首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new technique to extract the cosmological information from high-redshift supernova data in the presence of calibration errors and extinction due to dust. While in the traditional technique the distance modulus of each supernova is determined separately, in our approach we determine all distance moduli at once, in a process that achieves a significant degree of self-calibration. The result is a much reduced sensitivity of the cosmological parameters to the calibration uncertainties. As an example, for a strawman mission similar to that outlined in the SNAP satellite proposal, the increased precision obtained with the new approach is roughly equivalent to a factor of five decrease in the calibration uncertainty.  相似文献   

2.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

3.
The AM Canum Venaticorum (AM CVn) stars are rare interacting white dwarf binaries, whose formation and evolution are still poorly known. The Sloan Digital Sky Survey provides, for the first time, a sample of six AM CVn stars (out of a total population of 18) that are sufficiently homogeneous that we can start to study the population in some detail.
We use the Sloan sample to 'calibrate' theoretical population synthesis models for the space density of AM CVn stars. We consider optimistic and pessimistic models for different theoretical formation channels, which yield predictions for the local space density that are more than two orders of magnitude apart. When calibrated with the observations, all models give a local space density  ρ0= 1–3 × 10−6 pc−3  , which is lower than expected.
We discuss the implications for the formation of AM CVn stars, and conclude that at least one of the dominant formation channels (the double-degenerate channel) has to be suppressed relative to the optimistic models. In the framework of the current models this suggests that the mass transfer between white dwarfs usually cannot be stabilized. We furthermore discuss evolutionary effects that have so far not been considered in population synthesis models, but which could be of influence for the observed population. We finish by remarking that, with our lower space density, the expected number of Galactic AM CVn stars resolvable by gravitational-wave detectors like the Laser Interferometer Space Antenna ( LISA ) should be lowered from current estimates, to about 1000 for a mission duration of 1 yr.  相似文献   

4.
We present a joint analysis of near-ultraviolet ( NUV ) data from the GALEX ( Galaxy Evolution Explorer ) mission and (optical) colour profiles for a sample of seven brightest cluster galaxies (BCGs) in the Canadian Cluster Comparison Project. We find that every BCG, which has a blue rest-frame UV colour, also shows a blue core in its optical colour profile. Conversely, BCGs that lack blue cores and show monotonic colour gradients typical of old elliptical galaxies are red in the UV. We interpret this as evidence that the NUV enhancement in the blue BCGs is driven by recent star formation and not from old evolved stellar populations such as horizontal branch stars. Furthermore, the UV enhancement cannot be from an active galactic nuclei (AGN) because the spatial extent of the blue cores is significantly larger than the possible contamination region due to a massive black hole. The recent star formation in the blue BCGs typically has an age less than 200 Myr and contributes mass fractions of less than a per cent. Although the sample studied here is small, we demonstrate, for the first time , a one-to-one correspondence between blue cores in elliptical galaxies (in particular BCGs) and a NUV enhancement observed using GALEX . The combination of this one-to-one correspondence and the consistently young age of recent star formation, coupled with additional correlations with the host cluster's X-ray properties, strongly suggests that the star formation is fuelled by gas cooling out of the intracluster medium. In turn, this implies that any AGN heating of the intracluster medium in massive clusters only acts to reduce the magnitude of the cooling flow and once this flow starts, it is nearly always active. Collectively, these results suggest that AGN feedback in present-day BCGs, while important, cannot be as efficient as suggested by the recent theoretical model by proposed by De Lucia et al.  相似文献   

5.
This paper has two parts: one about observational constraints related to the empirical differential oxygen abundance distribution (EDOD), and the other about inhomogeneous models of chemical evolution, in particular the theoretical differential oxygen abundance distribution (TDOD). In the first part, the EDOD is deduced from subsamples related to two different samples involving (i) N=532 solar neighbourhood (SN) stars within the range, −1.5<[Fe/H]<0.5, for which the oxygen abundance has been determined both in presence and in absence of the local thermodynamical equilibrium (LTE) approximation (Ramirez et al. in Astron. Astrophys. 465:271, 2007); and (ii) N=64 SN thick disk, SN thin disk, and bulge K-giant stars within the range, −1.7<[Fe/H]<0.5, for which the oxygen abundance has been determined (Melendez et al. in Astron. Astrophys. 484:L21, 2008). A comparison is made with previous results implying use of [O/H]–[Fe/H] empirical relations (Caimmi in Astron. Nachr. 322:241, 2001b; New Astron. 12:289, 2007) related to (iii) 372 SN halo subdwarfs (Ryan and Norris in Astron. J. 101:1865, 1991); and (iv) 268 K-giant bulge stars (Sadler et al. in Astron. J. 112:171, 1996). The EDOD of the SN thick + thin disk is determined by weighting the mass, for assumed SN thick to thin disk mass ratio within the range, 0.1–0.9. In the second part, inhomogeneous models of chemical evolution for the SN thick disk, the SN thin disk, the SN thick + thin disk, the SN halo, and the bulge, are computed assuming the instantaneous recycling approximation. The EDOD data are fitted, to an acceptable extent, by their TDOD counterparts with the exception of the thin or thick + thin disk, where two additional restrictions are needed: (i) still undetected, low-oxygen abundance thin disk stars exist, and (ii) a single oxygen overabundant star is removed from a thin disk subsample. In any case, the (assumed power-law) stellar initial mass function (IMF) is universal but gas can be inhibited from, or enhanced in, forming stars at different rates with respect to a selected reference case. Models involving a strictly universal IMF (i.e. gas neither inhibited from, nor enhanced in, forming stars with respect to a selected reference case) can also reproduce the data to an acceptable extent. Our main conclusions are (1) different models are necessary to fit the (incomplete) halo sample, which is consistent with the idea of two distinct halo components: an inner, flattened halo in slow prograde rotation, and an outer, spherical halo in net retrograde rotation (Carollo et al. in Nature 450:1020, 2007); (2) the oxygen enrichment within the inner SN halo, the SN thick disk, and the bulge, was similar and coeval within the same metallicity range, as inferred from observations (Prochaska et al. in Astron. J. 120:2513, 2000); (3) the fit to thin disk data implies an oxygen abundance range similar to its thick disk counterpart, with the extension of conclusion (2) to the thin disk, and the evolution of the thick + thin disk as a whole (Haywood in Mon. Not. R. Astron. Soc. 388:1175, 2008) cannot be excluded; (4) leaving outside the outer halo, a fit to the data related to different environments is provided by models with a strictly universal IMF but different probabilities of a region being active, which implies different global efficiencies of the star formation rate; (5) a special case of stellar migration across the disk can be described by models with enhanced star formation, where a fraction of currently observed SN stars were born in situ and a comparable fraction is due to the net effect of stellar migration, according to recent results based on high-resolution N-body + smooth particle hydrodynamics simulations (Roškar et al. in Astrophys. J. Lett. 684:L79, 2008).  相似文献   

6.
An extremely sensitive all-sky survey will be carried out in the millimetre/submillimetre waveband by the forthcoming ESA mission Planck Surveyor . The main scientific goal of the mission is to make very accurate measurements of the spatial power spectrum of primordial anisotropies in the cosmic microwave background radiation; however, hundreds of thousands of distant dusty galaxies and quasars will also be detected. These sources are much more likely to be gravitationally lensed by intervening galaxies compared with sources discovered in surveys in other wavebands. Here the number of lenses expected in the survey is estimated, and techniques for discriminating between lensed and unlensed sources are discussed. A practical strategy for this discrimination is presented, based on exploiting the remarkable sensitivity and resolving power of large ground-based millimetre/submillimetre-wave interferometer arrays. More than a thousand gravitational lenses could be detected: a sample that would be an extremely valuable resource in observational cosmology.  相似文献   

7.
We present a comprehensive analysis for the determination of the confusion levels for the current and the next generation of far-infrared surveys assuming three different cosmological evolutionary scenarios. We include an extensive model for diffuse emission from infrared cirrus in order to derive absolute sensitivity levels taking into account the source confusion noise due to point sources, the sky confusion noise due to the diffuse emission, and instrumental noise. We use our derived sensitivities to suggest best survey strategies for the current and the future far-infrared space missions Spitzer , AKARI ( ASTRO-F ), Herschel and SPICA . We discuss whether the theoretical estimates are realistic and the competing necessities of reliability and completeness. We find the best estimator for the representation of the source confusion and produce predictions for the source confusion using far-infrared source count models. From these confusion limits considering both source and sky confusions, we obtain the optimal, confusion limited redshift distribution for each mission. Finally, we predict the cosmic far-infrared background (CFIRB), which includes information about the number and distribution of the contributing sources.  相似文献   

8.
The workshop took place at the beginning of what promises tobe a golden age of asteroseismology.Ground-based instrumentation is finally reaching a level of stabilitywhich allows detailed investigations of solar-like oscillations in atleast bright, slowly rotating main-sequence stars.Very extensive results are expected from the coming space missions,including data on a broad range of stars from the Eddington mission.The observational situation is therefore extremely promising.To make full use of these promises, major efforts are requiredtowards the efficient utilization of the data, through the developmentof techniques for the analysis and interpretation of the data.A broad range of topics related to these issues is discussed in the presentproceedings. Here I review some of the relevant problems,relate the asteroseismic investigations to broader areas of astrophysics and consider briefly the basis for our great expectations for the developmentof the field.  相似文献   

9.
Gaia is the most ambitious space astrometry mission currently envisaged and it will be a technological challenge in all its aspects. Here we describe a proposal for the data compression system of Gaia, specifically designed for this mission but based on concepts that can be applied to other missions and systems as well. Realistic simulations have been performed with our Telemetry CODEC software, which performs a stream partitioning and pre-compression to the science data. In this way, standard compressors such as bzip2 or szip boost their performance and decrease their processing requirements when applied to such pre-processed data. These simulations have shown that a lossless compression factor of 3 can be achieved, whereas standard compression systems were unable to reach a factor of 2.   相似文献   

10.
Recent ISO data have allowed, for the first time, observationally based estimates for source confusion in mid-infrared surveys. We use the extragalactic source counts from ISOCAM in conjunction with K -band counts to predict the confusion resulting from galaxies in deep mid-infrared observations. We specifically concentrate on the near-future Space Infrared Telescope Facility ( SIRTF ) mission, and calculate expected confusion for the Infrared Array Camera (IRAC) on board SIRTF . A defining scientific goal of the IRAC instrument will be the study of high-redshift galaxies using a deep, confusion-limited wide-field survey at 3–10 μm . A deep survey can reach 3-μJy sources with reasonable confidence in the shorter wavelength IRAC bands. Truly confusion-limited images with the 8 μm will be difficult to obtain because of practical time constraints, unless infrared galaxies exhibit very strong evolution beyond the deepest current observations. We find L * galaxies to be detectable to z =3–3.5 at 8 μm, which is slightly more pessimistic than found in 1999 by Simpson & Eisenhardt.  相似文献   

11.
Analytical expressions for covariances of weak lensing statistics related to the aperture mass,   M ap  , are derived for realistic survey geometries such as the Supernova Acceleration Probe (SNAP) 1 for a range of smoothing angles and redshift bins. We incorporate the contributions to the noise due to the intrinsic ellipticity distribution and the effects of the finite catalogue size. Extending previous results to the most general case where the overlap of source populations is included in a complete analysis of error estimates, we study how various angular scales in various redshifts are correlated and how the estimation scatter changes with the survey parameters. Dependences on cosmological parameters and source redshift distributions are studied in detail. Numerical simulations are used to test the validity of various ingredients to our calculations. Correlation coefficients are defined in a way that makes them practically independent of cosmology. They can provide important tools to cross-correlate one or more different surveys, as well as various redshift bins within the same survey or various angular scales from the same or different surveys. The dependence of these coefficients on various models of underlying mass correlation hierarchy is also studied. Generalizations of these coefficients at the level of three-point statistics have the potential of probing the complete shape dependence of the underlying bi-spectrum of the matter distribution. A complete error analysis incorporating all sources of errors suggests encouraging results for studies using future space-based weak lensing surveys such as SNAP.  相似文献   

12.
We have studied the science rationale, goals and requirements for a mission aimed at using the gravitational lensing from the Sun as a way of achieving high angular resolution and high signal amplification. We find that such a mission concept is compromised by several practical problems. Most severe are the effects due to the plasma in the solar atmosphere which cause refraction and scattering of the propagating rays. These effects either limit the frequencies that can be observed to those above ∼1 THz, or they move the optical point outwards beyond the vacuum value of ≥550 au. (Thus for observing frequency of 300 GHz the optical point is moved outwards to ∼ 680 au.) Density fluctuations in the inner solar atmosphere will further cause random pathlength differences for different rays. The corrections for the radiation from the Sun itself will also be a major challenge at any wavelength used, but could be mitigated with coronographic techniques. Given reasonable constraints on the spacecraft (particularly in terms of size and propulsion), source selection as well as severe navigational constraints further add to the difficulties for a potential mission. Nevertheless, unbiased surveys of small-scale structure on the sky at short wavelengths might be the most promising application of such a mission.  相似文献   

13.
14.
木星探测轨道分析与设计   总被引:3,自引:0,他引:3  
研究了与木星探测相关的轨道设计问题.重点关注木星探测轨道与火星、金星等类地行星探测轨道的不同及由此带来的轨道设计难点.首先分析了绕木星探测任务轨道的选择.建立近似模型讨论了向木星飞行需要借助多颗行星的多次引力辅助,对地木转移的多种行星引力辅助序列,使用粒子群算法搜索了2020年至2025年之间的燃料最省飞行方案并对比得到了向木星飞行较好的引力辅助方式为金星-地球-地球引力辅助.结合多任务探测,研究了航天器在飞向木星途中穿越主小行星带飞越探测小行星的轨道设计.最后,给出2023年发射完整的结合引力辅助与小行星多次飞越的木星探测轨道设计算例.  相似文献   

15.
16.
The PLANCK mission, originally devised for cosmological studies, offers the opportunity to observe Solar System objects at millimetric and submillimetric wavelengths. In this paper we concentrate on the asteroids of the Main Belt, a large class of minor bodies in the Solar System. At present, more that 40 000 of these asteroids have been discovered and their detection rate is rapidly increasing. We intend to estimate the number of asteroids that can be detected during the mission and to evaluate the strength of their signal. We have rescaled the instrument sensitivities, calculated by the LFI and HFI teams for sources fixed in the sky, introducing some degradation factors to properly account for moving objects. In this way a detection threshold is derived for asteroidal detection that is related to the diameter of the asteroid and its geocentric distance. We have developed a numerical code that models the detection of asteroids in the LFI and HFI channels during the mission. This code performs a detailed integration of the orbits of the asteroids in the timespan of the mission and identifies those bodies that fall in the beams of PLANCK and their signal strength. According to our simulations, a total of 397 objects will be observed by PLANCK and an asteroidal body will be detected in some beam in 30% of the total sky scan-circles. A significant fraction (in the range from 50 to 100 objects) of the 397 asteroids will be observed with a high S/N ratio. Flux measurements of a large sample of asteroids in the submillimeter and millimeter range are relevant since they allow to analyze the thermal emission and its relation to the surface and regolith properties. Furthermore, it will be possible to check on a wider base, the two standard thermal models, based on a nonrotating or rapidly rotating sphere. Our method can also be used to separate Solar System sources from cosmological sources in the survey. This work is based on PLANCK LFI activities.  相似文献   

17.
We present basic observational strategies for ASTRO-F [also known as the Infra-Red Imaging Surveyor (IRIS) ] to be launched in 2004 by the Japanese Institute of Space and Astronautical Science (ISAS). We examine two survey scenarios, a deep ∼1 deg2 survey reaching sensitivities an order of magnitude below all but the deepest surveys performed by ISO in the mid-IR, and a shallow ∼18  deg2 mid-IR (7–25μm in six bands) covering an area greater than the entire area covered by all ISO mid-IR surveys. Using two cosmological models, the number of galaxies predicted for each survey is calculated. The first model uses an enhancement of a classical (1+ z )3.1 pure luminosity evolution model by Pearson & Rowan-Robinson. The second model incorporates a strongly evolving ultraluminous infrared galaxy component. For the deep survey, between 20 000 and 30 000 galaxies should be detected in the shortest wavebands, and ≈5000 in the longest (25-μm) band. It is predicted that the shallow survey will detect of the order of 100 000–150 000 sources. We find that for both ASTRO-F and other small-aperture space telescopes, confusion due to faint sources may be severe, especially at the longest mid-IR wavelengths. Using the exceptional range of observational options provided by ASTRO-F (nine wavelength filters and spectroscopic ability from 2.2 to 25 μm), we show that by combining the mid-IR observations with the near-IR camera on ASTRO-F , both the different galaxy populations and rough photometric redshifts can be distinguished in the colour–colour plane. In its role as a surveyor (plus near-IR spectroscopic ability) ASTRO-F will complement well the SIRTF space observatory mission.  相似文献   

18.
We present predictions for the counts of extragalactic sources, the contributions to fluctuations and their angular power spectrum in each channel foreseen for the Planck Surveyor (formerly COBRAS/SAMBA ) mission. The contribution to fluctuations owing to clustering of both radio and far-IR sources is found to be generally small in comparison with the Poisson term; however the relative importance of the clustering contribution increases and may eventually become dominant if sources are identified and subtracted down to faint flux limits. The central Planck frequency bands are expected to be 'clean': at high galactic latitude (| b | > 20°), where the reduced galactic noise does not prevent the detection of the extragalactic signal, only a tiny fraction of pixels is found to be contaminated by discrete extragalactic sources. Moreover, the 'flat' angular power spectrum of fluctuations resulting from extragalactic sources substantially differs from that of primordial fluctuations; therefore, the removal of contaminating signals is eased even at frequencies where point sources give a sizeable contribution to the foreground noise.  相似文献   

19.
We cross-correlate the sample of type Ia supernovae from Riess A. G. et al. with the SDSS DR2 photometric galaxy catalogue. In contrast to recent work, we find no detectable correlation between supernova magnitude and galaxy overdensity on scales ranging between 1 and 10 arcmin. Our results are in accord with theoretical expectations for gravitational lensing of supernovae by large-scale structure. Future supernova surveys such as SNAP will be capable of detecting unambiguously the predicted lensing signal.  相似文献   

20.
The forthcoming Herschel space mission will provide an unprecedented view of the far-infrared/submillimetre Universe, with the SPIRE instrument covering the 200–670 μm wavelength range. To obtain the best quality of astronomical data from such an expensive mission the observing modes must be optimized as far as possible. This paper presents the possible scanning strategies that can be utilized by the SPIRE photometer, within the limitations imposed by the Herschel spacecraft. Each strategy is investigated for effectiveness by performing simulated observations, using the SPIRE photometer simulator. By quantifying the data quality using a simple metric, we have been able to select the optimum scanning strategy for SPIRE when it begins taking science data within the next couple of years.
Additionally, this work has led to the development of a specific SPIRE mapmaking algorithm, based on the CMB code MADmap, to be provided as part of the SPIRE data pipeline processing suite. This will allow every SPIRE user to take full advantage of the optimized scan map strategy, which requires the use of maximum likelihood mapmakers such as MADmap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号