首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Nolan site (16MA201), 14C dated 5200–4800 cal yr B.P. and located in the Tensas Basin of northeastern Louisiana, is the only recorded Middle Archaic mound site in the alluvial valley of the Mississippi River. Alluvial deposition has buried the Nolan site under 3–4 m of Holocene sediment, prohibiting traditional excavation of the site. Because data are unattainable by other means, soil coring and subsequent stratigraphic and sedimentological analyses permit reconstruction of the natural and cultural depositional history of the Nolan site. The sedimentary characteristics of basal deposits within cores suggest the presence of an Arkansas River paleochannel immediately adjacent to the site. Chronostratigraphic data show this channel was no longer active by ca. 5200 cal yr B.P. Contrary to existing models, the Arkansas River Meander Belt 4 and the Mississippi River Meander Belt 4 are not the same age. Microartifact and losson‐ignition analyses of sediment identify natural versus cultural strata and permit the identification of artificial constructions—including four earthen mounds and one earthen ridge—at the Nolan site. Overbank sediments attributed to a mapped Mississippi River Stage 4 meander belt are dated ca. 4800–3800 cal yr B.P. This age is considerably younger than previous estimates and demonstrates the existing chronological models for Mississippi River meander belts must be carefully assessed. Core analyses also reveal flood‐related crevasse splays deposited throughout the Tensas Basin after the occupation of the Nolan site. These deposits serve as relative chronological indicators and aid in stratigraphic assessments of the Nolan site. Reconstruction of the earthworks and their stratigraphic context reveals one of the largest and earliest Middle Archaic mound sites in North America. © 2006 Wiley Periodicals, Inc.  相似文献   

2.
Maps of the distributions of the four major clay minerals (smectite, illite, kaolinite and chlorite) in and around the Mississippi River drainage basin and in the Northern Gulf of Mexico have been produced using newly acquired data from erodible/alluvial terrestrial sediments and marine surface sediments, as well as from previously published data. East of the Rockies, North America can be divided into four, large, clay-mineral provinces: (1) the north-western Mississippi River watershed (smectite rich), (2) the Great Lakes area and eastern Mississippi River watershed (illite and chlorite rich), (3) the south-eastern United States (kaolinite rich) and (4) the Brazos River and south-western Mississippi River watersheds (illite and kaolinite rich). The clay mineral distributions in surface sediments of the present-day Gulf of Mexico are strongly influenced by three main factors: (1) by relative fluvial contributions: the Mississippi River delivers the bulk of the clay input to the Northern Gulf of Mexico whereas the Apalachicola, Mobile, Brazos and Rio Grande rivers inputs have more local influences; (2) by differential settling of various clay mineral species, which is identified for the first time in Northern Gulf of Mexico sediments; and (3) by oceanic current transport: the Gulf of Mexico surface and subsurface circulation distributes the clay-rich sediments from river mouth sources throughout the Northern Gulf of Mexico.  相似文献   

3.
Shallow shear-wave seismic reflection imaging, using a sledgehammer and mass energy source and standard processing, has become increasingly common in mapping near-surface geologic features, especially in water-saturated, unconsolidated sediments. Tests of the method in the Mississippi Embayment region of the central United States show Interpretable reflection arrivals in the depth range of <10 m to >100 m with the potential for increased resolution when compared with compresslonal-wave data. Shear-wave reflection profiles were used to help interpret the significance of neotectonic surface deformation at five sites in the Mississippi Embayment. The interpreted profiles show a range of shallow structural styles that include reverse faulting, fault propagation folding, and reactivated normal faulting, and provide crucial subsurface evidence in support of paleuseismologic trenching and shallow drilling.  相似文献   

4.
The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6 m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6 m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory.  相似文献   

5.
6.
Sediments from San Antonio Bay, the northwest Gulf of Mexico, and the Mississippi River Delta were acid leached and analyzed for Fe, Mn, Pb, Zn, Cd, Cu and Ni by atomic absorption spectrophotometry. In order to account for differences in sediment clay, carbonate, and organic matter content, metal concentrations were normalized to Fe. Significant linear correlations of metals to Fe were obtained for unpolluted sediments and deviations from these “natural” statistical populations were found for areas thought to have metal input caused by man. San Antonio Bay sediments show little evidence of metal pollution despite 70 years of shell dredging in the bay. However, the San Antonio-Guadalupe River system, the bay's prime sediment source, has 10% to 50% higher than natural levels of Pb, Cd and Cu. Sediments from a 1500 km2 area of the Mississippi River Delta have Pb and Cd concentrations 10% to 100% higher than expected levels. The vertical distribution of Pb and Cd in these sediments suggests that inputs have occurred during the past 30 to 40 years. We find no indication of metal pollution in other areas of the Delta or along the continental shelf of the northwest Gulf of Mexico.  相似文献   

7.
The Mississippi River system ranks among the world's top 10 rivers in freshwater and sediment inputs to the coastal ocean. The river contributes 90% of the freshwater loading to the Gulf of Mexico, and terminates amidst one of the United States' most productive fisheries regions and the location of the largest zone of hypoxia, in the western Atlantic Ocean. Significant increases in riverine nutrient concentrations and loadings of nitrate and phosphorus and decreases in silicate have occurred this century, and have accelerated since 1950. Consequently, major alterations have occurred in the probable nutrient limitation and overall stoichiometric nutrient balance in the adjacent continental shelf system. Changes in the nutrient balances and reduction in riverine silica loading to, the continental shelf appear to have led to phytoplankton species shifts offshore and to an increase in primary production. The phytoplankton community response, as indicated by long-term changes in biological uptake of silicate and accumulation of biologically bound silica in sediments, has shown how the system has responded to changes in riverine nutrient loadings. Indeed, the accumulation of biologically bound silica in sediments beneath the Mississippi River plume increased during the past two decades, presumably in response to, increased nitrogen loading. The duration, size, and severity of hypoxia has probably increased as a consequence of the increased primary production. Management alternatives directed at water pollution issues within the Mississippi River watershed may have unintended and contrasting impacts on the coastal waters of the northern Gulf of Mexico.  相似文献   

8.
Surface sediment samples at 89 locations and 300-cm cores from 43 sites in the Mississippi Sound were examined for evidence of pollutant impact upon this coastal environment. Chemical variables determined were total organic carbon, Kjeldahl nitrogen, phenols, and hydrocarbons. Values of these pollutant indicators were about the same or lower in Gulf of Mexico samples compared to Missippi Sound sediments and considerably lower than those from rivers and bays emptying into the sound, indicating limited impact from sites of pollutant sources into the sound. Concentrations of sedimentary pollutants peaked in the Pascagoula River where levels of total organic carbon (TOC), Kjeldahl nitrogen (TKN), phenols, and hydrocarbons exceeded sound values by one to three orders of magnitude. Analysis of cores shows pollutant intrusion to sediment strata predating industrial development. The level of pollution varies from site to site but fortunately is only serious at localized sites within the sound.  相似文献   

9.
The significance of the inorganic removal of dissolved silica from estuarine zones was investigated at three river mouths: the Orinoco, the Savannah and the Mississippi. Particular attention was given to the Mississippi river plume, where extensive inorganic silica uptake had been reported. Mixing curves and laboratory dilution experiments provided little evidence that the phenomenon was widespread. Because of an uncertain fresh water tie point, some inorganic uptake could not be completely ruled out for the Orinoco, but, in the plumes of the Savannah and Mississippi rivers, no inorganic silica removal was indicated. In contrast to published experiments on river sediments, laboratory dilution studies on suspended matter from the Mississippi river showed release of dissolved silica instead of uptake.  相似文献   

10.
Reinvestigation of Quaternary sediments in West Feliciana Parish, southeastern Louisiana, and adjacent Wilkinson County, southwestern Mississippi, has resulted in revision of previous terrace stratigraphy of this portion of the Gulf Coastal Plain. Plant-macrofossil and pollen assemblages incorporated in fluviatile terrace deposits in the study area are reexamined in light of the current stratigraphic understanding. Macrofossils identified as white spruce (Picea glauca), tamarack (Larix laricina), and northern white cedar (Thuja occidentalis), recovered from these terrace deposits along with fossil remains of distinctly southern plant species, were initially interpreted as the result of dynamic intermixing of aggressive boreal species within a southern forest during the early Wisconsin (Brown, 1938). Failure to distinguish chronologically separate fossiliferous deposits resulted in the conceptual “mixing” of northern and southern plant species which came from two distinct fluviatile terrace sequences. Terrace 2 is now believed to be a fluviatile and coastwise depositional terrace of Sangamon Interglacial age; deposits of terrace 2 contain a distinctly warm-temperate plant assemblage. Fluviatile terrace 1 dates from 12,740 ± 300 to 3457 ± 366 BP and is now considered to be related to late glacial and Holocene aggradation and lateral migration of the Mississippi River (the local base level for streams in the study area); basal portions of terrace 1 contain fossils of white spruce, tamarack, and many plant species today characteristic of the cool-temperate Mixed Mesophytic Forest Association. Terrace 1 fossil deposits occur in fluviatile terraces along tributary streams of the Mississippi River at elevations 15 to 30 m above the maximum recorded historic flood stage of the Mississippi River. The plant macrofossils represent remains of species that grew at or very near the site of deposition; they were not “rafted in” by floodwaters of the Mississippi River. We present quantitative data for plant macrofossils and pollen that support our hypothesis that at least local cooling along the Blufflands of Mississippi and Louisiana promoted southward migrations of mixed mesophytic forest species and certain boreal species along this major pathway during late Wisconsin continental glaciation.  相似文献   

11.
Bodin et al. [Eng. Geol. 62 (2001) 159] reported three sets of maxima in observed H/V particle-motion spectra, where the longest-period set of peaks provided clear mapping information on the thickness of post-Cretaceous sediments in the Mississippi embayment, but the remaining peaks remained largely unexplained. A review of microtremor array studies for similar sites and similar frequencies suggests that the microtremor field is best interpreted in terms of Rayleigh-wave energy. Use of this approach, with modeling of particle-motion H/V ratios for realistic models of the Mississippi embayment, shows that the [Eng. Geol. 62 (2001) 159] second set of spectral maxima can be associated with higher-mode Rayleigh-wave energy, and may contain information on a possible velocity inversion in the shear-velocity profile of the site. A third spectral maximum appears to be associated with soft soils (loess) and may be able to be used for mapping the near-surface thickness (order 15 m) of this unit.  相似文献   

12.
The Mississippi Valley-type sphalerite mineralization in the Mascot-Jefferson City zinc district of East Tennessee occurs as open-space fillings in breccia bodies within the upper part of the Knox Group (Lower Ordovician) which is truncated by a regional unconformity. A lower age limit of mineralization is constrained by the formation of solution-collapse breccia bodies, which are believed to be related to the post-Knox unconformity. The breccias contain irregularly distributed “sand” bodies that represent cavities filled with well-laminated and size-graded, sphalerite-bearing, detrital, internal sediments. The texture, composition, and fluid inclusion characteristics of the sphalerite, are consistent with its local derivation from the wallrocks as detrital grains. The conformability between the laminations in the sediments and the bedding planes of the host carbonate rocks suggests that the sand bodies formed prior to the regional deformation event (Alleghenian orogeny). The stylolitization of carbonate and sphalerite clasts in the internal sediments as well as the deformation of the sphalerite are also consistent with a pre-Alleghenian age for the emplacement of the main-stage sphalerite mineralization in the Mascot-Jefferson City district and, by analogy, in other Lower Ordovician-hosted Mississippi Valley-type districts of the southern Appalachians.  相似文献   

13.
Massive sediment deposition on the Mississippi River Delta establishes reducing conditions sufficient to bring about Mn dissolution in the top millimeters of sediment. As a result, significant fluxes of dissolved Mn pass from the Delta sediments to the overlying water column. This process is examined by study of chemical partitioning of Mn in river particulates and Delta sediments and from interstitial water chemistry. Remobilized Mn is actively transported away from the Delta area with aluminosilicate detritus thereby providing “excess” Mn to the deep Gulf of Mexico at the expense of the Delta sediments.  相似文献   

14.
Perspectives on the geoarchaeology of the Lower Mississippi Valley   总被引:1,自引:0,他引:1  
The impact of Harold N. Fisk's work on the archaeology and geoarchaeology of the Lower Mississippi Valley (LMV) has been monumental. As a result of his landmark publications on the geology of the alluvial valley of the Mississippi River our comprehension of the interplay between geological, geomorphic, and human actions is relatively well developed. However, geologists and archaeologists still need to work together more closely to appreciate and understand the contributions each field has to offer. Examination of the interplay between geologists and archaeologists in the realm of dating and landscape evolution provides the basis for an investigation of the state of geoarchaeology in the LMV today. Integration of research demands an appreciation of scale which must be approached from an historical perspective. Humans have, both in the past and the present, impacted the natural environment of the Mississippi River and its floodplain. Only when this fact is fully appreciated by archaeologists and geologists alike will it be possible to forge a new synthesis of the relationship between the dynamic alluvial valley and its human occupants.  相似文献   

15.
The Savanna Terrace, composed of alternating red and gray clayey sediments of late Wisconsinan age, can be found in five states along the upper Mississippi valley from Pepin County, Wisconsin, to Jackson County, Illinois. The terrace is the highest glaciofluvial-lacustrine deposit without a loess cover in the upper Mississippi valley. Chemical, physical, and mineralogical data show that two different sources provided sediment. The red clay is believed to have come from Lake Superior sources, while the gray clay is believed to have come from sources farther west. Large-scale flood events from glacial Lakes Agassiz, Grantsburg, and Superior were probably the main contributors of the sediments. The red clay in the terrace is similar in composition to red glaciolacustrine sediment found in eastern and northern Wisconsin. It also is mineralogically similar to the Hinckley Sandstone and the Fond du Lac Formation, which occur under and around Lake Superior. Radiocarbon dates obtained from the lower Illinois valley indicate that the terrace sediments were deposited sometime between about 13,100 and 9500 yr ago. Soils developed on the terrace are variable in their physical, chemical, and mineralogical properties, which reflect the composition of the clayey sediments.  相似文献   

16.
Dispersal of river sediments in coastal seas: Six contrasting cases   总被引:2,自引:0,他引:2  
The fate of sediment seaward of river mouths involves at least four stages: supply via plumes; initial deposition; resuspension and transport by marine processes; and long-term net accumulation. The processes that operate at each stage, and relative roles of each stage in governing the long-term accumulation patterns, vary appreciably with river regime and coastal ocean environment. To illustrate the diversity and illuminate the process of dispersal, information is synthesized for six systems: Amazon, Changjiang, Mississippi, Columbia, Purari, and Huanghe. These systems differ markedly in terms of water discharge, sediment discharge, and coastal energy regime and much of the diversity of dispersal patterns is attributed to these differences as well as to the temporal sequencing of river discharge relative to oceanographic transport processes. Although the sediment: water ratio of the discharge of the Mississippi River is 70 times less than that of the Huanghe, both of these systems exhibit rapid deposition and accumulation of sediments near the river mouths. In contrast, sediments dispersed by, the other four systems are transported greater distances from the mouths by oceanographic processes, and are accumulating over relatively wide areas.  相似文献   

17.
A high-resolution record of Pb deposition in Rhode Island over the past 250 yr was constructed using a sediment core from the anoxic Pettaquamscutt River basin. The sedimentary Pb concentration record shows the well-described maximum associated with leaded gasoline usage in the United States. Diminished Pb variability during recorded periods of local industrial activity (1735 to 1847) supports the greater importance of regional atmospheric lead transport vs. local inputs. The Pb isotopic composition at this site shows a clear maximum in anthropogenic 206Pb/207Pb in the mid-1800s. Similar peaks have also been observed in sediments from Chesapeake Bay and the Great Lakes, suggesting a common source. Possible causes for this event include mining and smelting of Pb ores in the Upper Mississippi Valley district, which accounted for almost all Pb production in the United States in that period. The timing of this event can provide an important stratigraphic marker for sediments deposited in the past 200 yr in the Northeastern United States. The downcore profile of anthropogenic 206Pb/207Pb provides a classic example of how changes in the mixture of ores for production of tetraethyl lead caused a regional-scale shift in the sedimentary record, and suggests that coal could have played a secondary role in Pb emissions after 1920.  相似文献   

18.
Soluble reactive phosphorus (SRP) has recently been shown to be one of the limiting nutrients for the growth of phytoplankton in the northern Gulf of Mexico. We show here that during the past decade, SRP concentrations in the lower reaches of North America's largest river, the Mississippi River, were highest in summer and lowest in winter and positively correlated with water temperature. Upstream data showed this coupling to increase in a downstream trend in the Mississippi main stem. Water quality data analysis and phosphorus mass balances were conducted to examine the controls of this relationship. The results showed that the positive SRP–temperature correlation in the Mississippi River system was largely a result of gradual dilution of SRP-enriched upper Mississippi River waters, which contributed most to the Mississippi River during summer, by SRP-depleted waters from the Ohio and other tributaries. Particle buffering and organic matter mineralization might play a role in the observed SRP–temperature relationship, but their importance relative to tributary effects is not quantified. Future work on the seasonal dynamics of SRP in large river systems needs to consider the effects of both tributary dilution and in situ processes.  相似文献   

19.
Loess has been recognized on the glacial land surface of the Green Bay Lobe for over 100 yr, but no systematic explanation of the source of the loess has been advanced. Intriguingly, the loess on the Green Bay Lobe land surface is thicker than predicted by regional thinning trends from the Mississippi Valley and is geographically separated from much loess of southwest Wisconsin by a sandy region devoid of loess. Mapping based on soil survey interpretation indicates that the loess occurs above an escarpment marking the eastern end of the sandy loess-free region. Particle size fining trends demonstrate that the loess was transported by northwesterly winds. Clay mineralogy of the Green Bay Lobe loess is distinctly different than glaciogenic sediments and matches loess of the Mississippi Valley, indicating a regional source and long distance transport of the loess. We propose the loess was transported from the regional source along a surface of transport produced by migration of eolian sand through low-relief landscapes including the glacial Lake Wisconsin basin. Eolian sand migration caused repeated entrainment of dust leading to east-southeastward transport. The loess accumulated above an escarpment that limited sand mobility and re-entrainment of loess beyond this topographic barrier.  相似文献   

20.
《Quaternary Science Reviews》2007,26(7-8):920-940
Sea-level records from the Gulf of Mexico at the Last Glacial Maximum, 20 ka, are up to 35 m higher than time-equivalent sea-level records from equatorial regions. The most popular hypothesis for explaining this disparity has been uplift due to the forebulge created by loading from Mississippi River sediments. Using over 50 new radiocarbon dates as well as existing published data obtained from shallow-marine deposits within the northern Gulf of Mexico and numerical models simulating the impact of loading due to the Mississippi Fan and glacio-hydro-isostasy, we test several possible explanations for this sea-level disparity. We find that neither a large radiocarbon reservoir, sedimentary loading due to the Mississippi Fan, nor large-scale regional uplift can explain this disparity. We do find that with an appropriate model for the Laurentide Ice Sheet, the observations from the Gulf of Mexico can be explained by the process of glacio-hydro-isostasy. Our analysis suggests that in order to explain this disparity one must consider a Laurentide Ice Sheet reconstruction with less ice from 15 ka to its disappearance 6 ka and more ice from the Last Glacial Maximum to 15 ka than some earlier models have suggested. This supports a Laurentide contribution to meltwater pulse 1-A, which could not have come entirely from its southern sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号