首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This paper presents a new structural-stratigraphic approach to constrain the reservoir potential of the middle Miocene turbidite systems within the Monagas Fold-Thrust Belt (MFTB) and Maturín Sub-Basin (MSB) of eastern Venezuela. In the frontal anticline structures of the MFTB (Amarilis Area) light hydrocarbons have been produced from these turbidite systems which were deposited in a foreland basin with a complex tectonostratigraphic evolution.In order to predict the location of other analogous reservoirs we used the structural model presented in Part I (Parra et al., 2010) to developed a palaeo-topographic reconstruction at early-middle Miocene. We have then used this reconstruction to constrain the palaeogeography of the middle Miocene foredeep where the turbidites were deposited. The area considered has 5000 km2.By middle Miocene four regions are identified: 1) The southern basin margin dipped 1.5-2.5° north; 2) The foredeep axis had a southwest-northeast orientation. Within the foredeep the proto-structures of the MFTB created submerged highs that control the distribution of sediments; 3) The northern basin margin dipped 3-4° south; the coastline was controlled by the Pirital thrust sheet; 4) The main source of sediments was located towards the northwest on the Pirital thrust sheet and Serranía del Interior.Variations in shortening across the strike of the Pirital thrust were accommodated by a lateral ramp which controlled the location of a valley that acted as the main sediment pathway for the sediments that fed the turbidite system. This relationship between the thrust belt geomorphology and the location of turbidite sediment within the foredeep must be considered in order to assess the distribution of the Miocene turbidite reservoirs.  相似文献   

2.
This work discusses the synsedimentary structural control affecting the turbidites of the Marnoso-arenacea Formation (MAF) deposited in an elongate, NW-stretched foredeep basin formed in front of the growing Northern Apennines orogenic wedge. The stratigraphic succession of the MAF (about 4000 m thick) records the progressive closure of the Apennine foredeep basin due to the NE propagation of thrust fronts. In this setting, Langhian to Serravallian turbidites are overlain by Tortonian mixed turbidite deposits, i.e. sandstone-rich low-efficiency turbidites. The high-resolution stratigraphic framework of basin-plain turbidites has made it possible to identify five informal stratigraphic units (I, II, III, IV, V) mainly on the basis of the structural control highlighted by: 1) the presence of topographic highs and relative depocentres detected through a progressive flattening approach, and 2) the presence of thrust-related mass-transport complexes and the progressive appearance and disappearance of five bed types (Types 1, 2, 3, 4, 5) considered important to understand the interaction between flow efficiency and basin morphology. By contrast, the upper part of the MAF succession (Tortonian in age) is formed by more sandstone-rich systems characterized by beds whose origin is likely to depend, at least in part, upon flow decelerations related to topographic confinement due to the progressive closure of the foredeep. The vertical and lateral distribution of these types of beds is, therefore, useful for the reconstruction of the morphological evolution of structurally controlled basins; in the MAF example, this is mainly due to the progressive narrowing of the foredeep caused by the propagation of the main thrust fronts toward the foreland.  相似文献   

3.
Argnani  A.  Tinti  S.  Zaniboni  F.  Pagnoni  G.  Armigliato  A.  Panetta  D.  Tonini  R. 《Marine Geophysical Researches》2011,32(1-2):299-311
Marine Geophysical Research - The southern Adriatic basin is the current foredeep of the Albanide fold-and-thrust belt that runs along the eastern boundary of the Adriatic basin and partly owes its...  相似文献   

4.
Reconstructions of the Albian to Campanian foreland basin adjacent to the northern Canadian Cordillera are based on outcrop and well log correlations, seismic interpretation, and reconnaissance-level detrital zircon analysis. The succession is subdivided into two tectonostratigraphic units. First is an Albian tectonostratigraphic unit that was deposited on the flexural margin of a foreland basin. At the base is a shallow marine sandstone interval that was deposited during transgressive reworking of sediment from cratonic sources east of the basin that resulted in a dominant 2000–1800 Ma detrital zircon age fraction. Subsequent deposition in a west-facing muddy ramp setting was followed by east-to-west shoreface progradation into the basin.Near the Albian–Cenomanian boundary, regional uplift and exhumation resulted in an angular unconformity at the base of the Cenomanian–Campanian tectonostratigraphic unit. Renewed subsidence in the Cenomanian resulted in deposition of organic-rich, radioactive, black mudstone of the Slater River Formation in a foredeep setting. Cenomanian–Turonian time saw west-to-east progradation of a shoreface-shelf system from the orogenic margin of the foreland basin over the foredeep deposits. Detrital zircon age peaks of approximately 1300 Ma, 1000 Ma, and 400 Ma from a Turonian sample are consistent with recycling of Mississippian and older strata from the Cordillera west of the study area, and show that the orogen-attached depositional system delivered sediment from the orogen to the foreland basin. A near syndepositional detrital zircon age of ca. 93 Ma overlaps with known granitoid ages from the Cordillera. After the shelf system prograded across the study area, subsequent pulses of subsidence and uplift resulted in dramatic thickness variations across an older structural belt, the Keele Tectonic Zone, from the Turonian to the Campanian.The succession of depositional systems in the study area from flexural margin to foredeep to orogenic margin is attributed to coupled foreland propagation of the front of the Cordilleran orogen and the foreland basin. Propagation of crustal thickening and deformation toward the foreland is a typical feature of orogens and so the distal to proximal evolution of the foreland basin should also be considered as typical.  相似文献   

5.
Submarine fans of different sizes, geometry, and petrology were built in the Marnoso-arenacea Basin, a migrating foredeep within an active continental margin. In an initial depositional stage, a well-developed basin plain received sediment from flows that by-passed restricted fan systems, now buried, located near the north end of an elongated basin. Minor fans grew near the steeper, tectonically deformed side of the basin. In the later stage, turbidite deposition was stopped in the former basin plain. Sediment sources and feeder channels shifted and fed fan lobes that prograded in a narrower trough and were distored (choked). The tectonic control on development of megasequence and sand bodies is stressed here in contrast with previous emphasis on “inner” or “autocyclic” mechanisms. Margin setting represents fan and/or source area  相似文献   

6.
Authigenic carbonates from outcrops of the northern Apennines consist of small and irregular lenses and exhibit numerous features indicative of cold-seep settings. Detailed petrographic, mineralogical and geochemical studies from two Miocene deposits are presented. The first carbonate outcrop, named Fosso Riconi, is located in the foredeep basin of the Apenninic chain, whereas the second deposit represents a satellite basin called Sarsetta. The stable isotope data from specific carbonate minerals show a wide range of values well known from other palaeoseeps of the Apennine Mountains. The majority of seep carbonates are formed by low-Mg calcite and ankerite. Those minerals have δ13C values between ?7 and ?23‰ V-PDB, suggesting variable amounts of carbonate derived from oxidized methane, seawater (dissolved inorganic carbon) and sedimentary organic matter. Dolomite samples have the lowest δ13C values (?30.8 to ?39.0‰ V-PDB), indicating methane as the main carbon source. The findings suggest an evolutionary formation of the seeps and development of authigenic carbonates influenced by the activity of chemosynthetic organisms, of which large lucinid clams are preserved. Bioirrigation by the clams controlled the sediment–water exchange, and is here considered as an explanation for the anomalous Mg content of the calcite. We hypothesize that the seep carbonates were formed during periods of active methane-rich seepage, whereas during periods of slow seepage carbonate formation was reduced. Despite different geological settings, the two examined deposits of Sarsetta and Fosso Riconi show similar features, suggesting that a common pattern of fluid circulation played a major role in carbonate formation at both seep sites.  相似文献   

7.
Submarine fans of different sizes, geometry, and petrology were built in the Marnoso-arenacea Basin, a migrating foredeep within an active continental margin. In an initial depositional stage, a well-developed basin plain received sediment from flows that by-passed restricted fan systems, now buried, located near the north end of an elongated basin. Minor fans grew near the steeper, tectonically deformed side of the basin. In the later stage, turbidite deposition was stopped in the former basin plain. Sediment sources and feeder channels shifted and fed fan lobes that prograded in a narrower trough and were distored (choked). The tectonic control on development of megasequence and sand bodies is stressed here in contrast with previous emphasis on “inner” or “autocyclic” mechanisms.  相似文献   

8.
The Northern Adriatic Sea is a shallow and very flat shelf area located between the northern Apennines, the southern Alps and the Dinarides; its present day physiography is the result of the filling of a relatively deep Quaternary foredeep basin, developed due to the northeastward migration of the Apennine chain. Multichannel seismic profiles and well data have allowed documenting the stratigraphic architecture, the depositional systems and the physiographic evolution of the Northern Adriatic sea since early Pliocene time. In particular, three main depositional sequences bounded by regional unconformities were recognized. The Zanclean Sequence 1 documents first the drowning of late Messinian incised valleys and then the southward progradation of a shelf-slope system, which is inferred to be related to a tectonic phase of the Apenninic front. The Piacenzian-Gelasian Sequence 2 records a relatively rapid transgressive episode followed by minor southward progradation; the top of the sequence is associated with a major late Gelasian drowning event, linked to the NE-ward migration of the Apennine foredeep. The Calabrian to upper Pleistocene Sequence 3 testifies the infilling of accommodation previously created by the late Gelasian drowning event, and it initially accumulated in deep-water settings and then in shallow-water to continental settings. The upper part of Sequence 3, consisting of the paleo-Po deltaic system, is composed of seven high-frequency sequences inferred to record late Quaternary glacio-eustatic changes. These high-frequency sequences document the stepwise filling of the remaining accommodation, resulting in the development of the modern shelf.  相似文献   

9.
Along the southeastern Tyrrhenian Sea margin, the Gioia Basin formed as a result of extensional tectonics at the rear of the Maghrebian thrust belt. In the central part of the basin, mass-transport deposits represent up to 80% of its recent infill. The basin-wide Nicotera slump is the deepest mass-transport deposit present in the basin and was followed by sheet turbidite deposition. Above the turbidite package, a mass-transport complex (MTC) formed through the stacking of different mass-transport deposits due to repeated failures of the continental slope and of a base of slope channel levee wedge, which is still preserved in the western side of the basin. The Villafranca frontally-confined slide, a body mainly consisting of coherent blocks, represents the bulk of the MTC. The failure of the Villafranca slide was due to asymmetric loading of a permeable condensed horizon in the thinnest, distal lateral part of the channel levee wedge. The relatively large thickness of the Villafranca slide caused it to remain confined at its toe region. Smaller scale mass-transport deposits, a debris-flow sheet and a debris-flow lobe, followed the Villafranca slide and were sourced from the same headwall area. Their different run out and internal character are possibly a function of the lithology of the material involved in the collapse. A slab slide, characterized by little internal deformation and frontal contractional ridges, originated when seafloor instability propagated towards the north, causing clockwise rotation of a sediment wedge. Along the linear headwall of the slab slide, a localized upslope failure propagation is shown by a small scale re-entrant. The Sicilian margin, along which the Gioia Basin develops, is characterized by strong differential vertical movements due to ongoing extensional tectonics. The effects of both local and regional strong earthquakes are frequently felt in the area. Thus, slope oversteepening and earthquakes are suggested as the more likely causes for the observed repeated events of seafloor failure. In addition, an evolution of the MTC through larger slides controlled by the migration of uplift of the basin bounding submarine ridge, followed by smaller scale failures due to the consequent slope profile modification, is here advanced.  相似文献   

10.
红河活动断裂带在南海西北部的反映   总被引:6,自引:0,他引:6  
红河断裂带是一条走滑的活动断裂带,它控制着南海西北部的构造活动,也控制着莺歌海盆地的形成和演化。根据南海西北部中穿过莺歌海盆地的地震剖面和历史资料进行解释,结果表明,莺歌海盆地的形成可分3个阶段:自50MaB.P.开始,沿红河断裂带的左旋错动和在印支地块的顺时针旋转的应力作用下,形成了莺歌海盆地的雏形;24MaB.P.之后在左旋压扭应力场作用下,形成了盆地西北部的反转构造;5MaB.P.之后发生了右旋错动,盆地内快速沉降,发育巨厚沉积层。根据盆地内最老和最新的沉积中心之间的距离,推测沿红河断裂带的左旋位错约200km。该断裂带发展到现代,其活动性大为减弱,曾发生10次小于5级地震。  相似文献   

11.
Two types of morphologic features in the head of Navarinsky Canyon are attributed to mass movement of near-surface sediment. A series of pull-aparts is located downslope of large sand waves. These pull-aparts, possibly induced by liquefaction, affect the upper 5 to 10 m of sandy sediment (water depths 350 to 600 m) on a 1o slope. A hummocky elongate mound of muddy sand (water depths 550 to 800 m) contains chaotic internal reflectors to a subbottom depth of 30 to 40 m and possibly is the product of a shallow slide. We speculate that Holocene seismicity is the likely triggering mechanism.  相似文献   

12.
The Morichito piggyback basin (MPB) is a SW-NE-oriented depocenter in the Eastern Venezuelan Foreland Basin (EVFB). This piggyback basin formed by overlying the Pirital thrust during the middle to late Miocene as a result of oblique collision between the Caribbean and South-American Plates. The MPB covers an area encompassing approximately 1000 km2 between the Serrania del Interior range and the Pirital high, which is a hanging wall uplift along the Pirital thrust that acts as a confining barrier on the southern boundary of the MPB. Previous studies have tried to address the tectonostratigraphic significance of the MPB, but new biostratigraphic information and recently acquired 3D seismic data have allowed us to expand the understanding of this basin. The MPB occupies a relatively small area of the EVFB; however, the MPB contains a valuable stratigraphic record that can be used to unveil the timing of the main deformational events that took place in the EVFB.This work presents the tectonostratigraphic evolution of the MPB by defining four tectonostratigraphic sequences (T1-T4). Each sequence was defined on the basis of integration of well logs, biostratigraphy, and seismic geomorphological interpretations. T1 (24-16 Ma) (late Oligocene to middle Miocene), which was deposited in shallow-marine environments, extends to the south of the Pirital high beyond the boundaries of the MPB. T1 is equivalent to the early foredeep stage of the EVFB, having been formed when structural deformation and uplifting were already occurring to the north on the proto-Serrania del Interior range (∼24-16 Ma) and the Pirital thrust was active (∼22 Ma). T2 (16-11 Ma) (middle to late Miocene) is composed of alluvial-fan deposits derived from the proto-Serrania del Interior range. The geometry and internal configuration of T2 indicate that during this time the basin was transitioning from an open-foreland basin to a confined piggyback basin. During deposition of T2, the Pirital fault was active as an out-of-sequence thrusting event (16-∼11 ma). T3 (late Miocene) and T4 (early Pliocene to Recent), composed of shallow-marine and fluvial deposits, were deposited in an already restricted piggyback basin. The Pirital high was already in place during deposition of T3 (∼11-9.3 ma). T3 and T4 represent the final phases of MPB infilling, when tectonic activity and subsidence were at their lowest rates. MPB sedimentary infilling dates the activity of thrusting events in the proto-Serrania del Interior (∼24-16 Ma), timing of maximum deformation associated with the Pirital out-of-sequence thrusting event (16-∼11 Ma), timing of final emplacement of the Pirital high (∼11-9.3 Ma), and the beginning of tectonic quiescence (<5.2 Ma).  相似文献   

13.
Reflection profiling in a region of anomalous topography and structure in the Bay of Bengal off Burma has revealed the presence of a large submarine slide (olistostrome) at the base of the continental slope off the Bassein River. The slide overlies a thick section of Bengal Deep-Sea Fan turbidites and has a complex internal structure consisting of two primary elements. The lower element is pervasively disturbed and is interpreted as a mudflow generated at the time of the slide which spread over a large area to as much as 35 km beyond the topographic toe. This mudflow poured into a distributary channel on the Bengal Fan and virtually filled it for 145 km along its length. The upper element comprises a series of relatively coherent blocks of stratified sediments (olistoliths) bounded by curved fault planes. The blocks have been transported as much as 55 km from the original Sunda Trench wall. Their dimensions, up to 360 m thick and 2.8 km between faults, are similar to olistoliths of the slide terrain in the Apennines. The blocks are blanketed by younger slope strata. The total area covered by the slide, including the mudflow, is almost 4,000 km2, and total volume of the slide is over 900 km3. Material of the slide consists of Bengal Fan turbidites offscraped above the Sunda Subduction zone and blanketed by rapidly deposited slope sediments from a western Irrawaddy River distributary (the Bassein River) during Late Quaternary glacial low sea level. This rapid loading, probably coupled with a large earthquake, triggered the slide.  相似文献   

14.
We employ an integrated subsurface dataset, including >400 m of drill cores and three-dimensional (3D) seismic-reflection data from >530 km2 of the Tertiary Molasse foreland basin system in Austria, to characterize turbidite-system architecture across structurally complex foredeep-margin and wedge-top depocenters and to interpret the influence of tectonic deformation and submarine topography on hydrocarbon-reservoir quality and distribution. Turbidite-system architecture and depositional processes were correlated with associated topographic features in order to identify zones of preferential sediment gravity-flow convergence or divergence. Zones of flow convergence facilitate flow acceleration and accumulative flow behavior, whereas zones of flow divergence facilitate deceleration and depletion. Zones of preferential flow convergence include narrow (<2 km) and steep (<20°) foredeep-margin slope channels along thrust front-segmenting tear faults, and steep, unchannelized piggyback-basin and foredeep margins (local gradients as great as 40° across piggyback-basin margins). The foredeep-margin gradient is exaggerated principally by tectonic deformation that post-dates turbidite-system development, based on a paucity of growth strata. Piggyback-basin-margin gradients are exaggerated as a result of deformation synchronous with and following turbidite-system development, judging from the presence of growth strata. Slope-channel topography facilitated the development of relatively coarse-grained, amalgamated turbidite reservoirs, whereas unchannelized basin-margin topography facilitated deposition of fine-grained, chaotic non-reservoirs. Zones of preferential flow divergence are flat (<1°), unconfined (i.e., large in comparison to sediment gravity flows) piggyback-basin floors, which facilitated the development of relatively coarse-grained, non-amalgamated, upward fining turbidite reservoirs, stratigraphically partitioned by fine-grained mass transport-complex deposits. The results of this study elucidate the influence of foredeep-margin and wedge-top tectonic deformation and topography on turbidite-system and associated reservoir character and distribution across the Molasse foreland basin system in Austria, and can be applied to oil and gas exploration in analogous, structurally complex settings.  相似文献   

15.
Seismic-facies analysis of a seismically-anomalous sequence of mid-Cretaceous (Cenomanian-Turonian) basin fill in Lease Block 34/8, Viking Graben, Norwegian North Sea, reveals a possible slide block (?) composed of Jurassic-age Brent Group strata that apparently detached from the adjacent structural high (34/8 structure) and slid downslope onto Lower Cretaceous sediments in the Viking Graben floor. In addition, this mid-Cretaceous sequence contains two broad submarine channels that trend southward into the graben from the southern tip of the slide block (?) and the adjacent structural high. The channels appear to be erosional features formed by turbidity currents and mass-wasting processes. The Brent slide block (?) may represent an additional hydrocarbon prospect within the lease Block 34/8.  相似文献   

16.
A sediment slide complex has been mapped on the West African continental margin north of Dakar, Senegal. Four major slides covering approximately 44,300 km2 were delineated by seismic reflection profiles, 3.5 and 12 kHz echograms and piston cores. Although the slide areas have been altered by later erosion and deposition by turbidity flows, the major components of the slides — slide scar, zones of hummocky and blocky slide material and zones of debris flow — are recognizable. Cores containing flow folds with horizontal axial surfaces substantiate the echogram interpretations of debris flow. Morphology and depositional areas of the slides indicate that several major slide movements have occurred in each of the various slide areas. The triggering mechanism for these slides is perhaps earthquakes associated with the Cape Verde Islands, Cape Verde Plateau, and adjacent fracture zones.  相似文献   

17.
High-resolution physical stratigraphy and detailed facies analysis have been carried out in the foredeep turbidites of Annot Sandstone in the Peïra Cava basin (French Maritime Alps) in order to characterize the relationship between facies and basin morphology. Detailed correlation patterns are evidence of a distinction between a southern bypass-dominated region, coincident with a channel-lobe transition and a north-eastern depositional zone, represented by sheet-like basin plain. These depositional elements are characterized by three main groups of beds related to the downcurrent evolution of bipartite flows. These facies groups are: 1) pebbly coarse-grained massive sandstones with rip-up mudstone clasts and impact mudstone breccias (Type I and II beds) deposited by basal dense flows, 2) coarse-grained massive sandstone overlain by tractive structures (Type III and IV beds) indicating the bypass of overlying turbulent flows and 3) massive medium-grained and fine-grained laminated sandstones related to the deposition of high and low density turbidity currents (Type V and VI beds). Ponding and reflection processes, affecting the upper turbulent flows, can characterize all type beds, but especially the beds of the third group. As described in other confined basins of the northern Apennines (Italy), the lateral and vertical distribution of these type of beds, together with other important sedimentary characteristics, - such as the sandstone/mudstone ratio, bed thicknesses, amalgamation surfaces and paleocurrents - reveal that the deposition of the Annot Sandstone in the Peïra Cava basin was controlled by an asymmetric basin with a steep western margin. This margin favored, on the one hand, basal dense flow decelerations and impacts, as well as bypass and deflection of the upper turbulent flows towards the north east.  相似文献   

18.
The paper deals with original stratigraphic, petrographic and structural data concerning the evolution of the southern Apennines chain (Italy). The main Langhian to Pliocene deposits cropping out in the northern sector of the southern Apennines foreland basin system (Sannio-Irpinia area) have been studied and correlated in order to document the effects of tectonic changes on the evolution of sandstone detrital modes and stratigraphic architecture. The studied sandstone units can be grouped in five key intervals: a) Numidian Flysch, mostly formed by Langhian mature quartzarenitic deposits and conformable Serravallian post-Numidian successions, formed by arkosic and calciclastic arenaceous-pelitic beds (foreland depozones); b) Langhian to Tortonian San Giorgio Fm., mostly composed of quartzofeldspatic sandstones (foredeep depozone); c) Tortonian to Early Messinian, quartz-feldspatic and partly sedimentary-carbonatoclastic petrofacies, thrust-top successions (Vallone Ponticello, Villanova del Battista and San Bartolomeo fms.); d) Late Messinian quartzolithic to quartzofeldspatic sandstones (Torrente Fiumarella, Anzano Molasse and Tufo-Altavilla unit), which can be referred to infilled thrust-top basins; e) unconformity-bounded Pliocene quartzofeldspatic sandstone strata (wedge-top depozones), characterized by synsedimentary tectonic activity.Detrital modes of the Serravallian through Middle Pliocene sandstones of the southern Apennines foreland basin system testify clear provenance relations from the accreted terranes forming the southern Apennine thrust-belt. The studied clastics show almost the same blended (quartz-feldspatic) composition; this condition could be related to the tectonic transport over thrust ramp of source rocks, as suggested by the tectonic evolutionary model. This study, dealing with sedimentary provenance analysis and tectonostratigraphic evolution, provides an example of the close relations between clastic compositions and foreland basin system development in southern Apennines.  相似文献   

19.
The western Svalbard continental margin contains thick sediment sequences with areas known to contain gas hydrates. Together with a dynamic tectonic environment, this makes the region prone to submarine slides. This paper presents results from geophysical mapping of the deepest part of the high Arctic environment, the Molloy Hole. The mapping includes multibeam bathymetry, acoustic backscatter and sub-bottom profiling. The geophysical data reveal seabed features indicative of sediment transport and larger-scale mass wasting. The large slide scar is here referred to as the Molloy Slide. It is located adjacent to the prominent Molloy Hole and Ridge system. The slide is estimated to have transported >65 km3 of sediments over the deep axial valley of the Molloy Ridge, and further into the Molloy Hole. A unique feature of this slide is that, although its run-out distance is relatively short (<5 km), it extends over an enormous vertical depth (>2,000 m) as a result of its position in a complex bathymetric setting. The slide was most likely triggered by seismic activity caused by seafloor spreading processes along the adjacent Molloy Ridge. However, gas-hydrate destabilization may also have played a role in the ensuing slide event.  相似文献   

20.
Ranger Slide is a modest (12 km3) slide deposit of Pliocene and younger sediment on the continental slope in northern Sebastian Vizcaino Bay, Mexico. A limited survey using a deeply-towed instrument shows that hummocky terrain immediately downslope from the slide scar consists of large blocks of semiconsolidated sediment, some exceeding a kilometer in length and 107 m3 in volume. Most blocks have rotated, fallen apart, and/or deformed during movement. The form, structure, and processes related to emplacement of the blocks within the hummocky topographic zone of Ranger Slide may be common to many submarine slides on slopes involving semiconsolidated, terrigenous sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号