首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Weathering of rocks that regulate the water chemistry of the river has been used to evaluate the CO2 consumption rate which exerts a strong influence on the global climate. The foremost objective of the present research is to estimate the chemical weathering rate (CWR) of the continental water in the entire stretch of Brahmaputra River from upstream to downstream and their associated CO2 consumption rate. To establish the link between the rapid chemical weathering and thereby enhance CO2 drawdown from the atmosphere, the major ion composition of the Brahmaputra River that drains the Himalaya has been obtained. Major ion chemistry of the Brahmaputra River was resolved on samples collected from nine locations in pre-monsoon, monsoon and post-monsoon seasons for two cycles: cycle I (2011–2012) and cycle II (2013–2014). The physico-chemical parameters of water samples were analysed by employing standard methods. The Brahmaputra River was characterized by alkalinity, high concentration of Ca2+ and HCO3 ? along with significant temporal variation in major ion composition. In general, it was found that water chemistry of the river was mainly controlled by rock weathering with minor contributions from atmospheric and anthropogenic sources. The effective CO2 pressure (log\({{\text{P}}_{{\text{C}}{{\text{O}}_{\text{2}}}}}\)) for pre-monsoon, monsoon and post-monsoon has been estimated. The question of rates of chemical weathering (carbonate and silicate) was addressed by using TDS and run-off (mm year?1). It has been found that the extent of CWR is directly dependent on the CO2 consumption rate which may be further evaluated from the perspective of climate change mitigation The average annual CO2 consumption rate of the Brahmaputra River due to silicate and carbonate weathering was found to be 0.52 (×106 mol Km?2 year?1) and 0.55 (×106 mol Km?2 year?1) for cycle I and 0.49 (×106 mol Km?2 year?1) and 0.52 (×106 mol Km?2 year?1) for cycle II, respectively, which were significantly higher than that of other Himalayan rivers. Estimation of CWR of the Brahmaputra River indicates that carbonate weathering largely dominates the water chemistry of the Brahmaputra River.  相似文献   

2.
Riverine sediment load, a reflection of basin erosion and sediment yield, is influenced by both climatic and human factors. Complex interaction between various factors within a basin dampens and counteracts the forces that drive sediment variations. The gross human impact index and the index estimation method have both been proposed to reflect the impacts of human activities on soil erosion and sediment yield. Sediment load and daily rainfall data from 1955 to 2010 in the upper Yangtze basin, and in the Wu, Jialing, Min and Jinsha subbasins, were collected to assess the human versus climatic impacts on sediment yield. From 1955 to 2010, the average annual runoff in the study area was 428.2 billion m3, and the average annual suspended sediment load was approximately 0.43 billion t. There was a critical point in 1984, 1985, 1991, 1993 and 1999 when the sediment load decreased in the Wu, Jialing, upper Yangtze, Min and Jinsha river, respectively. The annual regional rainfall erosivities in the upper Yangtze basin in most years ranged between 2,500 and 3,500 MJ mm hm?2 h?1 year?1 and fluctuated around 3,000 MJ mm hm?2 h?1 year?1 with a small coefficient of variation of 0.11. In the Jinsha subbasin, the index indicated that increasing rainfall erosivity could not account for the reduction in riverine sediment load and that anthropogenic erosion-control measures played a key role. The index values for the Min, Jialing and Wu subbasins ranged from 76 to 97 % and for the upper Yangtze basin is 95 %, demonstrating the joint effects of precipitation and human activities in all basins, with erosion-controlling measures playing a major role in sediment load reduction.  相似文献   

3.
In this study, the hydro-climatic trends (1964–2006) of Tangwang River basin (TRB) were examined using the Kendall’s test. Moreover, the impacts of climate variability and land use change on streamflow in each sub-basin were assessed using the Soil and Water Assessment Tools (SWAT) model. The results indicated that annual mean flow and peak flow showed insignificant decreasing trends (?0.14 m3 s?1 year?1, 1 %; ?8.67 m3 s?1 year?1, 40 %), while annual low flow exhibited a slightly increasing trend (0.02 m3 s?1 year?1, 11 %). Correspondingly, the annual precipitation for the entire basin decreased by 0.02 mm year?2, while the annual means of daily mean, maximum and minimum temperature increased significantly by 0.07, 0.10 and 0.02 °C year?1, respectively. On the other hand, with the implementation of “Natural Forest Protection Project” and “Grain for Green Project”, the forests in TRB totally increased by 744.5 km2 (4.00 %) from 1980 to 2000. Meanwhile, the grasslands and the farmlands decreased by 378.0 km2 (?1.98 %) and 311.9 km2 (?1.63 %), respectively. Overall, land use changes played a more important role for the streamflow reduction than climate change for SUB1, SUB2 and SUB3, in which the primary conversions were from grassland, farmland and bare land to forests. Conversely, in SUB4, the influence of climate variability was predominant. The results obtained could be a reference for water resources planning and management under changing environment.  相似文献   

4.
Mapping heatwave vulnerability in Korea   总被引:1,自引:0,他引:1  
Analysis of event-based soil erosion magnitude with special return periods is essential to appropriately design strategies and adopt soil conservation practices. However, the spatiotemporal variations of soil erosion with different return periods, especially at national level, have not been adequately considered. Therefore, the present study aimed to zone rainfall erosivity index (R factor) as the most dynamic factor affecting variability of soil erosion rate, with different return periods in monthly, seasonal and annual time scales in Iran. Toward this attempt, the kinetic energy and maximum 30-min intensity (I 30) over 12,000 available and accessible events of 70 stations were calculated during the common period of 1984–2004 and the corresponding R factor of the Universal Soil Loss Equation was then computed. Subsequently, the best-fitted frequency distributions were determined in all stations in three time scales using the EasyFit Software. The R factor was accordingly estimated for 2-, 5-, 10-, 25- and 50-year return periods. In addition, the inverse distance weighting technique was employed to determine and analyze the spatial variability patterns of R factor in different time scales using geographic information system. The results indicated that the frequency distributions fitted to study data were different in study time scales due to variability of spatiotemporal patterns of R factor. In addition, no specific spatial pattern of R factor could be recognized for different return periods and time scales. The average annual R factor was also found 1.41 MJ mm ha?1 h?1, whereas the respective R factor for different respective return periods of 2, 5, 10, 25 and 50 years was obtained 1.47, 2.62, 3.35, 4.48 and 5.54 MJ mm ha?1 h?1. These findings can be used for suitable decision making and effective environmental planning for land management Iran countrywide.  相似文献   

5.
The aim of this study was to investigate temporal variation in seasonal and annual rainfall trend over Ranchi district of Jharkhand, India for the period (1901–2014: 113 years). Mean monthly rainfall data series were used to determine the significance and magnitude of the trend using non-parametric Mann–Kendall and Sen’s slope estimator. The analysis showed a significant decreased in rainfall during annual, winter and southwest monsoon rainfall while increased in pre-monsoon and post-monsoon rainfall over the Ranchi district. A positive trend is detected in pre-monsoon and post-monsoon rainfall data series while annual, winter and southwest monsoon rainfall showed a negative trend. The maximum decrease in rainfall was found for monsoon (? 1.348 mm year?1) and minimum (? 0.098 mm year?1) during winter rainfall. The trend of post-monsoon rainfall was found upward (0.068 mm year?1). The positive and negative trends of annual and seasonal rainfall were found statistically non-significant except monsoon rainfall at 5% level of significance. Rainfall variability pattern was calculated using coefficient of variation CV, %. Post-monsoon rainfall showed the maximum value of CV (70.80%), whereas annual rainfall exhibited the minimum value of CV (17.09%), respectively. In general, high variation of CV was found which showed that the entire region is very vulnerable to droughts and floods.  相似文献   

6.
Soil losses and siltation of the hydrological system (watershed–dam) of K’sob were obtained using direct and indirect methods. The Wadi K’sob watershed of 1,484 km2, average slope of 0.14, and average elevation of 1,060 m is located in a semiarid climate. The average annual rainfall is 341 mm and the mean annual water discharge is 0.89 m3/s. Data from the Medjez gauging station located 6 km upstream of the dam, are the daily liquid flow and instantaneous concentrations of suspended sediments. Over a time period from 1973 to 2010, the relationship between water and sediment discharges is quantified by the equation: Q s?=?5.6 Q 1.31. Thus, in view of the availability data on a daily scale, the assessment of soil erodibility of the K’sob watershed was used to estimate specific soil losses of 203 t?km?2?year?1or 301,000 t eroded annually from the K’sob basin. The bathymetric measurements of the sediment volumes deposited in the K’sob dam, has quantified the annual siltation of 0.8 hm3, corresponding to an average erodibility of the K’sob watershed of 809 t?km?2?year?1. However, when adding the volume of sediment removed by the dredging operation and de-silting by the valves during heavy floods, the value of soil losses is 2,780 t?km?2?year?1. The indirect assessment of soil erodibility of the basin was obtained by applying two models: the quantitative geomorphological analysis (QGA) and PISA model (prediction of silting in the artificial reservoirs, in Italian: Previsioni dell’Interimento nei Serbatoi Artificiali) using physical and climatic factors in the watershed. The obtained results by QGA method underestimate specific soil losses of 524 t?km?2?year?1. The PISA model gives a value of 2,915 t?km?2?year?1, which is close to the value obtained by bathymetric measurements. This study concludes that PISA model is most suitable to estimate soil loss and siltation of the K’sob hydrological system.  相似文献   

7.
Watershed degradation due to soil erosion and sedimentation is considered to be one of the major environmental problems in Iran. In order to address the critical conditions of watershed degradation in arid and semiarid regions, a study based on the Modified Pacific Southwest Inter-Agency Committee (MPSIAC) model was carried out at Golestan watershed, northeast of Iran. The model information layers comprising nine effective factors in erosion and sedimentation at the watershed site were obtained by digitalization and spatial interpolation of the basic information data in a GIS program. These factors are geology, soil, climate, runoff, topography, land cover, land use, channel, and upland erosion. The source data for the model were obtained from available records on rainfall and river discharge and sediment, topography, land use, geology, and soil maps as well as field surveys and laboratory analysis. The results of the MPSIAC model indicated that 60.75 % (194.4 km2) and 54.97 % (175.9 km2) of the total watershed area were classified in the heavy sedimentation and erosion classes, and the total basin sediment yield and erosion were calculated as 4,171.1 and 17,813.4 m3 km?2 year?1, respectively. In the sensitivity analysis, it was found that the most sensitive parameters of the model in order of importance were topography (slope), land cover and use, runoff, and channel erosion (R 2?=?0.92–0.94), while geology, climate (rainfall), soil, and upland erosion factors were found to have moderate effect to the model output (R 2?=?0.74–0.59).  相似文献   

8.
Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm?year?1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C?m?2?year?1) at all three sites. Dissolved sulfate penetrated <20 cm below the sediment surface. Although measured rates of bicarbonate methanogenesis integrated over 1 m depth were low (0.96–1.09 mol?m?2?year?1), methane concentrations increased to >2 mmol?L?1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol?m?2?year?1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol?m?2?year?1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α?=?2.8–3.1 year?1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary.  相似文献   

9.
The soil conditioner in processes of soil conservation is important especially in heavily eroded areas. Because in this study done in Educational and Research Forest Watershed of Tarbiat Modares University, north of Iran, the experiments created four treatments of control and different wood chips with rates of 0.5, 1, and 1.5 kg m?2, by rainfall simulation in rainfall intensity of 60 mm h?1, and plot scale of 1 m2 on changing ponding time, runoff coefficient, sediment concentration, and soil loss. The results showed that the average change ponding time in control treatment and wood chip treatments with rates of 0.5, 1, and 1.5 kg m?2 were 4.25, 7.48, 11.63, and 12.45 min. Also, the average change runoff coefficient in control treatment and wood chip treatments with rates of 0.5, 1, and 1.5 kg m?2 were 50.03, 26.27, 15.28, and 13.17 %. The results also indicated that the wood chips could decrease average soil loss with the rates of ?52.15, ?82.18, and ?89.35 % compared with control treatment for 0.5, 1, and 1.5 kg m?2 of wood chips, respectively. The one-way ANOVA results showed that the runoff coefficient, sediment concentration, and soil loss decreased with increasing wood chip amount, and the effect of conservation treatment was significant on study variables (R 2 = 0.99). But, the ponding time increased with increasing wood chip amount, and this effect was significant on study variables (R 2 = 0.99).  相似文献   

10.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

11.
Monsoon-induced coastal upwelling, land run-off, benthic and atmospheric inputs make the western Indian shelf waters biologically productive that is expected to lead to high rates of mineralisation of organic matter (OM) in the sediments. Dissimilatory sulphate reduction (SR) is a major pathway of OM mineralisation in near-shore marine sediments owing to depletion of other energetically more profitable electron acceptors (O2, NO3 ?, Mn and Fe oxides) within few millimetres of the sediment-water interface. We carried out first ever study to quantify SR rates in the inner shelf sediments off Goa (central west coast of India) using the 35S radiotracer technique. The highest rates were recorded in the upper 10 cm of the sediment cores and decreased gradually thereafter below detection. Despite significant SR activity in the upper ~12 to 21 cm at most of the sites, pore water sulphate concentrations generally did not show much variation with depth. The depth integrated SR rate (0.066–0.46 mol m?2 year?1) decreased with increasing water depth. Free sulphide was present in low concentrations (0–3 μM) in pore waters at shallow stations (depth <30 m). However, high build-up of sulphide (100–600 μM) in pore waters was observed at two deeper stations (depths 39 and 48 m), 7–11 cm below the sediment-water interface. The total iron content of the sediment decreased from ~7 to 5 % from the shallowest to the deepest station. The high pyrite content indicates that the shelf sediments act as a sink for sulphide accounting for the low free sulphide levels in pore water. In the moderately organic rich (2–3.5 %) sediments off Goa, the measured SR rates are much lower than those reported from other upwelling areas, especially off Namibia and Peru. The amount of organic carbon remineralised via sulphate reduction was ~0.52 mol m?2 year?1. With an estimated average organic carbon accumulation rate of ~5.6 (±0.5) mol m?2 year?1, it appears that the bulk of organic matter gets preserved in sediments in the study region.  相似文献   

12.
The Northeast USA is experiencing severe impacts of a changing climate, including increased winter temperatures and accelerated relative sea level rise (RSLR). The sediment-poor, organic-rich nature of many Southern New England salt marshes makes them particularly vulnerable to these changes. In order to assess how marsh accretion has changed over time, we returned to Narragansett Bay, RI where salt marsh vertical accretion rates were documented almost 30 years ago. Using radionuclide tracers (210Pb and 137Cs), we observe no significant change in overall accretion rates (0.27–0.69 cm year?1) compared to historical averages (0.24–0.60 cm year?1), but we document a shift in how these marshes maintain elevation. Organic matter now plays a smaller role in contributing to vertical accretion across all study sites, declining by 22 % on average. We attribute this reduction to potentially higher decomposition rates fueled by higher water temperature. Inorganic matter also contributes less to accretion (declining by 44 % on average at marshes located more internal to the estuary), likely due to diminishing sediment supply in this region. With organic and inorganic solids accounting for less of the total accretion, several of the marshes are experiencing symptoms of swelling, with water and porespace contributing more towards accretion compared to historical values. Accretion rates (0.27–0.45 cm year?1) at these organic-rich (>40 % sediment organic matter) marshes are predominantly lower than the current (30 years) rate of RSLR (0.41?±?0.07 cm year?1). These results, combined with the increased rate of RSLR and the hardened shorelines inhibiting landward migration, call into question the long-term survivability of these marshes.  相似文献   

13.
The impact of erosion control geotextiles on the surface runoff from slopes is quite variable and depends strongly on site-specific conditions (soil characteristics, slope morphology, climate, etc.), as has been shown in several earlier studies. In addition, little is known about the proportion of runoff reduction that is caused by the geotextile and the proportion that is caused by soil characteristics. To shed more light on this issue, an experiment was carried out to test the impact of 500 g m?2 jute nets (J500) and 400 g m?2; 700 g m?2 coir nets (C400, C700) on the surface runoff from simulated rainfall of four different intensities (I 1 = 18.7; I 2 = 27.2; I 3 = 53.6; I 4 = 90.5 mm h?1). Data on runoff volume, peak discharge and time to peak discharge were collected from 40 simulated rainfall events. An impermeable “no-soil” subgrade was used to examine the impact of the geotextile on runoff without any influence of soil. All tested geotextiles significantly reduced runoff (volume, peak discharge) at all rainfall intensities, with the exception of C400 and C700 during simulated rainfall intensity I 4. J500 seemed to have the most effective runoff reduction performance at all rainfall intensities. In general, as the rainfall intensity increased, the effectiveness of the geotextiles decreased. Interesting behaviour was observed for J500 under simulated rainfall intensity I 4—the effectiveness of the geotextile increased with the duration of the rainfall.  相似文献   

14.
One of the most important challenges in global climate change research is balancing the carbon budget within the global carbon cycle. Carbon burial in sediments at the land–ocean interface has been difficult to quantify and model because it represents non-steady-state boundary conditions that are also affected by human activities. In this study, we document carbon burial rates in the Yangtze River (1.6–4.9 × 1012 gC year?1) and Hudson River (1.8–3.6 × 1010 gC year?1) estuaries and integrate our results with carbon burial rates determined by others in the world’s 25 largest river-estuarine systems (6–11 × 1013 gC year?1). Our results indicate that carbon burial in estuaries, bays, coves, lagoons, mud flats, marshes, mangroves, and other highly productive or protected low-energy areas at the land–ocean interface along the entirety of the world’s coastlines may serve as an unrecognized sink within the global carbon budget.  相似文献   

15.
Increased nitrogen (N) input to ecosystems could alter soil organic carbon (C) dynamics, but the effect still remains uncertain. To better understand the effect of N addition on soil organic C in wetland ecosystems, a field experiment was conducted in a seasonally inundated freshwater marsh, the Sanjiang Plain, Northeast China. In this study, litter production, soil total organic C (TOC) concentration, microbial biomass C (MBC), organic C mineralization, metabolic quotient (qCO2) and mineralization quotient (qmC) in 0–15 cm depth were investigated after four consecutive years of N addition at four rates (CK, 0 g N m?2 year?1; low, 6 g N m?2 year?1; moderate, 12 g N m?2 year?1; high, 24 g N m?2 year?1). Four-year N addition increased litter production, and decreased soil organic C mineralization. In addition, soil TOC concentration and MBC generally increased at low and moderate N addition levels, but declined at high N addition level, whereas soil qCO2 and qmC showed a reverse trend. These results suggest that short-term N addition alters soil organic C dynamics in seasonally inundated freshwater marshes of Northeast China, and the effects vary with N fertilization rates.  相似文献   

16.
Tibetan Plateau (TP) is the highest and most extensive plateau in the world and has been known as the roof of the world, and it is sensitive to climate change. The researches of CO2 fluxes (F C) in the TP region play a significant role in understanding regional and global carbon balance and climate change. Eddy covariance flux measurements were conducted at three sites of south-eastern TP comprising Dali (DL, cropland ecosystem), LinZhi (LZ, alpine meadow ecosystem) and Wenjiang (WJ, cropland ecosystem); amongst those DL and LZ are located in plateau region, while WJ is in plain region. Dynamics of F C and influences of vegetation, meteorological (air temperature, photosynthetically active radiation, soil temperature and soil water content) and terrain factors (altitude) were analysed on the basis of data taken during 2008. The results showed that, in the cool sub-season (March, April, October and December), carbon sink appeared even in December with fluxes of (?0.021 to ?0.05) mg CO2 m?2 s?1 and carbon source only in October (0.03 ± 0.0048) mg CO2 m?2 s?1 in DL and WJ site. In LZ site, carbon sink was observed in April: (?0.036 ± 0.0023) mg COm?2 s?1 and carbon sources in December and March (0.008–0.010 mg CO2 m?2 s?1). In the hot sub-season (May–August), carbon source was observed only in May with (0.011 ± 0.0022), (0.104 ± 0.0029) and (0.036 ± 0.0017) fluxes in LZ, DL and WJ site, respectively, while carbon sinks with (?0.021 ± 0.0041), (?0.213 ± 0.0007) and (?0.110 ± 0.0015) mg CO2 m?2 s?1 fluxes in LZ, DL, and WJ, respectively. Comparing with plain region (WJ), carbon sinks in plateau region (DL and LZ) lasted for a longer time, and the absorption sum was large and up to (–357.718 ± 0.0054) and (?371.111 ± 0.0039) g C m?2 year?1, respectively. The LZ site had the weakest carbon sink with (?178.547 ± 0.0070) g C m?2 year?1. Multivariate analysis of covariance showed that altitude (AL) as an independent factor explained 39.5 % of F C (P < 0.026). F C had a quadratic relationship with Normalized difference vegetation index (NDVI) (R 2 ranges from 0.485 to 0.640 for three sites), an exponential relationship with soil temperature at 5-cm depth (ST 5) at night time and a quadratic relationship with air temperature (T a) at day time. Path analysis indicated that photosynthetically active radiation (PAR), sensible heat fluxes (H) and other factors all had direct or indirect effects on F C in all of the three tested sites around the south-eastern TP.  相似文献   

17.
Measurements of groundwater-dissolved inorganic nitrogen (nitrate?+?nitrite?+?ammonia) and phosphate concentrations were combined with recent, radium-based, submarine groundwater discharge (SGD) fluxes and prior estimates of SGD determined from Darcy’s Law, a hydrologic model, and total recharge to yield corresponding SGD nutrient fluxes to Ninigret, Point Judith, Quonochontaug, and Winnapaug ponds, located in southern Rhode Island. Results range from 80 to279 mmol N m?2 year?1 and 4 to 15 mmol P m?2 year?1 for Ninigret, 48 to 265 mmol N m?2 year?1 and 4 to 23 mmol P m?2 year?1 for Point Judith, 31 to 62 mmol N m?2 year?1 and 1 to 2 mmol P m?2 y?1 for Quonochontaug, and 668 to 1,586 mmol N m?2 year?1 and 29 to 70 mmol P m?2 year?1 for Winnapaug ponds, respectively. On a daily basis, the SGD supply of dissolved inorganic nitrogen and phosphorus is estimated to represent ~1–6 % of the total amount of these nutrients in surface waters of Ninigret, Point Judith, and Quonochontaug ponds and up to 84 and 17 % for Winnapaug, respectively, which may reflect a greater SGD nutrient supply to this pond because of the proximity of fertilized golf courses. With regard to the total external input of these essential nutrients, SGD represents 29–45 % of dissolved inorganic nitrogen input to Ninigret, Point Judith, and Quonochontaug ponds and as much as 93 % for Winnapaug pond. For phosphorus, the contribution from SGD represents 59–85 % of the total external input for Ninigret, Point Judith, and Quonochontaug ponds and essentially all of the phosphorus input to Winnapaug pond. Estimated rates of primary productivity potentially supported by the average supply of dissolved inorganic nitrogen from SGD range from 10 g C m?2 year?1 for Ninigret, 13 g C m?2 year?1 for Point Judith, 4 g C m?2 year?1 for Quonochontaug, and as high as 84 g C m?2 y?1 for Winnapaug pond. The imputed SGD-derived rates of primary productivity represent 4–9 % of water column primary production for Ninigret, Point Judith, and Quonochontaug ponds, and 74 % for Winnapaug pond, a result that is reasonably comparable to several other coastal environments where estimates of SGD nutrient supply have been reported. The implication is that SGD represents an ecologically significant source of dissolved nutrients to the coastal salt ponds of southern Rhode Island and, by inference, other coastal systems.  相似文献   

18.
This study investigates the occurrence of greenhouse gases (GHGs) and the role of groundwater as an indirect pathway of GHG emissions into surface waters in a gaining stretch of the Triffoy River agricultural catchment (Belgium). To this end, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations, the stable isotopes of nitrate, and major ions were monitored in river and groundwater over 8 months. Results indicated that groundwater was strongly oversaturated in N2O and CO2 with respect to atmospheric equilibrium (50.1 vs. 0.55 μg L?1 for N2O and 14,569 vs. 400 ppm for CO2), but only marginally for CH4 (0.45 vs. 0.056 μg L?1), suggesting that groundwater can be a source of these GHGs to the atmosphere. Nitrification seemed to be the main process for the accumulation of N2O in groundwater. Oxic conditions prevailing in the aquifer were not prone for the accumulation of CH4. In fact, the emissions of CH4 from the river were one to two orders of magnitude higher than the inputs from groundwater, meaning that CH4 emissions from the river were due to CH4 in-situ production in riverbed or riparian zone sediments. For CO2 and N2O, average emissions from groundwater were 1.5?×?105 kg CO2 ha?1 year?1 and 207 kg N2O ha?1 year?1, respectively. Groundwater is probably an important source of N2O and CO2 in gaining streams but when the measures are scaled at catchment scale, these fluxes are probably relatively modest. Nevertheless, their quantification would better constrain nitrogen and carbon budgets in natural systems.  相似文献   

19.
Grassland degradation received considerable concern because of its adverse impact on agronomic productivity and its capacity to provide goods and service. Climate change and human activities are commonly recognized as the two broad underlying drivers that lead to grassland degradation. In this study, a comprehensive method based on net primary productivity (NPP) was introduced to assess quantitatively the relative roles of climate change and human perturbations on worldwide grassland degradation from 2000 to 2010. The results revealed that at a global scale, 49.25 % of grassland ecosystems experienced degradation. Nearly 5 % of these grasslands experienced strong to extreme significant degradation. Climate change was the dominant cause that resulted in 45.51 % of degradation compared with 32.53 % caused by human activities. On the contrary, 39.40 % of grassland restoration was induced by human interferences, and 30.6 % was driven by climate change. The largest area of degradation and restoration both occurred in Asia. NPP losses ranged between 1.40 Tg C year?1 (in North America) and 13.61 Tg C year?1 (in Oceania) because of grassland degradation. Maximum NPP increase caused by restoration was 17.57 Tg C year?1 (in North America). Minimum NPP was estimated at 1.59 Tg C year?1 (in Europe). The roles of climate change and human activities on degradation and restoration were not consistent at continental level. Grassland ecosystems in the southern hemisphere were more vulnerable and sensitive to climate change. Therefore, climate change issues should be gradually integrated into future policies and plans for domestic grassland management and administration.  相似文献   

20.
Irrigated agriculture is a clear source of non-point pollution by salts and nitrogen species. The impact of such pollution should be quantified according to specific cases. The case of the Malfarás creek basin, a sprinkler irrigation district located in the semiarid Ebro valley in northeast Spain, has been evaluated. The main crops in the district were corn, barley and alfalfa, occupying 93 % of the irrigated area. The fate of water, salts and nutrients was evaluated by a daily water balance developed at a field scale for the natural year 2010. The yearly data of the whole set of 101 irrigated fields plus the non-irrigated area compared to the measured drainage produced a basin water balance with a low degree of error. The basin consumed 90 % of the total water input of which 68 % was used for crop evapotranspiration and the rest was lost due to non-productive uses. 16 % of the incoming water left the irrigation area as drainage water. The irrigated area was responsible for 87 % of the drainage. The average volume of drained water was 152 mm year?1 for the whole basin area. The irrigated area drained 183 mm year?1. The basin exported 473 kg of salt per hectare during 2010. This value was the lowest of the sprinkler irrigation areas in the Ebro valley, mainly due to the lower soil salinity. All the crops except barley received a nitrogen surplus of 10–50 % above their needs. The extra nitrogen entered the water cycle increasing the nitrate concentration in the aquifer water (150 mg L?1) and drainage water (98 mg L?1). In 2010 the mass of nitrogen exported by drainage was 49 kg per irrigated hectare. This value is too high for this type of irrigation system and implies that 17 % of nitrogen applied as a fertilizer was lost to drainage water. The key to decreasing the nitrogen leaching and pollution that it causes could be appropriate time-controlled fertigation along with better irrigation scheduling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号