首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
For assessing landslide susceptibility, the spatial distribution of landslides in the field is essential. The landslide inventory map is prepared on the basis of historical information of individual landslide events from different sources such as previously published reports, satellite imageries, aerial photographs and interview with local inhabitants. Then, the distribution of landslides in the study area is verified with field surveys. However, the selection of contributing factors for modelling landslide susceptibility is an inhibit task. The previous studies show that the factors are chosen as per availability of data. This paper documents the landslide susceptibility mapping in the Garuwa sub-basin, East Nepal using frequency ratio method. Nine different contributing factors are considered: slope aspect, slope angle, slope shape, relative relief, geology, distance from faults, land use, distance from drainage and annual rainfall. To analyse the effect of contributing factors, the landslide susceptibility index maps are generated four times using (a) topographical factors and geological factors, (b) topographical factors, geological factors and land use, (c) topographical factors, geological factors, land use and drainage and (d) all nine causative factors. By comparing with the pre-existing landslides, the fourth case (considering all nine causative factors) yields the best success rate accuracy, i.e. 81.19 %, which is then used to produce the final landslide susceptibility zonation map. Then, the final landslide susceptibility map is validated through chi-square test. The standard chi-square value with 3 degrees of freedom at the 0.001 significance level is 16.3, whereas the calculated chi-square value is 7,125.79. Since the calculated chi-square value is greater than the standard chi-square value, it can be concluded that the landslide susceptibility map is considered as statistically significant. Moreover, the results show that the predicted susceptibility levels are found to be in good agreement with the past landslide occurrences.  相似文献   

2.
Landslides cause extensive loss of life and property in the Nepal Himalaya. Since the late 1980s, different mathematical models have been developed and applied for landslide susceptibility mapping and hazard assessment in Nepal. The main goal of this paper is to apply fuzzy logic to landslide susceptibility mapping in the Ghurmi-Dhad Khola area, Eastern Nepal. Seven causative factors are considered: slope angle, slope aspect, distance from drainage, land use, geology, distance from faults and folds, soil and rock type. Likelihood ratios are obtained for each class of causative factors by comparison with past landslide occurrences. The ratios are normalized between zero and one to obtain fuzzy membership values. Further, different fuzzy operators are applied to generate landslide susceptibility maps. Comparison with the landslide inventory map reveals that the fuzzy gamma operator with a γ-value of 0.60 yields the best prediction accuracy. Consequently, this operator is used to produce the final landslide susceptibility zonation map.  相似文献   

3.
A tropical cyclone was formed over central northern Africa near Egypt, Libya and Crete, and it moved and deepened toward the north–northeast; meanwhile, the storm destroyed many regions in the west, southwest and central of Turkey. The cyclone carried huge dust from the north of Africa to Turkey and reduced the visibility to less than 1 km and raised the wind speed. As a result of severe storm, some meteorological stations have new extreme values that the strongest wind speed measured was 81 knots in the central region of Turkey. Medicane with wind speed 81 knots especially over Turkey is a rare event. This devastating cyclone carried exceptionally very strong winds (>80 kts) with favorable conditions to follow windstorm conceptual model. The cyclone caused adverse conditions such as excessive injuries, fatal incidents and forest fires. Mesoscale vortex formed and affected particularly the middle and western regions of Turkey. The vertical thermodynamic structure of storm is compared with April values of 40 years of datasets over Istanbul. Moreover, four different winds {measurement masts} of Istanbul Atatürk Airport are used for the microscale analysis of different meteorological parameters during deepened pressure level. In addition, divergence and vorticity of stormy weather are discussed in details during the effective time period of storm by solving equations and validated using ERA-40 reanalysis. We obtained many monitoring data sources such as ground base, radar, radiosonde and satellite display the values of the intensity of wind speed caused by cyclones of tropics have revealed similarities.  相似文献   

4.
The objective of this study is to map landslide susceptibility in Zigui segment of the Yangtze Three Gorges area that is known as one of the most landslide-prone areas in China by using data from light detection and ranging (LiDAR) and digital mapping camera (DMC). The likelihood ratio (LR) and logistic regression model (LRM) were used in this study. The work is divided into three phases. The first phase consists of data processing and analysis. In this phase, LiDAR and DMC data and geological maps were processed, and the landslide-controlling factors were derived such as landslide density, digital elevation model (DEM), slope angle, aspect, lithology, land use and distance from drainage. Among these, the landslide inventories, land use and drainage were constructed with both LiDAR and DMC data; DEM, slope angle and aspect were constructed with LiDAR data; lithology was taken from the 1:250,000 scale geological maps. The second phase is the logistic regression analysis. In this phase, the LR was applied to find the correlation between the landslide locations and the landslide-controlling factors, whereas the LRM was used to predict the occurrence of landslides based on six factors. To calculate the coefficients of LRM, 13,290,553 pixels was used, 29.5 % of the total pixels. The logical regression coefficients of landslide-controlling factors were obtained by logical regression analysis with SPSS 17.0 software. The accuracy of the LRM was 88.8 % on the whole. The third phase is landslide susceptibility mapping and verification. The mapping result was verified using the landslide location data, and 64.4 % landslide pixels distributed in “extremely high” zone and “high” zone; in addition, verification was performed using a success rate curve. The verification result show clearly that landslide susceptibility zones were in close agreement with actual landslide areas in the field. It is also shown that the factors that were applied in this study are appropriate; lithology, elevation and distance from drainage are primary factors for the landslide susceptibility mapping in the area, while slope angle, aspect and land use are secondary.  相似文献   

5.
6.
Forest conversion due to illegal logging and agricultural expansion is a major problem that is hampering biodiversity conservation efforts in the Zagros region. Yet, areas vulnerable to forest conversion are unknown. This study aims to predict the spatial distribution of deforestation in western Iran. Landsat images dated 1988, 2001, and 2007 are classified in order to generate digital deforestation maps which locate deforestation and forest persistence areas. Meanwhile, in order to examine deforestation factors’ investigation, deforestation maps with physiographic and human spatial variables are entered into the model. Areas vulnerable to forest changes in the Zagros forest region are predicted by a multilayer perceptron neural network (MLPNN) with a Markov chain model. The results show that about 19,294 ha forest areas are deforested in the last 19 years. The predictive performance of the model appears successful, which is validated using the actual land cover map of the same year from Landsat data. The validated map is found to be 94 % accurate. The validation is also tested using the relative operating characteristic approach which yielded a value of 0.96. The model is then further extended to predict forest cover losses for 2020. The MLPNN approach was found to have a great potential to predict land use/land cover changes because it permits developing complex, nonlinear models.  相似文献   

7.
This paper describes the application of the knowledge-based fuzzy logic method to integrate various exploratory geo-dataset in order to prepare a mineral prospectivity map (MPM) for copper exploration. Different geophysical layers which are derived from the magnetic and the electrical surveys, along with the ones extracted from the background geology (i.e., lithology, fault and alteration) and geochemical data are incorporated in such process. Seridune copper deposit located in the Kerman province of Iran is the case study to delineate its high potential zones of Cu-bearing mineralization for drilling additional boreholes. Four layers from the magnetic data involving upward continuation, analytic signal, reduced to pole and pseudo gravity are assigned in the multi-disciplinary geo-dataset to locate the intrusive complexes responsible for Cu mineralization. The apparent resistivity, chargeability and sulfide factor layers acquired from geo-electrical data are also included in the final preparation of MPM. Then the normalized weights of seven geophysical, three geological and one geochemical evidential layers as main criteria are determined based upon the knowledge of expert decision makers. Fuzzy operators (i.e., Sum and Gamma) are applied to integrate these exploratory features. To evaluate the performance and applicability of the approach, the productivity of the drilled boreholes (Cu concentration multiplied by ore thickness) are used to validate the produced MPMs. It is shown that an optimum correlation coefficient of 0.86 exists between the MPM values and Cu productivity criterion along drilled boreholes.  相似文献   

8.
Landslide susceptibility zonation mapping assists researchers greatly to understand the spatial distribution of slope failure probability in a region. Being extremely useful in reducing landslide hazards, such maps could simply be produced using both qualitative and quantitative methods. In the present study, a multivariate statistical method called ‘logistic regression’ was used to assess landslide susceptibility in Hashtchin region, situated in west of Alborz Mountainsnorthwest of Iran. In this study, two independent variables, categorical (predictor) and continuous, were drawn on together in the model. To identify the region’s landslides use was made of aerial photographs, field studies and topographic maps. To prepare the database of factors affecting the region’s landslides and to determine landslide zones, geographic information system (GIS) was used. Using such information, landslide susceptibility modeling was accomplished. The data related to factors causing landslides were extracted as independent variables in each cell (in 50 m×50 m cells). Then, the whole data were input into the SPSS, Version 18. The prepared database was later analyzed using logistic regression, the forward stepwise method and based on maximum likelihood estimation. Regression equation was determined using obtained constants and coefficients and the landslide susceptibility of the area in grid-cells (pixels) was computed between 0 and 0.9954. The Receiver Operating Characteristic (ROC) curve was used to assess the accuracy of the logistic regression model. The predicting ability of the model was 84.1% given the area under ROC curve. Finally, the degree of success of landslide susceptibility zonation mapping was estimated to be 79%.  相似文献   

9.
滑坡灾害空间预测支持向量机模型及其应用   总被引:4,自引:1,他引:4  
戴福初  姚鑫  谭国焕 《地学前缘》2007,14(6):153-159
随着GIS技术在滑坡灾害空间预测研究中的广泛应用,滑坡灾害空间预测模型成为研究的热点问题。在总结滑坡灾害空间预测研究现状的基础上,简要介绍了两类和单类支持向量机的基本原理。以香港自然滑坡空间预测为例,采用两类和单类支持向量机进行滑坡灾害空间预测,并与Logistic回归模型进行了比较。结果表明,两类支持向量机模型优于Logistic回归模型,而Logistic回归模型优于单类支持向量机模型。  相似文献   

10.
In northern parts of Iran such as the Alborz Mountain belt, frequent landslides occur due to a combination of climate and geologic conditions with high tectonic activities. This results in millions of dollars of financial damages annually excluding casualties and unrecoverable resources. This paper evaluates the landslide susceptible areas in Central Alborz using the probabilistic frequency ratio (PFR) model and Geo-information Technology (GiT). The landslide location map in this study has been generated based on image elements interpreted from IRS satellite data and field observations. The display, manipulation and analysis have been carried out to evaluate layers such as geology, geomorphology, soil, slope, aspect, land use, distance from faults, lineaments, roads and drainages. The validation group of actual landslides and relative operation curve method has been used to increase the accuracy of the final landslide susceptibility map. The area under the curve evaluates how well the method predicts landslides. The results showed a satisfactory agreement of 91% between prepared susceptibility map and existing data on landslide locations.  相似文献   

11.
The main goal of this study is to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy process (AHP) models. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 78 landslides were mapped from various sources. Then, the landslide inventory was randomly split into a training dataset 70?% (55 landslides) for training the models and the remaining 30?% (23 landslides) was used for validation purpose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, stream power index, slope length, and topographic wetness index. Subsequently, landslide susceptibility maps were produced using fuzzy logic and AHP models. For verification, receiver operating characteristics curve and area under the curve approaches were used. The verification results showed that the fuzzy logic model (89.7?%) performed better than AHP (81.1?%) model for the study area. The produced susceptibility maps can be used for general land use planning and hazard mitigation purpose.  相似文献   

12.
This paper deals with the landslide susceptibility zonation of Tevankarai Ar sub-watershed using weighted similar choice fuzzy method in a GIS environment. There has been a rapid increase in landslide occurrences in the Kodaikkanal town and area surrounding the town specially in the settlements around the town and road links leading to and from the town. This necessitates a detailed study of slope instability problems in this area. It is observed that these incidences occur frequently during the monsoon and summer showers. Rainfall is identified as the prime triggering factor. Eleven physical factors that cause instability are identified as causative factors from the field investigations and landslide occurrences. Land use pattern, slope gradient, curvature and aspect, weathering index which are evaluated from the weathering ratios of different chemical constituents of the three major lithological variations, soil type, hydraulic conductivity of soil and soil thickness, geomorphology, drainage, and lineament have been utilized to prepare the spatial variation. A weighted similar choice fuzzy model which ranks a set of alternatives by identifying the similarity between the outcome of alternatives and outcome of ideal alternatives is used to rank the causative factors. Each causative factor is classified into sub-categories and rated based on their effect on stimulating the landslide event using qualitative judgment derived from field studies and landslide history. The prepared thematic maps of causative factors are integrated, utilizing the GIS software Arcmap. The outcome has projected the low, moderate, high, and very high landslide susceptibility zones. The high-hazard and very high-hazard areas fall in the northwestern part characterized by croplands and agricultural plantations, while the moderate hazard zones are seen in prominent settlements and low-hazard zones are observed in the sparse settlements and zones of less agricultural activity. The model is verified using the relative landslide density (R) index, and the susceptibility map is found to be consistent with the mapped landslide incidences. The results from this study illustrate that the use of weighted similar choice fuzzy method is suitable for landslide susceptibility mapping on regional scale in growing hill towns as Kodaikkanal town.  相似文献   

13.
The purpose of this study was to detect shallow landslides using hillshade maps derived from light detection and ranging (LiDAR)-based digital elevation model (DEM) derivatives. The landslide susceptibility mapping used an artificial neural network (ANN) approach and backpropagation method that was tested in the northern portion of the Cuyahoga Valley National Park (CVNP) located in northeast Ohio. The relationship between landslides and predictor attributes, which describe landform classes using slope, profile and plan curvatures, upslope drainage area, annual solar radiation, and wetness index, was extracted from LiDAR-based DEM using geographic information system (GIS). The approach presented in this paper required a training study area for the development of the susceptibility model and a validation study area to test the model. The results from the validation showed that within the very high susceptibility class, a total of 42.6 % of known landslides that were associated with 1.56 % of total area were correctly predicted. In contrast, the very low susceptibility class that represented 82.68 % of the total area was associated with 1.20 % of known landslides. The results suggest that the majority of the known landslides occur within a small portion of the study area, consistent with field investigation and other studies. Sample probabilistic maps of landslide susceptibility potential and other products from this approach are summarized and presented for visualization to help park officials in effective management and planning.  相似文献   

14.
15.
Assessment of failure susceptibility of soil slopes using fuzzy logic   总被引:3,自引:0,他引:3  
Generally, the process of land occupation in urban areas involves spaces that are not suitable for construction. In most cases these areas are subject to landslides. Therefore it is mister the development of models to evaluate the susceptibility of occurrence of landslides in these areas. For this, Fuzzy Logic is used herein for modeling such areas where landslides are susceptible to occur and, therefore, a direct evaluation is important. The possibility of capturing the judgment and the modeling of linguistic variables are the main advantages of using Fuzzy Logic. These models are capable to capture the factors directly affecting the slope stability and also the inter-relationship amongst them. These factors were chosen by experts to whom a questionnaire was sent. Fuzzy Logic was then used to transform the linguistic variables into fuzzy number, allowing thus, the calculation of failure potential index (FPI). Herein the MAX-MIN Mamdani strategy for the inference of the rule base was used. This methodology has been applied to identify the susceptibility of landslides in a chaotic occupied urban area of Itaperuna City in northeastern of Rio de Janeiro, Brazil, where some occurrences have been reported.  相似文献   

16.
This study describes the application of logistic regression to rock-fall susceptibility mapping along 11?km of a mountainous road on the Salavat Abad saddle, in southwest Kurdistan, Iran. To determine the factors influencing rock-falls, data layers of slope degree, slope aspect, slope curvature, elevation, distance to road, distance to fault, lithology, and land use were analyzed by logistic regression analysis. The results are shown as rock-fall susceptibility maps. A spatial database, which included 68 sites (34 rock-fall point cells with value of 1 and 34 no rock-fall point cells with value of 0) was developed and analyzed using a Geographic Information System, GIS. The results are shown as four classes of rock-fall susceptibility. In this study, distance to fault, lithology, slope curvature, slope degree, and distance to road were found to be the most important factors affecting rock-fall. It was concluded that about 76?% of the study area can be classified as having moderate and high susceptibility classes. Rock-fall point cells were used to verify results of the rock-fall susceptibility map using success curve rate and the area under the curve. The verification results showed that the area under the curve for rock-fall susceptibility map is 77.57?%. The results from this study demonstrated that the use of a logistic regression model within a GIS framework is useful and suitable for rock-fall susceptibility mapping. The rock-fall susceptibility map can be used to reduce susceptibility associated with rock-fall.  相似文献   

17.
The objective of this study was to validate the outcomes of a modified decision tree classifier by comparing the produced landslide susceptibility map and the actual landslide occurrence, in an area of intensive landslide manifestation, in Xanthi Perfection, Greece. The values that concerned eight landslide conditioning factors for 163 landslides and 163 non-landslide locations were extracted by using advanced spatial GIS functions. Lithological units, elevation, slope angle, slope aspect, distance from tectonic features, distance from hydrographic network, distance from geological boundaries and distance from road network were among the eight landslide conditioning factors that were included in the landslide database used in the training phase. In the present study, landslide and non-landslide locations were randomly divided into two subsets: 80 % of the data (260 instances) were used for training and 20 % of the data (66 instances) for validating the developed classifier. The outcome of the decision tree classifier was a set of rules that expressed the relationship between landslide conditioning factors and the actual landslide occurrence. The landslide susceptibility belief values were obtained by applying a statistical method, the certainty factor method, and by measuring the belief in each rule that the decision tree classifier produced, transforming the discrete type of result into a continuous value that enabled the generation of a landslide susceptibility belief map. In total, four landslide susceptibility maps were produced using the certainty factor method, the Iterative Dichotomizer version 3 algorithm, the J48 algorithm and the modified Iterative Dichotomizer version 3 model in order to evaluate the performance of the developed classifier. The validation results showed that area under the ROC curves for the models varied from 0.7936 to 0.8397 for success rate curve and 0.7766 to 0.8035 for prediction rate curves, respectively. The success rate and prediction curves showed that the modified Iterative Dichotomizer version 3 model had a slightly higher performance with 0.8397 and 0.8035, respectively. From the outcomes of the study, it was induced that the developed modified decision tree classifier could be efficiently used for landslide susceptibility analysis and in general might be used for classification and estimation purposes in spatial predictive models.  相似文献   

18.
19.
This study assesses the landslide susceptibility of the South Pars Special Zone (SPSZ) region that is located in southwest Iran. For this purpose, a combinatorial method containing multi-criteria decision-making, likelihood ratio and fuzzy logic was applied in two levels (regional and local) at three critical zones (northwest, middle and southeast of the project area). The analysis parameters were categorised in seven main triggering factors such as climatology, geomorphology, geology, geo-structure, seismic activity, landslide prone areas and man-made activities which have different classes with multi-agent partnership correlations. Landslide susceptibility maps were prepared for these levels and zones after purified and enriched fuzzy trending runs were performed. According to the results of the risk-ability assessment of the landslide occurrences for SPSZ, the north part of the study area which includes the south edge of the Assalouyeh anticline and the southern part of the Kangan anticline were estimated as high-risk potential areas that were used in landslide hazard mitigation assessment and in land-use planning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号