首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Eocene volcano-sedimentary units in the southern part of the Eastern Pontides (NE Turkey) are confined within a narrow zone of east–west trending, semi-isolated basins in Bayburt, Gümü?hane, ?iran and Alucra areas. The volcanic rocks in these areas are mainly basalt and andesite through dacite, with a dominant calc-alkaline to rare tholeiitic tendency. 40Ar–39Ar dating of these volcanic rocks places them between 37.7 ± 0.2 and 44.5 ± 0.2 Ma (Middle Eocene). Differences in the major and trace element variations can be explained by the fractionation of clinopyroxene ± magnetite in basaltic rocks and that of hornblende + plagioclase ± magnetite ± apatite in andesitic rocks. Primitive mantle-normalized multi-element variations exhibit enrichment of large-ion lithophile elements and to a lesser extent, of light rare earth elements, as well as depletion of high field strength elements, thus revealing that volcanic rocks evolved from a parental magma derived from an enriched mantle source. Chondrite-normalized rare earth element patterns of the aforementioned volcanic rocks resemble each other and are spoon-shaped with low-to-medium enrichment (LaN/LuN = 2–14), indicating similar spinel lherzolitic mantle source(s). Sr, Nd and Pb isotopic systematics imply that the volcanic rocks are derived from a subduction-modified subcontinental lithospheric mantle. Furthermore, post-collisional thickened continental crust, lithospheric delamination and a subduction-imposed thermal structure are very important in generating Tertiary magma(s). The predominantly calc-alkaline nature of Eocene volcanic rocks is associated with increasing geodynamic regime-extension, whereas tholeiitic volcanism results from local variations in the stress regime of the ongoing extension and the thermal structure, as well as the thickness of the crust and the mantle-crust source regions. Based on volcanic variety and distribution, as well as on petrological data, Tertiary magmatic activity in Eastern Pontides is closely related to post-collisional thinning of the young lithosphere, which, in turn, is caused by extension and lithospheric delamination after collisional events between the Tauride–Anatolide Platform and the Eurasian Plate.  相似文献   

2.
Palaeogene and Neogene volcanic rocks are widespread on the Biga Peninsula of Northwest Turkey. These rocks were formed during the Eocene, Oligocene–Miocene, and late Miocene, and the early Miocene ?apç? volcanic rocks in the Bal?kesir area consist of andesitic lava flows and associated pyroclastics. Temperatures, pressures, and oxygen fugacities calculated for the hornblendes in these andesitic rocks are 903–930°C, 3.3–4.8 kbar, and –9.91 to –11.88, respectively, and for the biotites they are 755–788°C, 1.30–1.74 kbar, and –14.88 to –13.98, respectively. SHRIMP U–Pb dating of zircons from three andesite samples gave ages of 22.72 ± 0.19, 22.97 ± 0.23, and 18.72 ± 0.17 Ma (early Miocene), and these are regarded as crystallization ages. Geochemical analyses show that the volcanic rocks are mainly high-K and calc-alkaline, and have high contents of large-ion lithophile elements and low contents of high-field strength elements, revealing that they evolved from parental magmas that were derived from an enriched subcontinental lithospheric mantle source. The chondrite-normalized rare earth element patterns of the rocks are concave upwards with LaCN/LuCN = 11.9–21.2 and EuCN/Eu* = 0.84–0.92, implying significant fractional crystallization of hornblende during their evolution. According to the petrological data with regional geology, Neogene magmatic activity on the Biga Peninsula has a post-collisional feature, and was closely related to slab break-off geodynamic model after collision of Tauride–Anatolide Block and Sakarya continent.  相似文献   

3.
《International Geology Review》2012,54(13):1641-1659
Eocene mafic volcanic rocks occurring in an E–W-trending, curvilinear belt along and north of the Izmir–Ankara–Erzincan suture zone (IAESZ) in northern Anatolia, Turkey, represent a discrete episode of magmatism following a series of early Cenozoic collisions between Eurasia and the Gondwana-derived microcontinents. Based on our new geochronological, geochemical, and isotope data from the Kartepe volcanic units in northwest Anatolia and the extant data in the literature, we evaluate the petrogenetic evolution, mantle melt sources, and possible causes of this Eocene volcanism. The Kartepe volcanic rocks and spatially associated dikes range from basalt and basaltic andesite to trachybasalt and basaltic trachyandesite in composition, and display calc-alkaline and transitional calc-alkaline to tholeiitic geochemical affinities. They are slightly to moderately enriched in large ion lithophile (LILE) and light rare earth elements (LREE) with respect to high-field strength elements (HFSE) and show negative Nb, Ta, and Ti anomalies reminiscent of subduction-influenced magmatic rocks. The analysed rocks have 87Sr/86Sr(i) values between 0.70570 and 0.70399, positive ?Nd values between 2.7 and 6.6, and Pb isotope ratios of 206Pb/204Pb(i) = 18.6–18.7, 207Pb/204Pb(i) = 15.6–15.7, and 208Pb/204Pb(i) = 38.7–39.1. The 40Ar/39Ar cooling ages of 52.7 ± 0.5 and 41.7 ± 0.3 Ma obtained from basaltic andesite and basalt samples indicate middle to late Eocene timing of this volcanic episode in northwest Anatolia. Calculated two-stage Nd depleted mantle model (TDM) ages of the Eocene mafic lavas range from 0.6 to 0.3 Ga, falling between the TDM ages of the K-enriched subcontinental lithospheric mantle of the Sakarya Continent (1.0–0.9 Ga) to the north, and the young depleted mantle beneath central Western Anatolia (0.4–0.25 Ga) to the south. These geochemical and isotopic features collectively point to the interaction of melts derived from a sublithospheric, MORB-like mantle and a subduction-metasomatized, subcontinental lithospheric mantle during the evolution of the Eocene mafic volcanism. We infer triggering of partial melting by asthenospheric upwelling beneath the suture zone in the absence of active subduction in the Northern Neotethys. The geochemical signature of the volcanic rocks changed from subduction- and collision-related to intra-plate affinities through time, indicating an increased asthenospheric melt input in the later stages of Eocene volcanism, accompanied by extensional deformation and rifting.  相似文献   

4.
Volcanic rocks from the Gümü?hane area in the southern part of the Eastern Pontides (NE Turkey) consist mainly of andesitic lava flows associated with tuffs, and rare basaltic dykes. The K-Ar whole-rock dating of these rocks range from 37.62?±?3.33 Ma (Middle Eocene) to 30.02?±?2.84 Ma (Early Oligocene) for the andesitic lava flows, but are 15.80?±?1.71 Ma (Middle Miocene) for the basaltic dykes. Petrochemically, the volcanic rocks are dominantly medium-K calc-alkaline in composition and show enrichment of large ion lithophile elements, as well as depletion of high field strength elements, thus revealing that volcanic rocks evolved from a parental magmas derived from an enriched mantle source. Chondrite-normalized rare-earth element patterns of the volcanic rocks are concave upwards with low- to-medium enrichment (LaCN/LuCN?=?3.39 to 12.56), thereby revealing clinopyroxene- and hornblende-dominated fractionations for andesitic-basaltic rocks and tuffs, respectively. The volcanic rocks have low initial 87Sr/86Sr ratios (0.70464 to 0.70494) and εNd(i) values (+1.11 to +3.08), with Nd-model ages (TDM) of 0.68 to 1.02 Ga, suggesting an enriched lithospheric mantle source of Proterozoic age. Trace element and isotopic data, as well as the modelling results, show that fractional crystallization and minor assimilation played an important role in the evolution of the volcanic rocks studied. The Eocene to Miocene volcanism in the region has resulted from lithospheric delamination and the associated convective thinning of the mantle, which led to the partial melting of the subduction-metasomatized lithospheric mantle.  相似文献   

5.
Review Section     
ABSTRACT

The petrology, geochronology, and geochemistry of the early Permian volcanic rocks from Houtoumiao area, south Xiwuqi County in central Inner Mongolia of China, are studied to elucidate the early Permian tectonic setting of the region. The volcanic rocks, which are interbedded with sandstone, feature both mafic and felsic compositions and show a bimodal nature. Zircon U–Pb dating reveals that the volcanic rocks formed at 274–278 Ma, similar to the ages of bimodal magmatism in neighbouring areas. The mafic rocks are composed of tholeiitic basalt, basaltic andesite, basaltic trachyandesite, and trachyandesite. They are rich in Th, U, and LILEs, depleted in HFSEs Nb, Ta, and Ti, and have positive εNd(t) values (+3.6 to +7.9). Geochemical analyses indicate that the mafic rocks originated from metasomatized lithospheric mantle. The felsic volcanic rocks are mainly rhyolite, with minor trachyte and dacite. They have different evolutionary tendencies of major elements, chondrite-normalized REE patterns, and isotopic compositions from the mafic volcanic rocks, which preclude formation by fractional crystallization of mafic melts. The εNd(t) values of the felsic rocks are similar to those of the Carboniferous Baolidao arc rocks in the region. It is suggested that Permian felsic melts originated from the partial melting of Carboniferous juvenile arc-related rocks. By comparison with typical Cenozoic bimodal volcanism associated with several tectonic settings, including rift, post-collisional setting, back-arc basin, and the Basin and Range, USA, the bimodal volcanic rocks in central Inner Mongolia display similar petrological and geochemical characteristics to the rocks from back-arc basin and the Basin and Range, USA. Based on the analysis of regional geological data, it is inferred that the early Permian bimodal volcanic rocks in the study area formed on an extensional continental margin of the Siberian palaeoplate after late Carboniferous subduction–accretion.  相似文献   

6.
Abstract

A newly discovered, shoshonitic lava-hosted Pb deposit at Nariniya in central Tibet provides an excellent example to help improve our understanding of the linkage between post-collisional potassic magmatism and ore formation in Tibet. The Pb ores exist as veins or veinlets in NWW-striking fracture zones within the potassic lava (trachyte). The veins contain quartz, galena, pyrite, and sericite (muscovite) as well as minor chalcopyrite, sphalerite, calcite, and dolomite with sericitization, pyritization, and minor silicification. The 40Ar–39Ar plateau age of the hydrothermal muscovite is 37.95 ± 0.30 Ma, which represents the Pb mineralization age. This obtained age is indistinguishable, within analytical error, from the zircon U–Pb age of 37.88 ± 0.22 Ma for potassic lava. Therefore, the ore formation can be genetically linked to potassic magmatism. Galena has similar Pb isotopic composition to magmatic feldspar from the host lava, suggesting the derivation of Pb from the magmatic system. Previous studies have suggested that S- and ore-forming fluids are of magmatic origin. Published data show that the Nariniya volcanic rocks are acidic, shoshonitic, akakitic, peraluminous, and enriched in Sr–Nd–Pb isotopes. Thus, they are geochemically different from other potassic volcanic rocks (no adakitic affinity) in the North Qiangtang terrane, but similar to the 46–38 Ma high-K calc-alkaline peraluminous adakitic rocks in this terrane and the late Eocene Cu-generating potassic porphyries from the Sanjiang region of eastern Tibet. As such, the Nariniya potassic magma likely originated from melting of subducted continental crust, with or without interaction with the overlying enriched mantle. Such post-collisional potassic rocks in Tibet are thought to be potential targets for prospecting of both Pb–Zn and porphyry Cu ores. Note that other ore styles (in addition to the Nariniya ore style) may exist in the potassic volcanic districts of Tibet.  相似文献   

7.
Mineral chemistry, major and trace elements, 40Ar/39Ar age and Sr–Nd–Pb isotopic data are presented for the Late Cretaceous Hamsilos volcanic rocks in the Central Pontides, Turkey. The Hamsilos volcanic rocks mainly consist of basalt, andesite and associated pyroclastics (volcanic breccia, vitric tuff and crystal tuff). They display shoshonitic and high-K calc-alkaline affinities. The shoshonitic rocks contain plagioclase, clinopyroxene, alkali feldspar, phlogopite, analcime, sanidine, olivine, apatite and titanomagnetite, whereas the high-K calc-alkaline rocks contain plagioclase, clinopyroxene, orthopyroxene, magnetite / titanomagnetite in microgranular porphyritic, hyalo-microlitic porphyritic and glomeroporphyritic matrix. Mineral chemistry data reveal that the pressure condition of the clinopyroxene crystallisation for the shoshonitic rocks are between 1.4 and 6.3 kbar corresponds to 6–18-km depth and the high-K calc-alkaline rocks are between 5 and 12 km. 40Ar/39Ar age data changing between 72 ± .5 Ma and 79.0 ± .3 Ma (Campanian) were determined for the Late Cretaceous Hamsilos volcanic rocks, contemporaneous with the subduction of the Neo-Tethyan Ocean beneath the Pontides. The studied volcanic rocks were enriched in the large-ion lithophile and light rare earth element contents, with pronounced depletion in the contents of high-field-strength elements. Chondrite-normalised rare earth element patterns (LaN/LuN = 6–17) show low to medium enrichment, indicating similar sources of the rock suite. Initial 87Sr/86Sr values vary between .70615 and .70796, whereas initial 143Nd/144Nd values change between .51228 and .51249. Initial 206Pb/204Pb values vary between 18.001 and 18.349, 207Pb/204Pb values between 15.611 and 15.629 and 208Pb/204Pb values between 37.839 and 38.427. The main solidification processes involved in the evolution of the volcanic rocks consist of fractional crystallisation, with minor amounts of crustal contamination ± magma mixing. According to geochemical evidence, the shoshonitic melts in the Hamsilos volcanic rocks were possibly derived from the low degree of partial melting of a subcontinental lithospheric mantle (SCLM), while the high-K calc-alkaline melts were derived from relatively high degree of partial melting of SCLM that was enriched by fluids and/or sediments from a subduction of oceanic crust.  相似文献   

8.
印度-亚洲大陆碰撞伴生有大量火山活动,其中,林子宗火山岩发育最广,遍布碰撞带北侧的冈底斯带,形成长逾1200 km的火山岩带。林周地区作为林子宗火山岩的命名地,该套火山岩发育相对齐全,为安山岩、流纹岩及相应的火山碎屑岩夹沉积碎屑岩组合,顶部发育巨厚流纹质凝灰岩,可以划分出三个火山旋回,其生成时代介于63.89~48.73 Ma。岩石学和地球化学资料显示,林子宗火山岩自下而上SiO2和K2O含量以及Al2O3饱和度增加,其岩浆从早到晚由中性、中钾和准铝质变化到酸性、高钾和过铝质,晚期喷发巨厚的火山灰流,反映区域地壳明显的加厚,由早期的30~40 km变化到晚期的50~60 km。火山岩相对富集Cs、Rb、K、U,亏损Ta、Nb、Ti、Sr、Ba、P,早期与桑日组安山岩地球化学特征相近,而中—晚期与乌郁、扎嘎等地渐新世高钾火山岩相似,表明早期岩浆具有新特提斯洋俯冲板片印迹,而中—晚期具有后碰撞作用特点。林子宗火山岩作为印度-亚洲大陆碰撞过程的响应,记录着古新世至始新世(64~48 Ma)印度-亚洲大陆之间的碰撞向碰撞后演化过程。  相似文献   

9.
We report zircon U–Pb geochronologic and geochemical data for the post-collisional volcanic rocks from the Batamayineishan (BS) Formation in the Shuangjingzi area, northwestern China. The zircon U–Pb ages of seven volcanic samples from the BS Formation show that the magmatic activity in the study area occurred during 342–304 Ma in the Carboniferous. The ages also indicate that the Palaeo-Karamaili Ocean had already closed by 342 Ma. Moreover, the volcanic rocks also contained 10 inherited zircons with ages ranging from 565 to 2626 Ma, indicating that Precambrian continental crust or microcontinents with accretionary arcs are two possible interpretations for the basement underlying the East Junggar terrane. The sampled mafic-intermediate rocks belong to the medium-K to high-K calc-alkaline and shoshonitic series, and the formation of these rocks involved fractional crystallization with little crustal contamination. These Carboniferous mafic-intermediate rocks show depletions in Nb and Ta and enrichments in large ion lithophile elements (e.g. Rb, Ba, U, and Th) and light rare earth elements. The low initial 87Sr/86Sr values (0.7034–0.7042) and positive εNd(t) values (+2.63 to +6.46) of these rocks suggest that they formed from depleted mantle material. The mafic-intermediate rocks were most likely generated by 5–10% partial melting of a mantle source composed primarily of spinel lherzolite with minor garnet lherzolite that had been metasomatized by slab-derived fluids and minor slab melts. In contrast, the felsic rocks in the BS Formation are A-type rhyolites with positive εNd(t) values and young model ages. These rocks are interpreted to be derived from the partial melting of juvenile basaltic lower crustal material. Taken together, the mafic-intermediate rocks formed in a post-collisional extensional setting generated by slap breakoff in the early Carboniferous (342–330 Ma) and the A-type rhyolites formed in a post-collisional extensional setting triggered by the upwelling asthenosphere in the late Carboniferous (330–304 Ma).  相似文献   

10.
Sixteen selected samples from the Upper Cretaceous volcanic belt of the Eastern Pontids have been analysed for major elements, Rb, Sr and Zr. On the basis of the K2O versus SiO2 distribution, two groups of rocks have been distinguished, one with calc-alkaline affinity and a second group with shoshonitic character. The calc-alkaline rocks have porphyritic texture with clinopyroxene, plagioclase and orthopyroxene as phenocryst and in the groundmass. The orthopyroxene is lacking in the shoshonites where plagioclase, clinopyroxene and, in the more evolved terms, amphibole and biotite are the main phenocryst minerals. The shoshonitic rocks have higher K2ONa2O ratio, K2O, P2O5 and Rb, contents with respect to the calc-alkaline samples. The TiO2 content is invariably low, never exceeding approximately 1%. The occurrence of volcanic rocks ranging in composition from calc-alkaline to shoshonitic in the Upper Cretaceous volcanic belt of the Eastern Pontids suggests that the Upper Cretaceous volcanic cycle reached its mature stage before the onset of the Eocene calc-alkaline volcanism which is believed to be neither genetically nor tectonically related with the Upper Cretaceous volcanism.  相似文献   

11.
《International Geology Review》2012,54(10):1189-1206
ABSTRACT

Volcaniclastic units are exposed at the base of the Puerto Blanco Formation in the Caborca region, northwestern Mexico. The lower unit reveals the presence of Early Cambrian mafic volcanism in this region. It consists of a volcano-sedimentary sequence represented by tuffaceous conglomerates, agglomerates, lapillistones, tuffs, and altered mafic volcanic flows. Petrographic analysis classified the volcanic clasts as albite-sphene-calcite-actinolite granofels, with a moderate to intense hydrothermal alteration, precisely characterized by EPMA analysis. Albite-actinolite geothermometry indicates temperatures from 400 to 500°C, suggesting metamorphic conditions in the upper temperature greenschist facies. Geochemistry analysis shows a high TiO2 basic–ultrabasic volcanism that originated the volcanic clasts. Rock protoliths were studied using immobile trace elements, which classified them as OIB-type alkaline basalts with the characteristic spider hump-shaped pattern, situated in an anorogenic intracontinental tectonic setting with enriched mantle signatures. 40Ar/39Ar geochronology shows metamorphic ages of 52.58 ± 2.0 and 91.67 ± 0.55 Ma, consistent with the emplacement of Laramidic granitoids identified in the region. Possible correlations of this alkaline volcanism include the Southern Oklahoma Aulacogen and the late stages of the rifting of north western Laurentia represented in western United States.  相似文献   

12.
ABSTRACT

Intrusive rocks are well-exposed in the south Birjand around the Koudakan is herein compared to previously studied outcrops along the middle Eocene to late Oligocene Eastern Iran Magmatic Belt. This pluton is composed mainly of monzonite, quartz-monzonite, and granite with high-K calc-alkaline to shoshonitic affinities. The U-Pb zircon geochronology from monzonite and quartz-monzonite reveals the crystallization ages of 40.96 ± 0.48 to 38.78 ± 0.78 Ma (Bartonian). The monzonite, quartz-monzonite, and granite rocks show similar REEs and trace element patterns, as well as limited variations in εNd(i) and 87Sr/86Sr(i) ratio, suggesting that they are a comagmatic intrusive suite. The chondrite and primitive mantle normalized rare earth and trace element patterns show enrichment in the light rare earth elements, K, Rb, Cs, Pb, Th, and U and depletion in heavy rare earth elements, Nb, Zr, and Ti. The εNd(i) and 87Sr/86Sr(i) values range from +1.32 to +1.68 and 0.7044 to 0.7047, respectively, identical to island-arc basalt composition. The whole-rock Nd model age (TDM) for the intrusive rocks range between 0.69 and 0.73 Ga. These geochemical and isotopic signatures indicate a subduction-related sub-continental lithospheric mantle source for these rocks. Our new geochemical, isotopic, and geochronological studies integrated with previously published data indicate that the middle Eocene to late Oligocene magmatism in eastern Iran was formed in a post-collisional tectonic environment. We suggest the northeastward subduction of the Neo-Tethys ocean beneath the Lut block and the eastward subduction of the Sistan ocean beneath the Afghan block caused mantle wedge to be metasomatized by slab components. At a later stage, a collision between the Lut and Afghan blocks was accompanied by the lithospheric delamination, and the subsequent asthenospheric upwelling led to the melting of the metasomatized sub-continental lithospheric mantle and the generation of middle Eocene to late Oligocene magmatism in the Eastern Iran Magmatic Belt.  相似文献   

13.
A classification diagram was empirically developed for acid volcanic rocks formed in modern geodynamic settings and reflects their peculiar chemical features. The testing of the binary diagram Al2O3/(CaO + MgO)?Fe2O 3 Tot /(CaO + MgO) for the Late Cretaceous (Pimorsky, Siyanovsky, Kamensky, and Levosobolevsky) and Paleogene (Bogopolsky) Volcanic Complexes of East Sikhote Alin demonstrated its high efficiency for deciphering the tectonic settings of ancient acid volcanism.  相似文献   

14.
This study presents new zircon U–Pb geochronology, geochemistry, and zircon Hf isotopic data of volcanic and subvolcanic rocks that crop out in the Bayanhushuo area of the southern Great Xing’an Range (GXR) of NE China. These data provide insights into the tectonic evolution of this area during the late Mesozoic and constrain the evolution of the Mongol–Okhotsk Ocean. Combining these new ages with previously published data suggests that the late Mesozoic volcanism occurred in two distinct episodes: Early–Middle Jurassic (176–173 Ma) and Late Jurassic–Early Cretaceous (151–138 Ma). The Early–Middle Jurassic dacite porphyry belongs to high-K calc-alkaline series, showing the features of I-type igneous rock. This unit has zircon εHf(t) values from +4.06 to +11.62 that yield two-stage model ages (TDM2) from 959 to 481 Ma. The geochemistry of the dacite porphyry is indicative of formation in a volcanic arc tectonic setting, and it is derived from a primary magma generated by the partial melting of juvenile mafic crustal material. The Late Jurassic–Early Cretaceous volcanic rocks belong to high-K calc-alkaline or shoshonite series and have A2-type affinities. These volcanics have εHf(t) and TDM2 values from +5.00 to +8.93 and from 879 to 627 Ma, respectively. The geochemistry of these Late Jurassic–Early Cretaceous volcanic rocks is indicative of formation in a post-collisional extensional environment, and they formed from primary magmas generated by the partial melting of juvenile mafic lower crust. The discovery of late Mesozoic volcanic and subvolcanic rocks within the southern GXR indicates that this region was in volcanic arc and extensional tectonic settings during the Early–Middle Jurassic and the Late Jurassic–Early Cretaceous, respectively. This indicates that the Mongol–Okhotsk oceanic plate was undergoing subduction during the Early–Middle Jurassic, and this ocean adjacent to the GXR may have closed by the Late Middle Jurassic–Early Late Jurassic.  相似文献   

15.
Situated in the southwest of the Central Asian Orogenic Belt (CAOB), the South Tian Shan (STS) Block is a key area for understanding the final accretion of the CAOB. A suite of volcanic rocks interbedded with continental sediments from the Xiaotikanlike Formation lies along the southwestern edge of the Tian Shan orogen. Laser-ablation-inductively coupled plasma-mass spectrometer U–Pb dating provided a crystallization age of 295.0 ± 2.8 Ma (MSWD = 1.3), suggesting an Early Permian magmatic event. The volcanic rocks show a variable composition, with dominant rhyolites and dacites, subordinate basaltic andesites and few basalts. The felsic rocks are enriched in K and exhibit remarkably negative anomalies in Ba, Sr, Eu, P and Ti. These anomalies associated with their high negative ε Nd(t) values and old Nd model ages suggest that they are most likely sourced from ancient lower crustal rocks. The mafic rocks are characterized by high Mg#, Cr, Ni contents, negative Nb, Ta anomalies and pronounced enrichment in light rare earth elements as well as mild enrichment in large-ion lithophile elements. The mafic rocks are thus inferred to derive from enriched subcontinental lithospheric mantle. The petrographic and geochemical characteristics of the Xiaotikanlike Formation volcanic rocks indicate that they were generated under a post-collisional regime. Therefore, the final collision between the Tarim Craton and the Kazakhstan–Yili terrane took place before Early Permian, most probably at Late Carboniferous. Differing from other tectonic units of the CAOB, the recycling of ancient lithospheric crust played a significant role in the continental growth of the STS Block.  相似文献   

16.
The Juzzak Sill occurs in the western part of the east-west trending, subduction-related magmatic belt known as the Chagai arc. The sill is concordantly emplaced in the Paleocene Juzzak Formation and locally cross-cuts the Early to Middle Eocene Robat Limestone and Eocene Saindak Formation. The sill is a porphyritic pyroxene diorite that grades into a porphyritic andesite (60.12–61.57 wt% SiO2) along the chilled margins. It comprises phenocrysts of hypersthene and plagioclase (An32–45) in a medium- to fine-grained groundmass of these minerals, opaque oxide, and apatite. The rocks are high-K (2.37–2.86 wt% K2O) calc-alkaline with low Mg# (42–55), Cr (51–80 ppm), and Ni (22–30 ppm) contents. Mantle-normalized trace element patterns, exhibited by marked negative Nb anomalies and positive spikes for Sr, Rb, and Zr and are akin to island arc signatures. The relatively higher ratios of Zr/Y (3.57–6.58), Ti/V (46.05–54.36), Ta/Yb (0.14–0.15), and Th/Yb (2.56–2.65) and high 87Sr/86Sr ratio (0.70524) suggest the role of continental crust materials, thus implying continental margin-type arc affinity. The source diagnostic ratios including K/Ba, P/Zr, and La/Ce of Juzzak Sill andesite and Eocene andesite from the Chagai arc are more or less similar, but the former has a much higher K/Y and Ba/Y ratios, which suggests assimilations of the host sediments during intrusion.  相似文献   

17.
《地学前缘(英文版)》2018,9(6):1829-1847
The origin and geodynamic setting of the Maden Complex, which is situated in the Bitlis-Zagros Suture Zone in the Southeast Anatolian Orogenic Belt, is still controversial due to lack of systematic geological and geochemical data. Here we present new whole rock major-trace-rare earth element and Sre Nd isotope data from the Middle Eocene volcanic rocks exposed in Maden Complex and discuss their origin in the light of new and old data. The volcanic lithologies are represented mainly by basalt and andesite, and minor dacite that vary from low-K tholeiitic, calc-alkaline, high-K calc-alkaline, and shoshonitic in composition. They exhibit enrichments in large ion lithophile and light rare earth elements, with depletions in high field strength elements. Basaltic rocks have uniform Sr and Nd isotope ratios with high εNd(t) values varying from t5.5 to t6.7, in contrast to, andesitic rocks are characterized by low εNd(t) values ranging from à1.6 to à10. These geochemical and isotopic characteristics indicate that two end-members, a subduction-related mantle source and a continental crust, were involved in the magma genesis. Considering all geological and geochemical data, we suggest that the Eocene Maden magmatism occurred as a post-collisional product by asthenospheric upwelling owing to convective removal of the lithosphere during an extensional collapse of the Southeast Anatolian ranges.  相似文献   

18.
In the Río Grande Valley, NW Argentina, several porphyritic panidiomorphic, ocelli-bearing dykes and sills intrude the Neoproterozoic to lower Paleozoic basement of the Eastern Cordillera. New petrographical and geochemical data permit us to classify these rocks as ocellar-analcime monchiquites, a feldspar-free variety of alkaline lamprophyre composed of Ti-rich-diopside/augite, Ti-rich biotite/phlogopite, forsteritic olivine, titanian-pargasite and analcime, with abundant ocelli filled with analcime/carbonate. In terms of geochemical compositions they are characterized by LILE and LREE enrichment and lack of Nb-Ta and Eu anomalies. The 87Sr/86Sr and 143Nd/144Nd initial ratios range between 0.70377 to 0.70781 and 0.512506 and 0.512716 respectively, and TDM model ages vary between 0.25–0.64 Ga. A K-Ar age of 163?±?9 Ma suggests that these rocks are related to the pre-rifting stage of the Mesozoic-Cenozoic continental Salta Rift in NW Argentina. Partial melting of a heterogeneous enriched metasomatized lithospheric mantle, magma mixing and fractionation are envisaged to explain the petrographic, geochemical and isotope characteristics of these magmas.  相似文献   

19.
The results of ICP-MS trace-element (LILE, HFSE, REE) study of the Late Mesozoic–Early Cenozoic volcanic rocks of the Okhotsk and Japan seas and geochronological K-Ar dating of the Eocene volcanic rocks are presented. Specifics of volcanism developed on submarine rises of these seas was characterized for the first time, and magma sources and geodynamic settings of the volcanic complexes predating the formation of the deep-water basins were determined. It is established that the Late Mesozoic magmas were formed in a subduction setting from spinel peridotites of suprasubduction mantle wedge, which was metasomatically reworked by aqueous fluids that were released by dehydration of sedimentary layer of subducting oceanic plate. This follows from the elevated concentrations of H2O, alkalis, potassium, LILE and LREE, and lowered HFSE (including Ta-Nb minimum) and HREE contents, at lowered Sm/Yb, Nb/Ta, Nb/Y and elevated La/Nb, Ba/La, and Zr/Y ratios. Eocene adakite-like volcanic rocks were identified for the first time in the Sea of Okhotsk. They vary from andesitic to more felsic compositions with elevated MgO (>4%) and elevated La/Yb (>14) and Sr/Y (50–60) ratios. Identification of adakite-like volcanic rocks serves as evidence in support of the transform continental-margin (or plate sliding) setting, which is characterized by breaking apart of subduction slab and formation of slab “windows” acting as pathways for the transfer of asthenospheric mantle into continental lithosphere. New geochemical data on the Late Mesozoic–Early Cenozoic volcanic rocks of the Okhotsk and Japan seas and analysis of literature data were used to distinguish two geodynamic settings within these seas: subduction and transform margin. Similar settings operated at that time in the adjacent continental- margin volcanic belts (Akinin and Miller, 2011; Martynov and Khanchuk, 2013; et al.).  相似文献   

20.
ABSTRACT

Silicate melt inclusions (SMIs) are small droplets of magma that become trapped in minerals during crystal growth. SMIs in olivine crystals can provide critical information on the range of melt compositions and processes that occur during melt generation, evolution, transport, and eruption. The Pliocene–Quaternary volcanic rocks in the Qorveh–Bijar volcanic belt of western Iran show porphyritic and microlithic textures, with olivine and clinopyroxene being the dominant minerals. Magnesian olivines in these volcanic rocks contain primary SMIs. The composition and characteristic of olivine-hosted SMI of these rocks are investigated to constrain the source lithology for mafic volcanism. Bulk compositions of the SMIs overlap those of their host rocks and extend to higher CaO/Al2O3 values. The estimated entrapment pressures and temperatures of the studied SMIs are 9.1–10.3 kbar and 1220–1355°C. The calculated mafic parental melt contains 42.36 wt.% SiO2, low total alkalis (3.22 wt.%), and high MgO (16.1 wt.%). Exploratory calculations using pMELTS show that this parental composition underwent variable degrees of fractional crystallization, as reflected by the variable compositions of the SMIs. Several lines of evidence including pyroxene xenocrysts and high FeO/MnO, FC3MS (FeO/CaO – 3*MgO/SiO2), and Zn/Fe ratios (14–21), suggest that a metasomatized pyroxenitic source contributed to the genesis of the parental melt. Amphibole in the SMIs indicates a high volatile content in the parental melt, which we conclude was generated from a metasomatized lithospheric mantle source. The pyroxenite source also contained garnet. Our geochemical results lead us to propose a new petrogenetic model. Specifically, we infer that a dense and unstable portion of the lithosphere underwent localized laminar detachment and downward flow, i.e. lithospheric drip. This drip underwent volatile-enhanced partial melting during descent through the underlying hot asthenosphere and generated the studied volcanic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号