settlement in downstream areas, which are desirable place for development. Wadi Asyuti, much like other wadis in the Eastern Desert of Egypt, is prone to flash flood problems. Analysis and interpretation of microwave remotely sensed data obtained from the Shuttle Radar Topography Mission (SRTM) and Tropical Rainfall Measuring Mission (TRMM) data using GIS techniques provided information on physical characteristics of catchments and rainfall zones. These data play a crucial role in mapping flash flood potentials and predicting hydrologic conditions in space and time. In order to delineate flash flood potentials in Wadi Asyuti basin, several morphometric parameters that tend to promote higher flood peak and runoff, including drainage characteristics, basin relief, texture, and geometry were computed, ranked, and combined using several approaches. The resulting flash flood potential maps, categorized the sub-basins into five classes, ranging from very low to very high flood potentials. In addition, integrating the spatially distributed drainage density, rainfall intensity, and slope gradient further highlighted areas of potential flooding within the Wadi Asyuti basin. Processing of recent Landsat-8 imagery acquired on March 15, 2014, validated the flood potential maps and offered an opportunity to measure the extent (200–900 m in width) of the flooding zone within the flash flood event on March 9, 2014, as well as revealed vulnerable areas of social and economic activities. These results demonstrated that excessive rainfall intensity in areas of higher topographic relief, steep slope, and drainage density are the major causes of flash floods. Furthermore, integration of remote sensing data and GIS techniques allowed mapping flood-prone areas in a fast and cost-effective to help decision makers in preventing flood hazards in the future.  相似文献   

11.
Forest fire can modify and accelerate the hydrological response of Mediterranean basins submitted to intense rainfall: during the years following a fire, the effects on the hydrological response may be similar to those produced by the growth of impervious areas. Moreover, climate change and global warming in Mediterranean areas can imply consequences on both flash flood and fire hazards, by amplifying these phenomena. Based on historical events and post-fire experience, a methodology to interpret the impacts of forest fire in terms of rainfall-runoff model parameters has been proposed. It allows to estimate the consequences of forest fire at the watershed scale depending on the considered burned area. In a second stage, the combined effect of forest fire and climate change has been analysed to map the future risk of forest fire and their consequence on flood occurrence. This study has been conducted on the Llobregat river basin (Spain), a catchment of approximately 5,000 km2 frequently affected by flash floods and forest fires. The results show that forest fire can modify the hydrological response at the watershed scale when the burned area is significant. Moreover, it has been shown that climate change may increase the occurrence of both hazards, and hence, more frequent severe flash floods may appear.  相似文献   

12.
Assessing flash flood hazard in an arid mountainous region   总被引:2,自引:1,他引:1  
Although flash floods are one of the major natural disasters that may hamper human development in arid areas, aspects of the process leading to their initiation remain uncertain and poorly understood. In the present study, wadi El-Alam Basin, one of the major basins in the Eastern Desert of Egypt that is frequently subjected to severe flash flood damage, is selected for investigation. Here, a hydrological modeling approach was used to predict flash flood hazard within the basin. Earlier work conducted for the same basin showed that such approach is successful and was able to accurately highlight the locations of historical flood damage. However, such work was based on one set of arbitrary model parameters. The present study has taking into account the rainfall as the excitation factor in the adopted hydrological modeling. The study aims to build on the earlier study by investigating impacts of variation of rainfall depth, areal coverage, and location on flash flood generation. Results demonstrate that the basin under study requires a rainstorm intensity of at least 40 mm in order to initiate surface runoff with a noticeable flood peak at its main outlet. The location of rainstorm has a major effect on the shape of the basin final hydrograph. Furthermore, in the study basin, the upstream flood appears to be of a magnitude and a peak flow that is much higher than those for downstream ones, which believes to be strongly attributed to the surface steepness and impermeability of the former. The used approach shows to be useful in the rapid assessing of flash flood hazard in mountainous desert and could be adopted, with appropriate modifications, elsewhere in arid regions.  相似文献   

13.
Runoff has increased many fold in urban areas due to increase in paved areas, training of streams and construction of storm water drains. The recharge is therefore continuously decreasing; resulting in depleting groundwater reserves beneath large cities, especially those situated on water divides. In order to reduce surface runoff and replenish groundwater many advocate artificial recharge through rainwater harvesting. Conventionally, detailed hydrogeological survey is needed by expert hydrogeologists to suggest suitable sites for rooftop rainwater harvesting and storage in the subsurface aquifers. Pune, a rapidly growing city, is under severe stress due to shortage of water in some areas. An effort has been made in this study to identify areas suitable for rooftop rainwater harvesting by integrating traditional hydrogeological survey data with the help of Remote Sensing and Geographic Information System. This endeavour has led to develop a program called SLUGGER-DQL which helps to identify potential sites for rooftop rainwater harvesting and artificial recharge. The program is open ended and several other factors controlling potential recharge can be easily added on. Based on the results of the present study, potential sites for rainwater harvesting and artificial recharge have been identified in the Pune University-Shivajinagar-Kothrud area. The present paper demonstrates the utility of traditional hydrogeological surveys combined with modern techniques in solving problems related to urban hydrogeology and town planning.  相似文献   

14.
Enxoé is a small temporary river with a flushy regime, which flash floods carry significant loads to the reservoir. As a result, the reservoir, which supplies 25,000 inhabitants, exhibits a high trophic state and cyanobacteria blooms since its construction in 1998, with water abstractions requiring extensive treatment. This study aimed to understand the contribution of flash floods to the Enxoé’s reservoir high trophic state using a modeling approach. This was the first time the river was monitored and that a modeling study was carried out. The MOHID-Land model was implemented to assess the water path in the catchment, and was integrated with field data to compute river loads. Results confirmed the importance of flash events. During flash floods, water properties were determined by soil surface and river bottom wash out, and depended mostly on the flush sequence and intensity. Model simulations showed that soil surface permeability reduction was an important factor regulating surface runoff while soil moisture was low. The first flood after the dry period contributed to 2% of the yearly discharge, 3% of yearly N load, and 7% of the yearly P loads. Winter floods contribution differed, producing 10% of both yearly discharge and loads. However, concentration of particulate matter and organic compounds in the first flood were one order of magnitude higher than in winter floods. This was due to river bottom resuspension and erosion of riparian areas, representative dynamics of a flushy regime. During subsequent winter floods, nutrient concentrations tended to remain constant as the watershed surface and respective soils were washed. Further work should link a watershed model to a reservoir model to depict the flood impact in the reservoir, and test management strategies to reduce the reservoir trophic state.  相似文献   

15.
The probability of the occurrence of urban flash floods has increased appreciably in recent years. Scientists have published various articles related to the estimation of the vulnerability of people and vehicles in urban areas resulting from flash floods. However, most published works are based on research performed using numerical models and laboratory experiments. This paper presents a novel approach that combines the implementation of image velocimetry technique (large-scale particle image velocimetry—LSPIV) using a flash flood video recorded by the public locally and the estimation of the vulnerability of people and vehicles to high water velocities in urban areas. A numerical one‐dimensional hydrodynamic model has also been used in this approach for water velocity characterization. The results presented in this paper correspond to a flash flood resulting on November 29, 2012, in the city of Asunción in Paraguay. During this flash flood, people and vehicles were observed being carried away because of high water velocities. Various sequences of the recorded flash flood video were characterized using LSPIV. The results obtained in this work validate the existing vulnerability criterion based on the effect of the flash flood and resulting high water velocities on people and vehicles.  相似文献   

16.
Thailand has undergone significant forest cover changes in recent decades, and this is likely to have altered the hydrological functioning of many watersheds; however, such potential impacts are not fully understood. To contribute towards a better understanding of the potential hydrological impacts of forest cover changes, this study examines the temporal trends of several hydrological indices in eight watersheds of Thailand over the period from 1982 to 2013. A number of hydrological indices (runoff coefficient, baseflow index, flow duration indices, streamflow elasticity, dryness index) were analysed using a combined Thiel–Sen/Mann–Kendall trend-testing approach, to assess the magnitude and significance of patterns in the observed data. These trend tests indicated that the change in the hydrological response of watersheds varied with the change in structure and composition of forest species. A significant increase in runoff (viz. average flow) was observed in those watersheds covered with natural forests, whereas a significant reduction in runoff (viz. baseflow and low runoff) was observed in those watersheds where the land cover was changed to Para rubber plantations and reforested areas. It is also noteworthy that the watersheds covered by natural forest showed more streamflow elasticity than plantations or reforested areas. These results highlight the importance of considering both forest types/dynamics and watershed characteristics when assessing hydrological impacts.  相似文献   

17.
降雨和地形地貌对水文模型模拟结果的影响分析   总被引:2,自引:0,他引:2       下载免费PDF全文
概念性水文模型数量众多,判断模型是否适合研究流域可以通过模拟结果来体现,但是熟悉流域的产汇流特性可以筛选模型,从根源上大量减少工作量,也可以解决相似流域无资料的问题。选取6种概念性水文模型,以马渡王、板桥和志丹这3个半湿润与半干旱流域为研究区域,探讨流域特性与模型结构之间的关系,并通过降雨和地形地貌分析其对模型模拟结果的影响。研究结果表明,流域地形及植被对产汇流过程有重要影响,由于局部产流现象严重,河道坡度影响大于流域平均坡度,当区域气候条件相差不大时,地形地貌比降雨对流域产汇流特性影响更大。因此对于水文模型的选择,可以在熟悉流域产汇流特性的基础上因地制宜,必要时可以增加适合研究流域的模块来获得更好的预报,在半干旱与半湿润流域,同时具有蓄满和超渗机制的模型能得到更好的应用。  相似文献   

18.
Several traditional techniques have been used for estimating storm-water runoff from ungauged watersheds. Some of these techniques were applied to watersheds of Rashadia in south-eastern desert of Jordan. When engineers apply rainfall-runoff models for hydrologic design, there are difficulties in defining and quantifying peak discharges that are required to design different types of hydraulic structures. The lack of data presents major difficulties for rainfall-runoff modeling in arid regions. These regions have characteristically high rainfall intensity and consequent flash floods. The specific objectives of this study are: (1) apply synthetic hydrographs for estimating peak discharges from limited hydrological data. (2) Evaluate the reliability of six techniques to accurately estimate storm-water runoff; and, to evaluate the runoff that is required to design hydraulic structures such as bridges, culverts and dams. (3) Estimate the flood resulting from direct runoff after subtracting all the loses such as: the infiltration, interflow and evaporation. (4) Develop a simple regression relationship between peak flow discharges and catchment areas. The results show that there is uncertainty in determining the accuracy of storm-water volume, this is due to several methods were utilizing the estimation the hydrographs base time, but promising results in predicting the peak flow discharge.  相似文献   

19.
Urbanization has accelerated rapidly over the last century, which has caused surfaces in natural ecosystems to shift to impervious surfaces. As a result, urban watershed ecosystems show altered physical, chemical and ecological process. As an important part of watershed management, urbanization has become one of the key issues involved in the deterioration of water quality. Impervious surface area (ISA) has been recognized as a key indicator of the effects of non-point runoff and water quality within a particular watershed. Numerous case studies have been conducted to investigate the relationship between urbanization and water quality in different study areas. However, there is still a lack of understanding regarding quantitative analysis of the threshold between urbanization and water quality indicators. This study was conducted to improve the understanding of how to quantify a threshold between urbanization and water quality, taking the rapid urbanization zone of Shenzhen, China as a case study. To accomplish this, ISA was extracted from the Landsat? image using a linear spectral mixture method to quantify the urbanization. The relationship between water quality indicators and ISA was then analyzed by nonlinear regression, and the threshold between ISA and the chemical indicators of water quality was investigated using the statistical segment approach method. The results indicate that the water quality indicators and ISA are significantly correlated, and that, with the exception of Zn, Pb, and CN, the water quality indicators had R 2 values greater than 0.45. Furthermore, with the exception of Zn, F?, Pb and oils, water quality indicators were found to have an ISA threshold of 36.9–52.9 %, indicating that it is important to control the ISA below 36.9 % in urbanization watersheds to enable effective urban watershed management.  相似文献   

20.
Improvement in modern water resource management has become increasingly reliant on better characterizing of the spatial variability of groundwater recharge mechanisms. Due to the flexibility and reliability of GIS-based index models, they have become an alternative for mapping and interpreting recharge systems. For this reason, an index model by integrating water balance parameters (surface runoff, actual evapotranspiration, and percolation) calculated by Thornthwaite and Mather’s method, with maps of soil texture, land cover, and terrain slope, was developed for a sustainable use of the groundwater resources. The Serra de Santa Helena Environmental Protection Area, next to the urbanized area of Sete Lagoas (MG), Brazil, was selected as the study area. Rapid economic growth has led to the subsequent expansion of the nearby urban area. Large variability in soil type, land use, and slope in this region resulted in spatially complex relationships between recharge areas. Due to these conditions, the study area was divided into four zones, according to the amount of recharge: high (>?100 mm/year), moderate (50–100 mm/year), low (25–50 mm/year), and incipient (>?25 mm/year). The technique proved to be a viable method to estimate the spatial variability of recharge, especially in areas with little to no in situ data. The success of the tool indicates it can be used for a variety of groundwater resource management applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号