首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two cores were recovered in the southeastern part of Lake Shkodra (Montenegro and Albania) and sampled for identification of tephra layers. The first core (SK13, 7.8 m long) was recovered from a water depth of 7 m, while the second core (SK19, 5.8 m long) was recovered close to the present‐day shoreline (water depth of 2 m). Magnetic susceptibility investigations show generally low values with some peaks that in some cases are related to tephra layers. Naked‐eye inspection of the cores allowed the identification of four tephra layers in core SK13 and five tephra layers in core SK19. Major element analyses on glass shards and mineral phases allowed correlation of the tephra layers between the two cores, and their attribution to six different Holocene explosive eruptions of southern Italy volcanoes. Two tephra layers have under‐saturated composition of glass shards (foiditic and phonolitic) and were correlated to the AD 472 and the Avellino (ca. 3.9 cal. ka BP) eruptions of Somma‐Vesuvius. One tephra layer has benmoreitic composition and was correlated to the FL eruption of Mount Etna (ca. 3.4 cal. ka BP). The other three tephra layers have trachytic composition and were correlated to Astroni (ca. 4.2 cal. ka BP), Agnano Monte Spina (ca. 4.5 cal. ka BP) and Agnano Pomici Principali (ca. 12.3 cal. ka BP) eruptions of Campi Flegrei. The ages of tephra layers are in broad agreement with eight 14C accelerator mass spectrometric measurements carried out on plant remains and charcoal from the lake sediments at different depths along the two cores. The recognition of distal tephra layers from Italian volcanoes allowed the physical link of the Holocene archive of Lake Shkodra to other archives located in the central Mediterranean area and the Balkans (i.e. Lake Ohrid). Five of the recognised tephra layers were recognised for the first time in the Balkans area, and this has relevance for volcanic hazard assessment and for ash dispersal forecasting in case of renewed explosive activity from some of the southern Italy volcanoes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The presence of an independently dated marker in an archaeological site offers rare opportunities for assessing the reliability of radiocarbon dates, especially when these are close to the age limit of the technique. Two different pretreatment protocols (routine ABA and more rigorous ABOx-SC) were employed in the chemical preparation of the same charcoal sample from a layer closely associated to the Campanian Ignimbrite tephra at the Russian Palaeolithic site of Kostenki 14 (Markina Gora). The ABA-treated fraction gave an age of ∼33 14C ka BP, comparable to a previous determination from the same layer, whereas the ABOx-SC produced an older age of ∼35 14C ka BP. This is the first radiocarbon determination of an archaeological sample to provide an age consistent with the “calendar” age for the CI tephra marker.  相似文献   

3.
This paper presents the first detailed multi-element geochemical data from the late Quaternary sediments of the Tecocomulco lake basin (central Mexico) and rocks exposed in the basin catchments to understand the extents of chemical weathering and provenance of the siliciclastic fractions. Ternary diagrams of A-CN-K, A-C-N and A-CNK-FM and elemental ratios suggest that most of the lacustrine sediments were derived from mafic volcanic deposits comprising the Chichicuatla and the Apan-Peñon andesites and the Apan-Tezontepec basaltic-andesites. The felsic tephra layers have chemical compositions comparable to the Acoculco volcanic sequences. The calculated indices of chemical weathering such as chemical index of alteration (CIA), plagioclase index of alteration (PIA) and chemical index of weathering (CIW) indicate low to extreme chemical weathering for the lacustrine sediments and low chemical weathering for tephra layers. The varying degree of chemical weathering in lacustrine sediments is related to the fluctuating average annual precipitation during the late Quaternary. However, the low weathering of tephra layers are due to their higher rate of deposition. The dacite-rhyolitic tephra layers of ca. 31,000 14C yr BP are relatively more weathered compared to the unweathered rhyolitic tephra of ca. 50,000 14C yr BP. This could be due to the rapid deposition of ca. 200 cm of tephra layers during the ca. 50,000 14C yr BP volcanic eruption that might have prevented the interaction between tephra layers and weathering agents.  相似文献   

4.
Tephra-fall deposits from Cook Inlet volcanoes were detected in sediment cores from Tustumena and Paradox Lakes, Kenai Peninsula, Alaska, using magnetic susceptibility and petrography. The ages of tephra layers were estimated using 21 14C ages on macrofossils. Tephras layers are typically fine, gray ash, 1-5 mm thick, and composed of varying proportions of glass shards, pumice, and glass-coated phenocrysts. Of the two lakes, Paradox Lake contained a higher frequency of tephra (0.8 tephra/100 yr; 109 over the 13,200-yr record). The unusually large number of tephra in this lake relative to others previously studied in the area is attributed to the lake's physiography, sedimentology, and limnology. The frequency of ash fall was not constant through the Holocene. In Paradox Lake, tephra layers are absent between ca. 800-2200, 3800-4800, and 9000-10,300 cal yr BP, despite continuously layered lacustrine sediment. In contrast, between 5000 and 9000 cal yr BP, an average of 1.7 tephra layers are present per 100 yr. The peak period of tephra fall (7000-9000 cal yr BP; 2.6 tephra/100 yr) in Paradox Lake is consistent with the increase in volcanism between 7000 and 9000 yr ago recorded in the Greenland ice cores.  相似文献   

5.
Detection techniques for invisible tephra, known as cryptotephra, have been exploited to construct precise and high-resolution correlations for a broad range of sedimentary sequences. We demonstrate that continuous trace-element profiles are an effective means for detecting probable positions of distal cryptotephra in Holocene hemipelagic sediments. Instrumental neutron activation analyses were performed on specimens of bulk sediments from five piston and gravity cores (water depths: 300-1500 m) taken from the southern Japan/East Sea. The down-core variations in the Ta/Sc ratio identify the positions of one to three alkaline cryptotephra in four of these cores. The Cr/Sc profiles show the position of one rhyolitic cryptotephra in three of the cores. The existence of tephra-derived components (glass ± crystals) was confirmed by microscopic observation, SEM-EPMA analysis and refractive index measurement on grains extracted from these layers. Based on microscopic observation and the stratigraphic correlations between cores, we identified eruption ages of the cryptotephras at 6.3, 7.5 and 9.3 14C kyr BP, and two source volcanoes around 800 and 400 km from the study area.The tephra layers visible to the naked eye contained volcanic grains coarser than 200 μm, and the alkaline and rhyolitic tephra component comprised >20% and >33% of the sediment on weight basis, respectively. In contrast, the range of particle sizes of the cryptotephras detected in this study is finer than 125 μm, and almost all of the glass shards were finer than 40 μm. The alkaline and rhyolitic cryptotephras made up only 2-17% and 22-24%, respectively, of the sediment on weigh basis. The high sensitivity of this method stems from the significant difference in trace-element contents between the tephras and enclosing hemipelagic sediments in the core. Alkaline U-Oki tephra was enriched in Ta by one order of magnitude over that of the sediment, and depleted in Sc by one order. The rhyolitic tephra, K-Ah, was depleted by about one order in Cr relative to that of enclosing the sediment. The differences in chemical composition between within-plate alkaline tephras and hemipelagic sediments are usually so large that trace-element geochemical method is likely to be useful for alkaline cryptotephra detection in other areas with similar tectonic characteristics.  相似文献   

6.
Due to a lack of visible tephras in the Dead Sea record, this unique palaeoenvironmental archive is largely unconnected to the well-established Mediterranean tephrostratigraphy. Here we present first results of the ongoing search for cryptotephras in the International Continental Drilling Program (ICDP) sediment core from the deep Dead Sea basin. This study focusses on the Lateglacial (~15–11.4 cal. ka BP), when Lake Lisan – the precursor of the Dead Sea – shrank from its glacial highstand to the Holocene low levels. We developed a glass shard separation protocol and counting procedure that is adapted to the extreme salinity and sediment recycling of the Dead Sea. Cryptotephra is abundant in the Dead Sea record (up to ~100 shards cm-3), but often glasses are physically and/or chemically altered. Six glass samples from five tephra horizons reveal a heterogeneous geochemical composition, with mainly rhyolitic and some trachytic glasses potentially sourced from Italian, Aegean and Anatolian volcanoes. Most shards likely originate from the eastern Anatolian volcanic province and can be correlated using major element analyses with tephra deposits from swarm eruptions of the Süphan Volcano ~13 ka BP and with ashes from Nemrut Volcano, presumably the Lake Van V-16 volcanic layer at ~13.8 ka BP. In addition to glasses that match the TM-10-1 from Lago Grande di Monticchio (15 820±790 cal. a BP) tentatively correlated with the St. Angelo Tuff of Ischia, we further identified a cryptotephra with glass analyses which are chemically identical with those of the PhT1 tephra in the Philippon peat record (13.9–10.5 ka BP), and also a compositional match for the glass analyses of the Santorini Cape Riva Tephra (Y-2 marine tephra, 22 024±642 cal. a BP). These first results demonstrate the great potential of cryptotephrochronology in the Dead Sea record for improving its chronology and connecting the Levantine region to the Mediterranean tephra framework.  相似文献   

7.
Thirty-two tephra layers were identified in the time-interval 313–366 ka (Marine Isotope Stages 9–10) of the Quaternary lacustrine succession of the Fucino Basin, central Italy. Twenty-seven of these tephra layers yielded suitable geochemical material to explore their volcanic origins. Investigations also included the acquisition of geochemical data of some relevant, chronologically compatible proximal units from Italian volcanoes. The record contains tephra from some well-known eruptions and eruptive sequences of Roman and Roccamonfina volcanoes, such as the Magliano Romano Plinian Fall, the Orvieto–Bagnoregio Ignimbrite, the Lower White Trachytic Tuff and the Brown Leucitic Tuff. In addition, the record documents eruptions currently undescribed in proximal (i.e. near-vent) sections, suggesting a more complex history of the major eruptions of the Colli Albani, Sabatini, Vulsini and Roccamonfina volcanoes between 313 and 366 ka. Six of the investigated tephra layers were directly dated by single-crystal-fusion 40Ar/39Ar dating, providing the basis for a Bayesian age–depth model and a reassessment of the chronologies for both already known and dated eruptive units and for so far undated eruptions. The results provide a significant contribution for improving knowledge on the peri-Tyrrhenian explosive activity as well as for extending the Mediterranean tephrostratigraphical framework, which was previously based on limited proximal and distal archives for that time interval.  相似文献   

8.
Discontinuous tephra layers were discovered at Burney Spring Mountain, northern California. Stratigraphic relationships suggest that they are two distinct tephras. Binary plots and standard similarity coefficients of electron probe microanalysis data have been supplemented with principal component analysis to correlate the two tephra layers to known regional tephras. Using principal component analysis, we are furthermore able to bound our uncertainty in the correlation of the two tephra layers. After removal of outliers, within the 95% prediction interval, we can say that one tephra layer is likely the Rockland tephra, aged 565–610 ka, and the second layer is likely from Mt. Mazama, the Trego Hot Springs tephra, aged ~ 29 ka. In the case of the Rockland tephra, the new findings suggest that dispersal to the north was highly restricted. For Trego Hot Springs ash, the new findings extend the distribution to the southwest, with a rapid thinning in that direction. Coupled with considerations of regular tephra dispersal patterns, the results suggest that the primary dispersal direction for both tephras was to the south, and that occurrences in other directions are unlikely or otherwise anomalous.  相似文献   

9.
We present a new tephrostratigraphic record from the Holocene lake sediments of the Sulmona basin, central Italy. The Holocene succession is represented by whitish calcareous mud that is divided into two units, SUL2 (ca 32 m thick) and SUL1 (ca 8 m thick), for a total thickness of ca 40 m. These units correspond to the youngest two out of six sedimentary cycles recognised in the Sulmona basin that are related to the lake sedimentation since the Middle Pleistocene. Height concordant U series age determinations and additional chronological data constrain the whole Holocene succession to between ca 8000 and 1000 yrs BP. This includes a sedimentary hiatus that separates the SUL2 and SUL1 units, which is roughly dated between <2800 and ca 2000 yrs BP. A total of 31 and 6 tephra layers were identified within the SUL2 and SUL1 units, respectively. However, only 28 tephra layers yielded fresh micro-pumices or glass shards suitable for chemical analyses using a microprobe wavelength dispersive spectrometer. Chronological and compositional constraints suggest that 27 ash layers probably derive from the Mt. Somma-Vesuvius Holocene volcanic activity, and one to the Ischia Island eruption of the Cannavale tephra (2920 ± 450 cal yrs BP). The 27 ash layers compatible with Mt. Somma-Vesuvius activity are clustered in three different time intervals: from ca 2000 to >1000; from 3600 to 3100; and from 7600 to 4700 yrs BP. The first, youngest cluster, comprises six layers and correlates with the intense explosive activity of Mt. Somma-Vesuvius that occurred after the prominent AD 79 Pompeii eruption, but only the near-Plinian event of AD 472 has been tentatively recognised. The intermediate cluster (3600–3100 yrs BP) starts with tephra that chemically and chronologically matches the products from the “Pomici di Avellino” eruption (ca 3800 ± 200 yrs BP). This is followed by eight further layers, where the glasses exhibit chemical features that are similar in composition to the products from the so-called “Protohistoric” or AP eruptions; however, only the distal equivalents of three AP events (AP3, AP4 and AP6) are tentatively designated. Finally, the early cluster (7600–4700 yrs BP) comprises 12 layers that contain evidence of a surprising, previously unrecognised, activity of the Mt. Somma-Vesuvius volcano during its supposed period of quiescence, between the major Plinian “Pomici di Mercato” (ca 9000 yrs BP) and “Pomici di Avellino” eruptions. Alternatively, since at present there is no evidence of a similar significant activity in the proximal area of this well-known volcano, a hitherto unknown origin of these tephras cannot be role out. The results of the present study provide new data that enrich our previous knowledge of the Holocene tephrostratigraphy and tephrochronology in central Italy, and a new model for the recent explosive activity of the Peninsular Italy volcanoes and the dispersal of the related pyroclastic deposits.  相似文献   

10.
Twenty‐one primary pyroclastic layers were found embedded in the lacustrine sediments of the San Gregorio Magno basin (Southern Apennines). These sand‐sized layers were characterised by a noticeable juvenile fragments content and by a sharp basal contact with the underlying clay and silt sediments. The tephra layers have been correlated with terrestrial counterparts from well‐known eruptive events of the Campanian volcanic area, or with reference layers from deep sea sediment cores and from the Monticchio maar sequence. The investigation of the San Gregorio Magno tephra layers made it possible to deduce that lacustrine sedimentation at San Gregorio Magno basin began before 170k yr BP and lasted at least until the emplacement of the Neapolitan Yellow Tuff, which occurred about 15k yr BP. The tephrochronology allowed determination of the varying sedimentation rate that occurred in the basin. Correlation of the lacustrine record with marine sequences has allowed development of a late Quaternary tephrostratotype for southern Italy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Radiocarbon‐dated sediment cores from six lakes in the Ahklun Mountains, south‐western Alaska, were used to interpolate the ages of late Quaternary tephra beds ranging in age from 25.4 to 0.4 ka. The lakes are located downwind of the Aleutian Arc and Alaska Peninsula volcanoes in the northern Bristol Bay area between 159° and 161°W at around 60°N. Sedimentation‐rate age models for each lake were based on a published spline‐fit procedure that uses Monte Carlo simulation to determine age model uncertainty. In all, 62 14C ages were used to construct the six age models, including 23 ages presented here for the first time. The age model from Lone Spruce Pond is based on 18 ages, and is currently the best‐resolved Holocene age model available from the region, with an average 2σ age uncertainty of about ± 109 years over the past 14.5 ka. The sedimentary sequence from Lone Spruce Pond contains seven tephra beds, more than previously found in any other lake in the area. Of the 26 radiocarbon‐dated tephra beds at the six lakes and from a soil pit, seven are correlated between two or more sites based on their ages. The major‐element geochemistry of glass shards from most of these tephra beds supports the age‐based correlations. The remaining tephra beds appear to be present at only one site based on their unique geochemistry or age. The 5.8 ka tephra is similar to the widespread Aniakchak tephra [3.7 ± 0.2 (1σ) ka], but can be distinguished conclusively based on its trace‐element geochemistry. The 3.1 and 0.4 ka tephras have glass major‐ and trace‐element geochemical compositions indistinguishable from prominent Aniakchak tephra, and might represent redeposited beds. Only two tephra beds are found in all lakes: the Aniakchak tephra (3.7 ± 0.2 ka) and Tephra B (6.1 ± 0.3 ka). The tephra beds can be used as chronostratigraphic markers for other sedimentary sequences in the region, including cores from Cascade and Sunday lakes, which were previously undated and were analyzed in this study to correlate with the new regional tephrostratigraphy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Cosmogenic isotope (36Cl) surface exposure dating of four of the erratic boulders at Norber in the Yorkshire Dales National Park, northwest England, yielded mean ages of ∼22.2 ± 2.0 ka BP and ∼18.0 ± 1.6 ka BP for their emplacement. These two mean values derive from different 36Cl production rates used for exposure age calculation. The ages are uncorrected for temporal variations in production rates and may underestimate the true ages by 5-7%. The former age, although implying early deglaciation for this area of the British ice sheet, is not incompatible with minimum deglaciation ages from other contexts and locations in northwest England. However, the latter age is more consistent with the same minimum deglaciation ages and geochronological evidence for ice-free conditions in parts of the northern sector of the Irish Sea. Within uncertainties, the younger of the mean ages from Norber may indicate that boulder emplacement was associated with North Atlantic Heinrich event 1. The limited spatial (downvalley) extent of the Norber boulders implies that at the time of their deposition the ice margin was coincident with the distal margin of the erratic train. Loss of ice cover at Norber was followed by persistent stadial conditions until the abrupt opening of the Lateglacial Interstadial when large carnivorous mammals colonised the area. The 36Cl ages are between ∼3.0 ka and ∼13.0 ka older than previous estimates based on rates of limestone dissolution derived from the heights of pedestals beneath the erratics.  相似文献   

13.
Only Ulleung and Baegdusan volcanoes have produced alkaline tephras in the Japan Sea/East Sea during the Quaternary. Little is known about their detailed tephrostratigraphy, except for the U–Oki and B–Tm tephras. Trace element analysis of bulk sediments can be used to identify alkaline cryptotephra because of the large compositional contrast. Five sediment cores spanning the interval between the rhyolitic AT (29.4 ka) and Aso-4 (87 ka) tephras were analyzed using an INAA scanning method. Source volcanoes for the five detected alkaline cryptotephra were identified from major element analyses of hand-picked glass shards: Ulleung (U–Ym, and the newly identified U–Sado), and Baegdusan (B–J, and the newly identified B–Sado and B-Ym). The eruption ages of the U–Ym, U–Sado, B–J, B–Sado, and B–Ym tephras are estimated to be 38 ka, 61 ka, 26 ka, 51 ka, 68–69 ka, and 86 ka, respectively, based on correlations with regional-scale TL (thinly laminated) layer stratigraphy (produced by basin-wide changes in bottom-water oxygen levels in response to millennium-scale paleoclimate variations). This study has allowed construction of an alkaline tephrostratigraphical framework for the late Quaternary linked to global environmental changes in the Japan Sea/East Sea, and improves our knowledge of the eruptive histories of Ulleung and Baegdusan volcanoes.  相似文献   

14.
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three. Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O, CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical characteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.

Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.  相似文献   

15.
A suite of deep‐sea cores were collected along transects up to 100 km across the fore‐arc and back‐arc regions of the predominantly submarine Kermadec arc near Raoul and Macauley islands, southwest Pacific. The cores reveal a macroscopic tephra record extending back >50 ka. This is a significant addition to the dated record of volcanism, previously restricted to fragmented late Holocene records exposed on the two islands. The 27 macroscopic tephra layers display a wide compositional diversity in glass (~50–78 wt% SiO2). Many tephra layers comprise silicic shards with a subordinate mafic shard population. This could arise from magma mingling and may reflect mafic triggering of the silicic eruptions. Broadly, the glass compositions can be distinguished on diverging high‐K and low‐K trends, most likely arising from different source volcanoes. This distinction is also reflected in the tephra records exposed on Raoul (low‐K) and Macauley (high‐K) islands, the likely source areas. Heterogeneous tephra comprising shards of both high‐ and low‐K affinity, silicic and mafic compositions, and more homogeneous tephra with subordinate outlier shard compositions, are best explained by post‐depositional mixing of separate eruption deposits or contemporaneous eruptions. Evidently, the slow sedimentation rates of the calcareous oozes (~101–102 mm ka?1) were insufficient to adequately separate and preserve closely spaced eruption deposits. This exemplifies the difficulty in assessing eruption frequencies and magmatic trends, and erecting a tephrostratigraphy, using geochemical fingerprinting in such environments. Despite these difficulties, the ca. 5.7 ka Sandy Bay Tephra erupted from Macauley Island can be correlated over a distance of >100 km, extending east and west of the island, showing that the mostly submerged volcanoes are capable of wide tephra dispersal. Hence there is potential for developing chronostratigraphies for the southwest Pacific beyond the region covered by the extensive rhyolite marker beds from the Taupo Volcanic Zone. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
High-resolution charcoal and pollen analyses were used to reconstruct a 12,000-yr-long fire and vegetation history of the Tumalo Lake watershed and to examine the short-term effects that tephra deposition have on forest composition and fire regime. The record suggests that, from 12,000 to 9200 cal yr BP, the watershed was dominated by an open Pinus forest with Artemisia as a common understory species. Fire episodes occurred on average every 115 yr. Beginning around 9200 cal yr BP, and continuing to the present, Abies became more common while Artemisia declined, suggesting the development of a closed forest structure and a decrease in the frequency of fire episodes, occurring on average every 160 yr. High-resolution pollen analyses before and after the emplacement of three distinct tephra deposits in the watershed suggest that nonarboreal species were most affected by tephra events and that recovery of the vegetation community to previous conditions took between 40 and 100 yr. Changes in forest composition were not associated with tephra depositional events or changes in fire-episode frequency, implying that the regional climate is the more important control on long-term forest composition and structure of the vegetation in the Cascade Range.  相似文献   

17.
A detailed 90,000-year tephrostratigraphic framework of Aso Volcano, southwestern Japan, has been constructed to understand the post-caldera eruptive history of the volcano. Post-caldera central cones were initiated soon after the last caldera-forming pyroclastic-flow eruption (90 ka), and have produced voluminous tephra and lava flows. The tephrostratigraphic sequence preserved above the caldera-forming stage deposits reaches a total thickness of 100 m near the eastern caldera rim. The sequence is composed mainly of mafic scoria-fall and ash-fall deposits but 36 silicic pumice-fall deposits are very useful key beds for correlation of the stratigraphic sequence. Explosive, silicic pumice-fall deposits that fell far beyond the caldera have occurred at intervals of about 2500 years in the post-caldera activity. Three pumice-fall deposits could be correlated with lava flows or an edifice in the western part of the central cones, although the other silicic tephra beds were erupted at unknown vents, which are probably buried by the younger products from the present central cones. Most of silicic eruptions produced deposits smaller than 0.1 km3, but bulk volumes of two silicic eruptions producing the Nojiri pumice (84 ka) and Kusasenrigahama pumice (Kpfa; 30 ka) were on the order of 1 km3 (VEI 5). The largest pyroclastic eruption occurred at the Kusasenrigahama crater about 30 ka. This catastrophic eruption began with a dacitic lava flow and thereafter produced Kpfa (2.2 km3). Total tephra volume in the past 90,000 years is estimated at about 18.1 km3 (dense rock equivalent: DRE), whereas total volume for edifices of the post-caldera central cones is calculated at about 112 km3, which is six times greater than the former. Therefore, the average magma discharge rate during the post-caldera stage of Aso Volcano is estimated at about 1.5 km3/ky, which is similar to the rates of other Quaternary volcanoes in Japan.  相似文献   

18.
Here we present a tephrostratigraphic record (core Co1202) recovered from the northeastern part of Lake Ohrid (Republics of Macedonia and Albania) reaching back to Marine Isotope Stage (MIS) 6. Overall ten horizons (OT0702‐1 to OT0702‐10) containing volcanic tephra have been recognised throughout the 14.94 m long sediment succession. Four tephra layers were visible at macroscopic inspection (OT0702‐4, OT0702‐6, OT0702‐8 and OT0702‐9), while the remaining six are cryptotephras (OT0702‐1, OT0702‐2, OT0702‐3, OT0702‐5, OT0702‐7 and OT0702‐10) identified from peaks in K, Zr and Sr intensities, magnetic susceptibility measurements, and washing and sieving of the sediments. Glass shards of tephra layers and cryptotephras were analysed with respect to their major element composition, and correlated to explosive eruptions of Italian volcanoes. The stratigraphy and the major element composition of tephra layers and cryptotephras allowed the correlation of OT0702‐1 to AD 472 or AD 512 eruptions of Somma‐Vesuvius, OT0702‐2 to the FL eruption of Mount Etna, OT0702‐3 to the Mercato from Somma‐Vesuvius, OT0702‐4 to SMP1‐e/Y‐3 eruption from the Campi Flegrei caldera, OT0702‐5 to the Codola eruption (Somma‐Vesuvius or Campi Flegrei), OT0702‐6 to the Campanian Ignimbrite/Y‐5 from the Campi Flegrei caldera, OT0702‐7 to the Green Tuff/Y‐6 eruption from Pantelleria Island, OT0702‐8 to the X‐5 eruption probably originating from the Campi Flegrei caldera, OT0702‐9 to the X‐6 eruption of generic Campanian origin, and OT0702‐10 to the P‐11 eruption from Pantelleria Island. The fairly well‐known ages of these tephra layers and parent eruptions provide new data on the dispersal and deposition of these tephras and, furthermore, allow the establishment of a chronological framework for core Co1202 for a first interpretation of major sedimentological changes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A total of 24 tephra-bearing volcanic layers have been recognized between 550 and 987 m depth in the Siple Dome A (SDM-A) ice core, in addition to a number already recognized tephra in the upper 550 m (Dunbar et al., 2003, Kurbatov et al., 2006). The uniform composition and distinctive morphological of the particles composing these tephra layers suggest deposition as a result of explosive volcanic eruptions and that the layers therefore represent time-stratigraphic markers in the ice core. Despite the very fine grain size of these tephra (mostly less than 20 microns), robust geochemical compositions were determined by electron microprobe analysis. The source volcanoes for these tephra layers are largely found within the Antarctic plate. Statistical geochemical correlations tie nine of the tephra layers to known eruptions from Mt. Berlin, a West Antarctic volcano that has been very active for the past 100,000 years. Previous correlations were made to an eruption of Mt. Takahe, another West Antarctic volcano, and one to Mt. Hudson, located in South America (Kurbatov et al., 2006). The lowest tephra layer in the ice core, located at 986.21 m depth, is correlated to a source eruption with an age of 118.1 ± 1.3 ka, suggesting a chronological pinning point for the lower ice. An episode of anomalously high volcanic activity in the ice in the SDM-A core between 18 and 35 ka (Gow and Meese, 2007) appears to be related to eruptive activity of Mt. Berlin volcano. At least some of the tephra layers found in the SDM-A core appear to be the result of very explosive eruptions that spread ash across large parts of West Antarctica, off the West Antarctic coast, as well as also being recognized in East Antarctica (Basile et al., 2001, Narcisi et al., 2005, Narcisi et al., 2006). Some of these layers would be expected to should be found in other deep Antarctic ice cores, particularly ones drilled in West Antarctica, providing correlative markers between different cores. The analysis of the tephra layers in the Siple Dome core, along with other Antarctic cores, provides a timing framework for the relatively proximal Antarctic and South American volcanic eruptive events, allowing these to be distinguished from the tropical eruptions that may play a greater role in climate forcing.  相似文献   

20.
Zhuyeze palaeolake is a terminal lake situated in the arid northern China in the East Asian monsoon margin. In order to examine the Holocene palaeoclimatic change in the East Asian monsoon margin, Qingtu Lake section (QTL) from Zhuyeze palaeolake is sampled in high resolution. Palaeoclimatic proxies such as grain size, carbonate, TOC, C/N and δ13C of organic matter, were analyzed; eleven 14C samples and six optically stimulated luminescence (OSL) samples were dated to provide chronological control. We also investigated the geomorphic features of lake shorelines in this area. The results show that the climate was warm and dry in early-Holocene (9.5-7.0 cal ka BP), cool and humid in mid-Holocene (7.0-4.8 cal ka BP), and increasingly drier in late-Holocene (since 4.8 cal ka BP). Comparisons of our records with other records in adjacent areas, as well as with the records in the Asian monsoon areas, suggested that changes in effective moisture was synchronous in East Asian monsoon marginal zone (i.e. the pattern of dry early-Holocene, humid mid-Holocene, and aridity-increasing late-Holocene), and that the moisture optimum during the Holocene was out-of-phase between Asian monsoon margin and Asian monsoonal dominated region, possibly due to the high temperature at that time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号