首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Precambrian–Cambrian Athel Silicilyte is a 400 m thick, salt‐encased siliceous succession in the South Oman Salt Basin. It is a self‐sourcing hydrocarbon reservoir and comprises up to 95% microcrystalline quartz and exhibits wavy discontinuous lamination, comprising thin, alternating organic‐rich and silica‐rich layers. Textures and geochemical fingerprinting indicate that it is a primary precipitate formed by microbially mediated precipitation of silica from sea water, within the water column at the sulphidic/oxic interface. The unique occurrence of the Athel Silicilyte in the terminal Proterozoic implies that optimal conditions for this style of silica precipitation occurred only briefly. Basin anoxia, coupled with the growth of microbial mats, low pH and high silica pore water saturations, created optimal chemical conditions for silica precipitation. Volumes of microcrystalline quartz are highest within the transgressive and early highstand systems tract and towards the centre of the Athel Basin. At the basin margins, and within the late highstand systems tract, volumes of microcrystalline quartz decreased as the volume of detrital sediment increased. Mass‐balance calculations indicate that silica‐enriched sea water would have been supplied to the basin by infrequent marine incursions that replenished ambient sea water in the upper part of the water column. In conclusion, precipitation of the Athel Silicilyte was driven by the coincidence of basin restriction, limited clastic input, availability of organic matter and water column anoxia. The observation that there are few documented examples of chert deposits younger than ca 700 Ma, prior to the Cambrian explosion, suggests that although silica budgets within marine basins probably remained high prior to the evolution of silica‐secreting organisms, direct precipitation from sea water was restricted. This is tentatively related to the gradual increase in alkalinity of sea water through the Palaeo‐Proterozoic and Meso‐Proterozoic, such that silica precipitation could only occur through the coincidence of basin anoxia and low siliciclastic input.  相似文献   

2.
The early diagenetic evolution of pore-water chemistry is closely linked to mineralization reactions which consume significant portions of the metabolites released by bacterial organic matter decomposition. These reactions are most intense in high-sedimentation rate basins and include the precipitation of iron-sulfides and various carbonates leading to concretion growth. Early diagenetic pyrite is typically framboidal attesting to its recrystallization from precursor mackinawite, greigite or amorphous FeS which are the favored phases at high supersaturation levels during the initial sulfate reduction stages. The sulfur isotopic composition of early diagnetic pyrite can be used to differentiate diffusion-controlled, open-system conditions with isotopically light sulfide (δ 34S = − 35 to − 20‰) from closed system conditions, under which Raleigh distillation produces increasingly heaver sulfide (δ 34 S = − 35 to + 18‰). Alabandite (Mn-sulfide) is a rare authigenic sulfide in Mn-rich environments such as certain restricted, semi-stagnant basins (Baltic Sea). pH-buffering by hydrogen sulfide and hydrogen ion uptake by the reduction of manganese and iron oxides and hydroxides in the nitrate and sulfate reduction zones raise the pH sufficiently to cause supersaturation of the porewaters with respect to Ca-, Mg-, Fe- and Mn-carbonates and complex solid solutions of them. Fe-carbonates cannot form in the sulfate reduction zone in the presence of dissolved sulfide which competes for the dissolved iron. Likewise, dolomite formation appears to be inhibited or slowed down in the presence of substantial dissolved sulfate. The appearance of siderite and ankerite therefore signals carbonate precipitation below the sulfate reduction zone. Supporting evidence for the early diagenetic origin of many carbonate concertions is provided by their high carbonate contents (70 to 90% reflecting the porosity existing at the time of precipitation, called “minus-cement porosity”), isotopic composition, clay fabrics, and preservation of original bedding features including the shapes of fossils and fecal pellets. In these environments increasing carbon isotope ratios (δ 13 C = − 20 to + 15‰) indicate concretion growth below the sulfate reduction zone, i.e., in the methane generation zones. Continuing concretion growth at greater burial depth explains pore water profiles with constantly low Ca and downward decreasing Mg concentrations. Dissolved ammonia and phosphate profiles reguire adsorption and ion-exchange reactions as additional removal machanisms (besides apatite precipitation) in order to explain their downward decrease after they have reached maximum concentrations below the alkalinity maximum. Classification of early diagnetic environments into oxic and anoxic and further subdivision of the latter into sulfidic and non-sulfidic (with suboxic or post-oxic and methanic as further subcategories of the non-sulfidic environment) according to Berner (1981) is preferred over the previous classification in terms of pH/Eh fields. The temperature range of the early diagenetic stage extends from O to about 75°C, at which temperature thermocatalytic organic matter decomposition replaces the earlier bacterially mediated reactions and causes a whole set of new diagenetic reactions (such as feldspar dissolution, smectite to illite transformation) to start.  相似文献   

3.
Previous studies have shown that saltmarsh macrophytes have a significant influence on sediment biogeochemistry, both through radial release of oxygen from roots and also via primary production and release of labile organic exudates from roots. To assess the seasonal influence of the needle rush, Juncus roemarianus, on saltmarsh sediment geochemistry, pore waters and sediments were collected from the upper 50 cm of two adjacent sites, one unvegetated and the other vegetated by Juncus roemarianus, in a Georgia saltmarsh during winter and summer. Pore waters collected at 1- to 2-cm intervals were analyzed for pH, alkalinity, dissolved phosphate, ammonium, Fe(II), Fe(III), Mn(II), sulfide, sulfate, and organic carbon. Sediments were collected at 5-cm intervals and analyzed for iron distribution in the solid phase using a two-step sequential extraction. The upper 50 cm of the sediment pore waters are mostly sulfidic during both winter and summer. The pore water and sediment geochemistry suggest organic matter degradation is coupled mostly to Fe(III) and sulfate reduction. In summer, there is greater accumulation of alkalinity, sulfide, ammonium, and phosphate in the pore waters and lower levels of ascorbate extractable Fe, which is presumed to be comprised primarily of readily reducible Fe(III) oxides, in the sediments, consistent with higher organic matter degradation rates in summer compared to winter. Lower pH, alkalinity, ammonium, and sulfide concentrations in sediments with Juncus, compared to nearby unvegetated sediments, is consistent with release of oxygen into the Juncus rhizosphere, especially during summer.  相似文献   

4.
The complex study of the river water and pore solutions from the bottom sediments in the lower reaches of the Razdol’naya River was conducted in February 2010. The major ion composition of the waters indicates the submarine origin of the near-bottom and pore waters in the lower reaches of the Razdol’naya River in the winter. The river estuary extends upstream for more than 20 km. It was established that the studied sediments are reduced oozes containing pyrite, hydrotroilite, and iron monosulfide, which is direct evidence for sulfate-reduction in the sediments. The diagenesis of organic matter is the main reason for the considerable decrease in the amount of sulfates and the increase in the alkalinity of the sediment pore water. The sedimentary pore water sampled from the deep river pits is characterized by excess alkalinity that cannot be explained by sulfate-reduction and methane genesis. It was suggested that the chemical weathering of silicate minerals and the bacterial mineralization of salts of organic acids could result in the excess alkalinity of the sediment pore water.  相似文献   

5.
The aim of this study was to evaluate the existing methods for extracting trace sulfate from francolite and measuring its concentration and sulfur isotope composition. Phosphatic rocks were chemically and thermally treated to remove non‐structural SO42? in francolite, which would otherwise be inadvertently included in geochemical analyses of the structurally‐bound sulfate. Acetic acid (10% v/v) proved to be effective in removing calcite, dolomite and ankerite without affecting francolite. To remove all ‘easily’ soluble sulfates, such as Ca‐sulfates and adsorbed sulfate, rinsing with 10% v/v NaCl had to be repeated several times for most samples. For subsequent S isotope determination sample combustion at 600 °C was found to be an efficient way to remove non‐francolite S‐bearing phases. From a number of SO42? detection methods tested, ICP‐AES proved to be the most accurate. For francolite‐sulfate recovery, our recommended protocol involved repeated rinsing of powdered phosphorites with 10% NaCl as well as NaOCl, and testing of the filtrate for SO42? in each wash. If only S isotope compositions are needed, combustion at 600 °C with a subsequent de‐ionised water rinse could be undertaken instead of repeated NaOCl rinsing for studies of both francolite and carbonate. Re‐analysis of previously published data, using the new protocol, provided evidence that the use of this protocol considerably improves data quality.  相似文献   

6.
Mangrove Lake, Bermuda, is a small coastal, brackish-water lake that has accumulated 14 m of banded, gelatinous, sapropelic sediments in less than 104 yr. Stratigraphic evidence indicates that Mangrove Lake's sedimentary environment has undergone three major depositional changes (peat, freshwater gel, brackish-water gel) as a result of sea level changes. The deposits were examined geochemically in an effort to delineate sedimentological and diagenetic changes. Gas and pore water studies include measurements of sulfides, ammonia, methane, nitrogen gas, calcium, magnesium, chloride, alkalinity, and pH. Results indicate that sulfate reduction is complete, and some evidence is presented for bacterial denitrification and metal sulfide precipitation. The organic-rich sapropel is predominantly algal in origin, composed mostly of carbohydrates and insoluble macromolecular organic matter called humin with minor amounts of proteins, lipids, and humic acids. Carbohydrates and proteins undergo hydrolysis with depth in the marine sapropel but tend to be preserved in the freshwater sapropel. The humin, which has a predominantly aliphatic structure, increases linearly with depth and composes the greatest fraction of the organic matter. Humic acids are minor components and are more like polysaccharides than typical marine humic acids. Fatty acid distributions reveal that the lipids are of an algal and/or terrestrial plant source. Normal alkanes with a total concentration of 75 ppm exhibit two distribution maxima. One is centered about n-C22 with no odd/even predominance, suggestive of a degraded algal source. The other is centered at n-C31 with a distinct odd/even predominance indicative of a vascular plant origin. Stratigraphic changes in the sediment correlate to observed changes in the gas and pore water chemistry and the organic geochemistry.  相似文献   

7.
This paper deals with dissolved inorganic carbon (DIC) and organic carbon (DOC) in pore waters from a 150 m deep hole drilled through the carbonate barrier reef of Tahiti and its underlying basalt basement. Alkalinity-pH measurements were used to calculate the DIC species concentration, and DOC was analysed according to the high temperature catalytic oxidation technique. Salinity was used as a conservative tracer to help identify water origin and mixing within the hole. Water mixing, calcium carbonate dissolution and mineralization of organic carbon combined to form three distinct groups of pore water. In the deeper basalt layers, pore water with alkalinity of 1.4 meq kg–1 pH of 7.6 and p(CO2) of 1.2 mAtm was undersaturated with respect to both aragonite and calcite. In the intermediate carbonate layer, pore water with alkalinity of more than 2.0 meq kg–1, pH of 7.70 and p(CO2) of 1.4 mAtm was supersaturated with respect to both aragonite and calcite. The transition zone between those two groups extended between 80 and 100 m depth. The shift from aragonite undersaturation to supersaturation was mainly attributed to the mixing of undersaturated pore waters from the basalt basement with supersaturated pore waters from the overlaying limestone. In the top of the reef, inputs from a brackish water lens further increased p(CO2) up to 5.6 times the atmospheric P(CO2).  相似文献   

8.
This paper deals with dissolved inorganic carbon (DIC) and organic carbon (DOC) in pore waters from a 150 m deep hole drilled through the carbonate barrier reef of Tahiti and its underlying basalt basement. Alkalinity-pH measurements were used to calculate the DIC species concentration, and DOC was analysed according to the high temperature catalytic oxidation technique. Salinity was used as a conservative tracer to help identify water origin and mixing within the hole. Water mixing, calcium carbonate dissolution and mineralization of organic carbon combined to form three distinct groups of pore water. In the deeper basalt layers, pore water with alkalinity of 1.4 meq kg?1 pH of 7.6 and p(CO2) of 1.2 mAtm was undersaturated with respect to both aragonite and calcite. In the intermediate carbonate layer, pore water with alkalinity of more than 2.0 meq kg?1, pH of 7.70 and p(CO2) of 1.4 mAtm was supersaturated with respect to both aragonite and calcite. The transition zone between those two groups extended between 80 and 100 m depth. The shift from aragonite undersaturation to supersaturation was mainly attributed to the mixing of undersaturated pore waters from the basalt basement with supersaturated pore waters from the overlaying limestone. In the top of the reef, inputs from a brackish water lens further increased p(CO2) up to 5.6 times the atmospheric P(CO2).  相似文献   

9.
Sulfate reduction and sulfur-iron geochemistry were studied in 5-6 m deep gravity cores of Holocene mud from Aarhus Bay (Denmark). A goal was to understand whether sulfate is generated by re-oxidation of sulfide throughout the sulfate and methane zones, which might explain the abundance of active sulfate reducers deep below the main sulfate zone. Sulfate penetrated down to 130 cm where methane started to build up and where the concentration of free sulfide peaked at 5.5 mM. Below this sulfate-methane transition, sulfide diffused downwards to a sulfidization front at 520 cm depth, below which dissolved iron, Fe2+, accumulated in the pore water. Sulfate reduction rates measured by 35S-tracer incubations in the sulfate zone were high due to high concentrations of reactive organic matter. Within the sulfate-methane transition, sulfate reduction was distinctly stimulated by the anaerobic oxidation of methane. In the methane zone below, sulfate remained at positive “background” concentrations of <0.5 mM down to the sulfidization front. Sulfate reduction decreased steeply to rates which at 300-500 cm depth were 0.2-1 pmol SO42− cm−3 d−1, i.e., 4-5 orders of magnitude lower than rates measured near the sediment surface. The turn-over time of sulfate increased from 3 years at 12 cm depth to 100-1000 years down in the methane zone. Sulfate reduction in the methane zone accounted for only 0.1% of sulfate reduction in the entire sediment column and was apparently limited by the low pore water concentration of sulfate and the low availability of organic substrates. Amendment of the sediment with both sulfate and organic substrates immediately caused a 10- to 40-fold higher, “potential sulfate reduction” which showed that a physiologically intact community of sulfate reducing bacteria was present. The “background” sulfate concentration appears to be generated from the reaction of downwards diffusing sulfide with deeply buried Fe(III) species, such as poorly-reactive iron oxides or iron bound in reactive silicates. The oxidation of sulfide to sulfate in the sulfidic sediment may involve the formation of elemental sulfur and thiosulfate and their further disproportionation to sulfide and sulfate. The net reaction of sulfide and Fe(III) to form pyrite requires an additional oxidant, irrespective of the formation of sulfate. This could be CO2 which is reduced with H2 to methane. The methane subsequently diffuses upwards to become re-oxidized at the sulfate-methane transition and thereby removes excess reducing power and enables the formation of excess sulfate. We show here how the combination of these well-established sulfur-iron-carbon reactions may lead to the deep formation of sulfate and drive a cryptic sulfur cycle. The iron-rich post-glacial sediments underlying Holocene marine mud stimulate the strong sub-surface sulfide reoxidation observed in Aarhus Bay and are a result of the glacial to interglacial history of the Baltic Sea area. Yet, processes similar to the ones described here probably occur widespread in marine sediments, in particular along the ocean margins.  相似文献   

10.
Interactions of the microbial mat community with the sedimentary environment were evaluated in two shallow, ephemeral lakes with markedly different hydrochemistry and mineralogy. The characterization of growing and decaying microbial mats by light microscopy observations and fluorescence in situ hybridization was complemented with biogeochemical and mineralogical measurements. The lakes studied were Eras and Altillo Chica, both located in Central Spain and representing poly-extreme environments. Lake Eras is a highly alkaline, brackish to saline lake containing a high concentration of chloride, and in which the carbonate concentration exceeds the sulfate concentration. The presence of magnesium is crucial for the precipitation of hydromagnesite in microbialites of this lake. Altillo Chica is a mesosaline to hypersaline playa lake with high concentrations of sulfate and chloride, favoring the formation of gypsum microbialites. Differences in the microbial community composition and mineralogy of the microbialites between the two lakes were primarily controlled by alkalinity and salinity. Lake Eras was dominated by the cyanobacterial genus Oscillatoria, as well as Alphaproteobacteria, Gammaproteobacteria and Firmicutes. When the mat decayed, Alphaproteobacteria and Deltaproteobacteria increased and became the dominant heterotrophs, as opposed to Firmicutes. In contrast, Deltaproteobacteria was the most abundant group in Lake Altillo Chica, where desiccation led to mats decay during evaporite formation. In addition to Deltaproteobacteria, Cyanobacteria, Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were found in Altillo Chica, mostly during microbial mats growth. At both sites, microbial mats favored the precipitation of sulfate and carbonate minerals. The precipitation of carbonate is higher in the soda lake due to a stronger alkalinity engine and probably a higher degradation rate of exopolymeric substances. Our findings clarify the distribution patterns of microbial community composition in ephemeral lakes at the levels of whole communities, which were subjected to environmental conditions similar to those that may have existed during early Earth.  相似文献   

11.
12.
Seven sediment cores were taken in the Sea of Okhotsk in a south-north transect along the slope of Sakhalin Island. The retrieved anoxic sediments and pore fluids were analyzed for particulate organic carbon (POC), total nitrogen, total sulfur, dissolved sulfate, sulfide, methane, ammonium, iodide, bromide, calcium, and total alkalinity. A novel method was developed to derive sedimentation rates from a steady-state nitrogen mass balance. Rates of organic matter degradation, sulfate reduction, methane turnover, and carbonate precipitation were derived from the data applying a steady-state transport-reaction model. A good fit to the data set was obtained using the following new rate law for organic matter degradation in anoxic sediments:
  相似文献   

13.
Humic Ion-Binding Model V, which focuses on metal complexation with humic and fulvic acids, was modified to assess the role of dissolved natural organic matter in the speciation of rare earth elements (REEs) in natural terrestrial waters. Intrinsic equilibrium constants for cation-proton exchange with humic substances (i.e., pKMHA for type A sites, consisting mainly of carboxylic acids), required by the model for each REE, were initially estimated using linear free-energy relationships between the first hydrolysis constants and stability constants for REE metal complexation with lactic and acetic acid. pKMHA values were further refined by comparison of calculated Model V “fits” to published data sets describing complexation of Eu, Tb, and Dy with humic substances. A subroutine that allows for the simultaneous evaluation of REE complexation with inorganic ligands (e.g., Cl, F, OH, SO42−, CO32−, PO43−), incorporating recently determined stability constants for REE complexes with these ligands, was also linked to Model V. Humic Ion-Binding Model V’s ability to predict REE speciation with natural organic matter in natural waters was evaluated by comparing model results to “speciation” data determined previously with ultrafiltration techniques (i.e., organic acid-rich waters of the Nsimi-Zoetele catchment, Cameroon; dilute, circumneutral-pH waters of the Tamagawa River, Japan, and the Kalix River, northern Sweden). The model predictions compare well with the ultrafiltration studies, especially for the heavy REEs in circumneutral-pH river waters. Subsequent application of the model to world average river water predicts that organic matter complexes are the dominant form of dissolved REEs in bulk river waters draining the continents. Holding major solute, minor solute, and REE concentrations of world average river water constant while varying pH, the model suggests that organic matter complexes would dominate La, Eu, and Lu speciation within the pH ranges of 5.4 to 7.9, 4.8 to 7.3, and 4.9 to 6.9, respectively. For acidic waters, the model predicts that the free metal ion (Ln3+) and sulfate complexes (LnSO4+) dominate, whereas in alkaline waters, carbonate complexes (LnCO3+ + Ln[CO3]2) are predicted to out-compete humic substances for dissolved REEs. Application of the modified Model V to a “model” groundwater suggests that natural organic matter complexes of REEs are insignificant. However, groundwaters with higher dissolved organic carbon concentrations than the “model” groundwater (i.e., >0.7 mg/L) would exhibit greater fractions of each REE complexed with organic matter. Sensitively analysis indicates that increasing ionic strength can weaken humate-REE interactions, and increasing the concentration of competitive cations such as Fe(III) and Al can lead to a decrease in the amount of REEs bound to dissolved organic matter.  相似文献   

14.
Faunally restricted argillaceous wackestones from the Middle Jurassic of eastern England contain evidence of early diagenetic skeletal aragonite dissolution and stabilization of the carbonate matrix, closely followed by precipitation of zoned calcite cements, and precipitation of pyrite. Distinctive cathodoluminescence and trace element trends through the authigenic calcites, their negative δ13C compositions and the location of pyrite in the paragenetic sequence indicate that calcite precipitation took place during sequential bacterial Mn, Fe and sulphate reduction. Calcite δ18O values are compatible with cementation from essentially marine pore fluids, although compositions vary owing to minor contamination with 18O-depleted ‘late’cements. Mg and Sr concentrations in the calcites are lower than those in recent marine calcite cements. This may be a result of kinetic factors associated with the shallow burial cementation microenvironments. Bicarbonate for sustained precipitation of the authigenic calcites was derived largely from aragonite remobilization, augmented by that produced through anaerobic organic matter oxidation in the metal and sulphate reduction environments. Aragonite dissolution is thought to have been induced by acidity generated during aerobic bacterial oxidation of organic matter. Distinction of post-oxic metal reduction and anoxic sulphate reduction diagenetic environments in modern carbonate sediments is uncommon outside pelagic settings, and early bacterially mediated diagenesis in modern platform carbonates is associated with extensive carbonate dissolution. High detrital Fe contents of the Jurassic sediments, and their restricted depositional environment, were probably the critical factors promoting early cementation. These precipitates constitute a unique example of calcite authigenesis in shallow water limestones during bacterial Mn and Fe reduction.  相似文献   

15.
Rare earth elements in pore waters of marine sediments   总被引:2,自引:0,他引:2  
The rare earth elements (REEs) were measured in pore waters of the upper ∼25 cm of sediment from one site off Peru and three sites on the California margin. The pore water REE concentrations are higher than sea water and show systematic down core variations in both concentration and normalized pattern. From these analyses and from comparison to other chemical species measured (dissolved Fe, Mn, Ba, oxygen, nitrate, phosphate), it is suggested that pore water REEs can be grouped into three categories: those that are from an Fe-source, those that are from a POC-source, and cerium oxide. REEs from the Fe-source appear where anoxia is reached; they have a distinctive “middle-REE (MREE) enriched” pattern. The concentrations in this source are so elevated that they dominate REE trends in the Fe-oxide reduction zone. The net result of flux from the POC-source is relative enrichment of heavy-REEs (HREEs) over light-REEs (LREEs), reflecting remineralizing POC and complexation with DOC. A common “linear” REE pattern, seen in both oxic and anoxic sediments, is associated with this POC-source, as well as a “HREE enriched” pattern that is seen in surficial sediments at the Peru site. Overall, the pore water results indicate that Mn-oxides are not an important carrier of REEs in the oceans.A REE biogeochemical model is presented which attempts to reconcile REE behavior in the water and sediment columns of the oceans. The model proposes that POC, Fe-oxide and Ce-oxide sources can explain the REE concentration profiles and relative abundance patterns in environments ranging from oxic sea water to anoxic pore water. The model is also consistent with our observation that the “Ce-anomaly” of pore water does not exceed unity under any redox condition.  相似文献   

16.
六苴铜矿床是典型的陆相红层盆地砂岩型铜矿床, 具有明显的浅紫过渡带控矿与金属矿物分带特征, 砂岩粒间孔隙为金属矿物主要赋存空间。通过对赋矿砂岩层各岩性段的碎屑含量、颗粒分选性、胶结物特征、孔隙类型及孔隙度、渗透率等的统计与分析, 结果表明, 上白垩统马头山组六苴下亚段(K1ml1)的中细粒长石石英砂岩具有高碎屑含量、低分选系数、高孔渗系数等特征, 为有效的流体迁移通道。K1ml1砂岩层局部含丰富的有机质, 在中成岩阶段可演化为烃源岩, 形成富有机质的酸性-还原流体。该流体与碱性-氧化流体在砂岩透水通道中形成稳定对流, 在砂岩中可形成由紫到浅的铁质、钙镁质、钙硅质、硅质胶结的胶结物分带。在水-岩相互作用中, 酸性-还原流体起溶解砂岩早期的铁质、泥晶碳酸盐胶结物及还原硫酸盐的作用, 由此形成粒间孔隙并提供还原硫, 从而为矿质沉淀提供空间和硫源;碱性-氧化流体则提供铜离子并控制金属硫化物、碳酸盐胶结物的沉淀。生烃作用减弱时, 碱性-氧化流体越过稳定对流的平衡面, 使硅质胶结的浅色砂岩溶蚀, 形成溶蚀孔洞, 进一步提供容矿空间, 并导致金属矿物发生交代作用。砂岩各成岩阶段的水-岩相互作用是控制孔隙和胶结物生成及矿质沉淀的主要因素。  相似文献   

17.
Changes in water quality in the North Fork of the Humboldt River, Nevada are caused by weathering of waste rock from an inactive Carlin-type gold mine. Review of historical water-quality data, monthly water sampling, and continuous monitoring of water-quality parameters were used to quantify these impacts. River water pH, which ranged between 7 and 8, did not show statistically significant variation from upstream of the mine to downstream. Several constituents, most notably sulfate, calcium, and magnesium, showed statistically significant increases in dissolved-ion concentrations. These data, along with geochemical modeling, suggest that oxidation of sulfide minerals and in situ acid neutralization by carbonate host rocks are occurring. Large increases in dissolved-ion concentrations were observed twice a year—during spring snow melt and the onset of the winter precipitation season. These spikes are likely caused by flushing of pore waters that have reacted with waste rock during months-long periods when shallow groundwater recharge is not occurring.  相似文献   

18.
The effect of dissolved sulfate concentration on the rate of bacterial sulfate reduction in marine sediment from Long Island Sound was examined using a radio-sulfur technique. The experimental results show that the rate is independent of the dissolved sulfate concentration until low levels are reached (<3 mM), and that, when interpreted using a Monod-type rate law, a saturation constant, Ks, of 1.62 ± 0.16 M results. This weak dependence implies that the dissolved sulfate exerts only a limited influence on the rate of sulfate reduction in marine sediments. Given such a weak dependence, dissolved sulfate profiles in marine sediments must resemble profiles generated by models with sulfate independent kinetics. Initially, this would suggest that currently used sulfate-independent diagenetic models are appropriate in modelling sulfate profiles. However, comparison of these models with those containing weak sulfate-dependent kinetic terms shows that there exists considerable disagreement between these models when the parameter grouping (Dsk)12/w is larger than ~0.2 and smaller than ~3.0. (Here Ds is the SO;4 diffusion coefficient, k the organic matter decay constant and w the sediment burial velocity.) When the currently used models are corrected by employing physically meaningful boundary conditions, this divergence disappears. The modelling results, therefore, confirm the conclusion that any sulfate dependence inherent to the reduction kinetics does not appreciably affect sulfate pore water profiles, and that previous diagenetic studies using strong sulfate dependent models are erroneous.  相似文献   

19.
《Sedimentary Geology》1999,123(1-2):129-146
The succession of sandstone cements in chert and volcanic lithic arenites and wackes from the northern Bowser Basin of British Columbia comprises a record of diagenesis in shallow marine, deltaic, and coastal plain siliciclastic sediments that pass through the oil window and reach temperatures near the onset of metamorphism. The succession of cements is consistent with seawater in the sandstones mixing with acid waters derived from dewatering of interbedded organic rich muds. Sandstone cement paragenesis includes seven discrete cement stages. From earliest to latest the cement stages are: (1) pore-lining chlorite; (2) pore-lining to pore-filling illite; (3) pore-filling kaolinite; (4) oil migration through some of the remaining connected pores; (5) chlorite dissolution; (6) quartz cement; and (7) calcite cement. These seven cement stages are interpreted as a record of the evolution of pore waters circulating through the sandstones after burial. The earliest cement stages, as well as the depositional environments, are compatible with seawater as the initial pore fluid. Seawater composition changed during transport through the sandstones, first by loss of Mg2+ and Fe2+ during chlorite precipitation (stage 1). Dewatering of interbedded organic-rich mudstones probably added Mg2+ and Fe2+ to partially buffer the loss of these cations to chlorite. Acids produced during breakdown of organic matter are presumed to have mixed into sandstone pore fluids due to further compaction of the muds, leading to reduction of initial alkalinity. Reduction in alkalinity, in turn, favours change from chlorite to illite precipitation (stage 2), and finally to kaolinite (stage 3). Pore waters likely reached their peak acidity at the time of oil migration (stage 4). Chlorite dissolution (stage 5) and quartz precipitation (stage 6) occurred when pores were filled by these hydrocarbon-bearing and presumably acidic fluids. Fluid inclusions in fracture-filling quartz cements contain petroleum, high-pressure methane, and methane-rich aqueous solutions. Homogenization temperatures from primary two-phase inclusions are consistent with quartz cementation during progressive heating between approximately 100 and 200°C. Following quartz precipitation, alkaline pore waters were re-established, as evidenced by late-stage calcite cement (stage 7).  相似文献   

20.
The composition of the carbon and oxygen isotopes has been determined in about 40 carbonate concretions and surrounding clays and shales of different geological ages. Two different areas and stratigraphic levels in Northwestern Germany have been sampled: 1. concretions in shales of Lower Cretaceous age fromt he area between Hildesheim and Hannover; 2. concretions in shales of Devonian age from the Harz mountains (and the foreland).While the concretions of Group 1 generally are enriched in the light isotope 12C (13C values from –3.3 to –43.2 relative to PDB), compared to the surrounding shales (0.9 to –5.3), no significant differences could be observed between concretions and shales of Group 2 (concretions: 2.0 to –7.0; shales: –0.3 to –6.2).The average 18O/16O ratios of the Devonian samples are lower than those from the Cretaceous, because the probability of an exchange with light meteoric water in diagenetic reactions increases with geologic age.Formed under special conditions of the microenvironment, such as the presence of organic material and local alkalinity during the early stages of diagenesis, the carbon isotopic composition of concretions will probably have preserved some characteristic properties of this mioroenvironment.It is assumed that concretions with the heavy carbon contain carbon from CO2 which was in isotope equilibrium with CH4, both of them liberated during the decay of organic material. The light carbon from concretions of Group 1 is explained as fixed CO2, originating from microbiological or inorganic oxidation of organic substances, which was not in isotope equilibrium with methane (if this was present at all).After precipitation of the concretionary carbonates, no significant carbon isotope exchange seems to have occurred, otherwise the pattern of a heterogeneous carbon isotope composition found in several concretions could not be explained.Strontium concentrations (see Appendix) range from those of primary calcite precipitated in sea water to diagenetic carbonates formed from solutions with a high Ca/Sr ratio. They indicate that during the formation of concretions in abundant cases the system was closed to ocean water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号