首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Hot collisional orogens are characterized by abundant syn-kinematic granitic magmatism that profoundly affects their tectono-thermal evolutions. Voluminous granitic magmas, emplaced between 360 and 270 Ma, played a visibly important role in the evolution of the Variscan Orogen. In the Limousin region (western Massif Central, France), syntectonic granite plutons are spatially associated with major strike–slip shear zones that merge to the northwest with the South Armorican Shear Zone. This region allowed us to assess the role of magmatism in a hot transpressional orogen. Microstructural data and U/Pb zircon and monazite ages from a mylonitic leucogranite indicate synkinematic emplacement in a dextral transpressional shear zone at 313 ± 4 Ma. Leucogranites are coeval with cordierite-bearing migmatitic gneisses and vertical lenses of leucosome in strike–slip shear zones. We interpret U/Pb monazite ages of 315 ± 4 Ma for the gneisses and 316 ± 2 Ma for the leucosomes as the minimum age of high-grade metamorphism and migmatization respectively. These data suggest a spatial and temporal relationship between transpression, crustal melting, rapid exhumation and magma ascent, and cooling of high-grade metamorphic rocks.Some granites emplaced in the strike–slip shear zone are bounded at their roof by low dip normal faults that strike N–S, perpendicular to the E–W trend of the belt. The abundant crustal magmatism provided a low-viscosity zone that enhanced Variscan orogenic collapse during continued transpression, inducing the development of normal faults in the transpression zone and thrust faults at the front of the collapsed orogen.  相似文献   

2.
The eastern margin of the Variscan belt in Europe comprises plate boundaries between continental blocks and terranes formed during different tectonic events. The crustal structure of that complicated area was studied using the data of the international refraction experiments CELEBRATION 2000 and ALP 2002. The seismic data were acquired along SW–NE oriented refraction and wide-angle reflection profiles CEL10 and ALP04 starting in the Eastern Alps, passing through the Moravo-Silesian zone of the Bohemian Massif and the Fore-Sudetic Monocline, and terminating in the TESZ in Poland. The data were interpreted by seismic tomographic inversion and by 2-D trial-and-error forward modelling of the P waves. Velocity models determine different types of the crust–mantle transition, reflecting variable crustal thickness and delimiting contacts of tectonic units in depth. In the Alpine area, few km thick LVZ with the Vp of 5.1 km s− 1 dipping to the SW and outcropping at the surface represents the Molasse and Helvetic Flysch sediments overthrust by the Northern Calcareous Alps with higher velocities. In the Bohemian Massif, lower velocities in the range of 5.0–5.6 km s− 1 down to a depth of 5 km might represent the SE termination of the Elbe Fault Zone. The Fore-Sudetic Monocline and the TESZ are covered by sediments with the velocities in the range of 3.6–5.5 km s− 1 to the maximum depth of 15 km beneath the Mid-Polish Trough. The Moho in the Eastern Alps is dipping to the SW reaching the depth of 43–45 km. The lower crust at the eastern margin of the Bohemian Massif is characterized by elevated velocities and high Vp gradient, which seems to be a characteristic feature of the Moravo-Silesian. Slightly different properties in the Moravian and Silesian units might be attributed to varying distances of the profile from the Moldanubian Thrust front as well as a different type of contact of the Brunia with the Moldanubian and its northern root sector. The Moho beneath the Fore-Sudetic Monocline is the most pronounced and is interpreted as the first-order discontinuity at a depth of 30 km.  相似文献   

3.
Seismic reflection profiles from three different surveys of the Cascadia forearc are interpreted using P wave velocities and relocated hypocentres, which were both derived from the first arrival travel time inversion of wide-angle seismic data and local earthquakes. The subduction decollement, which is characterized beneath the continental shelf by a reflection of 0.5 s duration, can be traced landward into a large duplex structure in the lower forearc crust near southern Vancouver Island. Beneath Vancouver Island, the roof thrust of the duplex is revealed by a 5–12 km thick zone, identified previously as the E reflectors, and the floor thrust is defined by a short duration reflection from a < 2-km-thick interface at the top of the subducting plate. We show that another zone of reflectors exists east of Vancouver Island that is approximately 8 km thick, and identified as the D reflectors. These overlie the E reflectors; together the two zones define the landward part of the duplex. The combined zones reach depths as great as 50 km. The duplex structure extends for more than 120 km perpendicular to the margin, has an along-strike extent of 80 km, and at depths between 30 km and 50 km the duplex structure correlates with a region of anomalously deep seismicity, where velocities are less than 7000 m s− 1. We suggest that these relatively low velocities indicate the presence of either crustal rocks from the oceanic plate that have been underplated to the continent or crustal rocks from the forearc that have been transported downward by subduction erosion. The absence of seismicity from within the E reflectors implies that they are significantly weaker than the overlying crust, and the reflectors may be a zone of active ductile shear. In contrast, seismicity in parts of the D reflectors can be interpreted to mean that ductile shearing no longer occurs in the landward part of the duplex. Merging of the D and E reflectors at 42–46 km depth creates reflectivity in the uppermost mantle with a vertical thickness of at least 15 km. We suggest that pervasive reflectivity in the upper mantle elsewhere beneath Puget Sound and the Strait of Georgia arises from similar shear zones.  相似文献   

4.
The parameters used for the acquisition of the IBERSEIS deep seismic reflection profile in the SW Iberian Peninsula provide seismic images of the deep crust as well as a high resolution section of the shallow subsurface. A very dense array of sources and receivers allowed high resolution tomographic studies in zones of special interest (granitic plutons). The three dimensional tomographic inversion produced velocity models along a 500 m wide and 1000 m deep strip along the IBERSEIS transect in the areas of La Bazana, La Dehesilla, Feria and Villafranca. In these high resolution velocity models (sampled by 50 × 50 × 50 m cells), high velocity anomalies indicate the geology and extension of the granitic plutons at depth. This directly correlates with the surface outcrops. Moreover, tomographic models provided valuable information for the geometry and characterization of fractured and fresh domains in a rock volume. Furthermore, a piggy back seismic acquisition experiment using additional seismic instrumentation from the University of Paris Sud (40-channel DMT) provided perpendicular, offline recordings of the Vibroseis sources. This additional recording system was deployed perpendicularly to the main IBERSEIS seismic reflection line and provided additional 3D control.  相似文献   

5.
Ultrashallow P-wave seismic reflection experiments were conducted at a model test site and in a trenched shallow fault zone along the Chelunpu fault line. The field layout was designed to have the shallowest undistorted reflection from about 1 m depth with 0.5 m vertical resolution. The smallest group interval tested in this study was 0.05 m with a 0.25 ms sample interval, which can avoid spatial aliasing of ground roll if the target is very shallow and the velocities are low. Data processing was designed to be simple but consistent. As the ultrashallow reflections may be contaminated with high-amplitude coherent noise in many aspects, first break muting and surgical muting were performed on each file as detailed as possible, and fk filtering was applied mainly for the purpose of attenuating the aliasing energy and back-scattered noise. Data acquired in this study show that the low P-wave velocities (< 200 m/s) and high dominant frequencies (120–200 Hz) of near-surface layers may have a potential vertical resolution of 0.4 m or even better.Comparing the test profile with the ground-penetrating radar (GPR) control profile of the same test site and correlating the results obtained from the study site with those of the geologic cross-section of the trench, this experiment demonstrates the possibility of using seismic methods in investigating shallow structures at depths of less than a few meters with vertical resolution comparable to the GPR technique.  相似文献   

6.
Alkaline granitic dikes intruding the metasedimentary mantle and orthogneiss cores of the Aston and Hospitalet domes of the Axial Zone of the Pyrenees are subjects of a laser ablation ICP-MS U-Pb zircon geochronology study. The age spectra recorded by detrital, magmatic xenocrystic and inherited zircons reveal a more complex, nearly continuous Paleozoic magmatic history of the Variscan basement of the Pyrenees than previously known. Inherited and detrital zircons of Mesoarchean, Paleoproterozoic to Ediacaran ages attest to the Peri-Gondwana location of the Cambrian sediments that later form the metamorphic core of the Variscan Pyrenees. The youngest magmatic zircon ages fall into the late Carboniferous and earliest Permian, ranging from ca. 306–297 Ma, and represent the emplacement ages of the dikes and small granite intrusions. The age spectra of magmatic xenocrystic zircons contain several maxima, middle (475–465 Ma) and late Ordovician (455–445 Ma), early (415–402 Ma) and late Devonian (385–383 Ma), early (356–351 Ma) and middle Carboniferous (ca. 328 Ma). Middle Ordovician and middle Carboniferous ages are obtained from xenocrystic zircons that were assimilated from the rocks the dikes intruded, the Aston and Hospitalet orthogneisses and the Soulcem granite. The presence of early-mid Carboniferous magmatic zircons in several samples lends further support to a wide-spread early Variscan magmatic activity in the central Pyrenees. The other age peaks do not have equivalent igneous or metaigneous rocks in the central Axial Zone, but are thought to be present in the Pyrenean crust, not exposed and yet to be identified. The diversity of Ordovician, Devonian and Carboniferous up to Permian magmatic ages indicates polyphase emplacement of intrusive bodies during pre-Variscan and Variscan orogenies. The source of the heat for the Devonian to early-mid Carboniferous magmatic activity remains elusive and may involve intracontinental subduction zone, lithospheric-scale shearing or a mantle plume (TUZO).  相似文献   

7.
Christoffer Nielsen  H. Thybo   《Tectonophysics》2009,470(3-4):298-318
The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal seismic velocities around the rift structure, except for beneath the rift axis where a distinct 50–80-km wide high-velocity anomaly (7.4–7.6 ± 0.2 km/s) is observed. Reverberant or “ringing” reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non-reflective outside the rift zone. Synthetic full-waveform reflectivity modelling of the high-velocity anomaly suggests the presence of a layered sequence with a typical layer thickness of 300–500 m coinciding with the velocity anomaly. The P-wave velocity of the individual layers is modelled to range between 7.4 km/s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine-rich high-velocity layers. The mafic intrusions were probably intruded into the ductile lower crust during the main rift phase in the Late Pliocene. As such, the intrusive material has thickened the lower crust during rifting, which may explain the lack of Moho uplift across southern BRZ.  相似文献   

8.
The Nojima Fault Zone Probe was designed to study the properties and healing processes of the Nojima fault, which is the surface fault rupture of the Hyogo-ken Nanbu earthquake (M7.2) of 1995 (1995 Kobe earthquake). In this project, water injection experiments were conducted in a borehole of 1800 m depth at the Nojima fault. We set up electrodes around the borehole and observed self-potential variations to investigate the magnitude of electrokinetic and hydraulic parameters around the Nojima fault zone. In the 1997 experiment, self-potential variations were in the range of a few to about 20 mV across 320–450 m electrode dipoles with hydraulic pressure variations from 3.5 to 4 MPa. In the 2000 experiment, self-potential variations were in the range of a few to about 85 mV across 160–260 m electrode dipoles with the hydraulic pressure variations from 3 to 4.5 MPa. In the 2003 experiment, self-potential variations were in the range of a few to about 30 mV across 20–80 m electrode dipoles with hydraulic pressure of 4 MPa. These observed self-potential variations were explained well with an electrokinetic effect due to the underground flow of the injected water. From the observed results, we estimated that the ratio of hydraulic parameters (permeability, porosity, and tortuosity) to electrokinetic parameters (zeta potential and dielectric constant) decreased approximately 40% during eight years after the earthquake. This result suggests that the healing process around the fault zone progress.  相似文献   

9.
Modelling of the palaeothermal field at the Variscan thrust front in eastern Belgium indicates significant temperature modifications by late-Variscan palaeofluids migrating from internal to peripheral parts of the orogen. A detailed set of calibration data (chlorite geothermometry, microthermometry, organic rank) gives evidence of temporary palaeotemperature variations at the Variscan thrust front obviously connected to the migration of hot, low saline palaeofluids. These thermal events likely enhanced organic maturation (vitrinite reflectance, conodont alteration) of Devonian and Carboniferous sediments, which accumulated long before the Variscan orogeny occurred. Numerical simulation (2D Finite Element method) of the palaeothermal field includes coupled heat transport by thermal conduction and fluid flow. Palaeothermal scenarios yield successive palaeotemperatures (200–300°C), which are indicated by the control data, due to relatively short-term fluid ascent along the detachment and the imbricate thrust front. The simulated flow velocities are up to tens of metre per year lasting several thousand years (non-steady-state solution). In the scenarios modelled, these thermal events occur in a realm of enhanced bulk temperatures due to elevated basal heat flow densities (90 mW m−2) and an additional burial depth of some kilometres. The simulated temperature enhancement due to fluids ascending at the Variscan thrust front is several tens degrees. The scenarios demonstrate long-distance fluid migration during or after deformation of the Palaeozoic basin and its effect on the palaeothermal field.  相似文献   

10.
11.
The origin of regional sedimentary basins is being investigated by the ESTRID project (Explosion Seismic Transects around a Rift In Denmark). This project investigates the mechanisms of the formation of wide, regional basins and their interrelation to previous rifting processes in the Danish–Norwegian Basin in the North Sea region. In May 2004 a 143 km long refraction seismic profile was acquired along the strike direction of a suspected major mafic intrusion in the crust in central Denmark. The data confirms the presence of a body with high seismic velocity (> 6.5 km/s) extending from a depth of  10–12 km depth into the lower crust. There is a remarkable Moho relief between 27 and 34 km depth along this new along-strike profile as based on ray-tracing modelling of PmP reflections. The lack of PmP reflections at a zone of very high velocity in the lowest crust (7.3–7.5 km/s) suggests a possible location of a feeder channel to the batholith. The presence of volcanic rocks of Carboniferous–Permian age above the intrusion (mafic batholith) suggests a similar age of the intrusion. An older obliquely crossing profile and two new fan profiles deployed perpendicular to the main ESTRID profile, show that the batholith is about 30–40 km wide. The existence of this large mafic batholith supports the hypothesis that the origin of the Danish–Norwegian Basin is related to cooling and contraction after intrusion of large amounts of mafic melts into the crust during the late Carboniferous and early Permian. The data and interpretations from project ESTRID will form the basis for subsidence modelling. Tentatively, we interpret the formation of the Danish–Norwegian Basin as a thermal subsidence basin, which developed after widespread rifting of the region.  相似文献   

12.
13.
The Rhine Rift System (RRS) forms part of the European Cenozoic Rift System (ECRIS) and transects the Variscan Orogen, Permo-Carboniferous troughs and Late Permian to Mesozoic thermal sag basins. Crustal and lithospheric thicknesses range in the RRS area between 24–36 km and 50–120 km, respectively. We discuss processes controlling the transformation of the orogenically destabilised Variscan lithosphere into an end-Mesozoic stabilised cratonic lithosphere, as well as its renewed destabilisation during the Cenozoic development of ECRIS. By end-Westphalian times, the major sutures of the Variscan Orogen were associated with 45–60 km deep crustal roots. During the Stephanian-Early Permian, regional exhumation of the Variscides was controlled by their wrench deformation, detachment of subducted lithospheric slabs, asthenospheric upwelling and thermal thinning of the mantle-lithosphere. By late Early Permian times, when asthenospheric temperatures returned to ambient levels, lithospheric thicknesses ranged between 40 km and 80 km, whilst the thickness of the crust was reduced to 28–35 km in response to its regional erosional and local tectonic unroofing and the interaction of mantle-derived melts with its basal parts. Re-equilibration of the lithosphere-asthenosphere system governed the subsidence of Late Permian-Mesozoic thermal sag basins that covered much of the RRS area. By end-Cretaceous times, lithospheric thicknesses had increased to 100–120 km. Paleocene mantle plumes caused renewed thermal weakening of the lithosphere. Starting in the late Eocene, ECRIS evolved in the Pyrenean and Alpine foreland by passive rifting under a collision-related north-directed compressional stress field. Following end-Oligocene consolidation of the Pyrenees, west- and northwest-directed stresses originating in the Alps controlled further development of ECRIS. The RRS remained active until the Present, whilst the southern branch of ECRIS aborted in the early Miocene. Extensional strain across ECRIS amounts to some 7 km. Plume-related thermal thinning of the lithosphere underlies uplift of the Rhenish Massif and Massif Central. Lithospheric folding controlled uplift of the Vosges-Black Forest Arch.  相似文献   

14.
The basement of central Madagascar displays two contrasted structural patterns. The first one (D1) is characterized by north-striking foliations that are gently dipping to the west and carry W- to WSW-plunging lineations, whereas the second one (D2) is characterized by steeper foliations that are striking to the NNE and lineations that are either subhorizontal or gently plunging to the SSW. The younger pattern is related to late-Panafrican tectonics along the major Angavo shear zone that is about 1000 km in length and 40 km in width with apparently little offset. Deformation in the Angavo zone induced interference folding on both sides. The D2 event is characterized by low pressures (ca 400 MPa) and high temperatures (up to 790 °C) responsible for prograde granulite facies conditions, that resulted from heat transfer due to magma and fluid advection in the Angavo shear zone. The D2 event is pinned at 550 ± 11 Ma by a new monazite age from a reoriented Andringitrean granite near Ankaramena. A new suite of amphibole and biotite Ar–Ar geochronological data enables to retrace the thermochronogical evolution inside and outside the Angavo shear zone. Combined with new structural results from the western interference zone, these ages yield a better understanding of the late-Panafrican history of central Madagascar. No diachronism is observed along the strike of the Angavo shear zone. Conversely, amphibole and especially biotite ages decrease from West to East, i.e. towards the shear zone. These new ages range from 511 to 469 Ma. A 1-D conductive model constrains the thermal effect in relation with the Angavo shear zone to be restricted to a lateral distance of ca 60 km (in map view) for a maximum heating duration of 20 Myr. This is in agreement with the Ar–Ar data and with the width of the observed interference zone. Following this episode of deformation and heat transfer, the estimated cooling rates of the Angavo shear zone range from to 15 to 6 °C/Myr, respectively before and after 515 Ma. A post-collision intracontinental setting is suggested for the Angavo shear zone, which is regarded as a remote effect of the Kuunga Orogeny between India and Antarctica.  相似文献   

15.
The Lugo gneiss dome, in the NW Iberian Massif (Spain) is a Variscan structure developed during late stages of orogenic collapse. Crustal extension was mainly accomplished by two kilometre-scale conjugate extensional shear zones and by the late development of the dome and a huge normal fault. These structures overprint previous contractional recumbent folds and a thrust fault. The Lugo dome and its southward continuation, the Sanabria dome, are the site of the conspicuous Eastern Galicia Magnetic Anomaly (EGMA), a N–S band, 50 km wide and 190 km long, with a maximum amplitude of 190 nT. Integrated potential field modelling of the EGMA and its corresponding gravity signature have been carried out aided by constraints provided by the measurement of c. 900 magnetic susceptibilities and by previous geophysical data, mainly seismic refraction and reflection profiles. Results suggest that a large volume of low-density migmatites and associated inhomogeneous granites are the main source of the magnetic anomaly. Small massifs of basic and ultrabasic rocks inside the migmatites and high-susceptibility iron ore bodies sparsely distributed in low-grade Middle Ordovician slates are also thought to contribute to the anomaly but to a minor extent. Although otherwise similar to other gneiss domes, the Lugo dome is accompanied by a striking magnetic anomaly whose origin is discussed in terms of the tectonic evolution of this structure and the provenance of the magnetite-bearing migmatites and inhomogeneous granites that core it.  相似文献   

16.
This study reports for the first time the occurrence of bimodal dyke in the Shuigongtuan area of Bachu County, Tarim Basin, NW China. Here, quartz syenite porphyry and diabase dykes occur in direct contact showing bimodal feature. The quartz syenitic porphyry is metaluminous, enriched in K2O + Na2O (10–11 wt.%) and total rare earth elements (REE), with low Mg/(Mg + Fe) ratios, high LREE/HREE, and negative Eu anomalies. The chemical characteristics and tectonic discriminative diagrams show that the rocks have geochemical affinity with A-type granites. The diabase dyke shows 45–52 wt.% SiO2 and Mg/(Mg + Fe) ratio in the range of, with high total REE, high LREE/HREE ratios and lack of Eu anomalies, broadly corresponding to tholeiitic composition. Based on low Y/Nb (as low as 0.4, and less than 1.2), enrichment in LILE and HFSE, and uniform Nb-enrichment patterns in spider diagram for the quartz syenitic porphyry, together with the geochemical patterns of the diabases, this biomodal association is interpreted to be derived from a mantle source and formed under typical within-plate environment. The quartz syenitic porphyry and diabase have Daly gap of 46 wt.%–67 wt.% in SiO2, which is explained through formation under bimodal rifting. The quartz syenitic dyke probably formed during Early Permian (277 Ma) and has geochemical affinity with the Xiaohaizi syenitic body. We propose that magmas sourced from the mantle intruded into middle–upper crust and were emplaced as dykes, which indicate large-scale extension during the Permian in Tarim Basin. The bimodal dyke has genetic affinity with the huge volume of Permian basalts and igneous rocks (248–292 Ma) that occur in the Tarim Basin. The magmatism manifests the culmination of the major thermal event in the Tarim Basin.  相似文献   

17.
18.
Apatite fission-track analysis was applied to Triassic and Cretaceous sediments from the South-Iberian Continental Margin to unravel its thermal history. Apatite fission-track age populations from Triassic samples indicate partial annealing and point to a maximum temperature of around 100–110 °C during their post-depositional evolution. In certain apatites from Cretaceous samples, two different fission-track age populations of 93–99 and around 180 Ma can be distinguished. Track lengths associated with these two populations enabled thermal modelling based on experimental annealing and mathematical algorithms. These thermal models indicate that the post-depositional thermal evolution attained temperatures ≤ 70 °C, which is consistent with available vitrinite-reflectance data. Thermal modelling for the Cretaceous samples makes it possible to decipher a succession of cooling and heating periods, consisting of (a) a late Carboniferous–Permian cooling followed by (b) a progressive heating episode that ended approximately 120 Ma at a maximum T of around 110 °C. The first cooling episode resulted from a combination of factors such as: the relaxation of the thermal anomaly related to the termination of the Hercynian cycle; the progressive exhumation of the Hercynian basement and the thermal subsidence related to the rifting of the Bay of Biscay, reactivated during the Late Permian. Jurassic thermal evolution deduced from the inherited thermal signal in the Cretaceous sediments is characterized by progressive heating that ended around 120 Ma. This heating episode is related to thermal subsidence during Jurassic rifting, in agreement with the presence of abundant mantle-derived tholeiitic magmas interbedded in the Jurassic rocks. The end of the Jurassic rifting is well marked by a cooling episode apparently starting during Neocomiam times and ending at surface conditions by Albian times.  相似文献   

19.
Thermochronological studies of Variscan basement in Iberia yield cooling ages typically younger than ~ 200 Ma. In this paper, we explore the regional implications of this recurrent age maximum by examination of low and high temperature thermochronological datasets from all over Iberia. Based on these results, we show that in general the lack of cooling ages older than 200 Ma is the result of several important regional periods of thermal resetting. Resetting took place in areas of extension and burial during the Mesozoic break-up of Pangea. Evidence for large scale magmatism and mineralisation is found in Iberia during the Mesozoic, since at that time Iberia formed part of the Central Atlantic Magmatic Province and a large mineralization province extending from North Africa to Western Europe. Numerical modelling allows us to assess the conditions under which rocks in the upper crust may have been thermally reset and the mechanisms likely involved. Results show that active rifting combined with shallow magmatism, and to a lesser extent deep sedimentary burial, could have led to an increase of the geothermal gradient up to ~ 73 °C/km and the reset of thermochronometers with closure temperatures up to 200 °C. Yet, we suggest that also hydrothermal activity, associated to extensional basins, played an important role to the increase of temperatures of some basement rocks above 300 °C.  相似文献   

20.
This work is based on apatite fission-track analysis of samples (mostly granites) from the basement of the Cretaceous-Tertiary Phosphate and Ganntour Plateaus, exposed in the Jebilet and Rehamna massifs (Western Meseta, Morocco). This basement belongs to the Carboniferous-Early Permian Variscan Belt, and the earlier marine onlap is Late Triassic in age. However, the AFT ages are post-Triassic and different in the Jebilet (186-203 Ma) and Rehamna (148-153 Ma). Track length modelling support the occurrence of moderate heating events during the Jurassic and the Eocene, respectively, with cooling during the Permian and Cretaceous intervals. These results are partly accounted for by considering a moderate subsidence during the Late Triassic-Liassic, which is a noticeable change in the regional paleogeographic concept of “West Moroccan Arch”. However, the discrepancies between the AFT results from the studied massifs make necessary to explore further explanation. We interpret the observed discrepancies by the difference in age and depth of crystallization of the sampled granites in the Variscan Orogen, i.e. 330 Ma, 5-6 km in the Jebilet versus ~ 300 Ma, 8-10 km in the Rehamna. The importance of the Late Jurassic-Early Cretaceous uplift and erosion of the entire Meseta and that of its Late Eocene burial are emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号