首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.  相似文献   

2.
We investigate the evolution of the star formation rate in cluster galaxies. We complement data from the Canadian Network for Observational Cosmology 1 (CNOC1) cluster survey  (0.15 < z < 0.6)  with measurements from galaxy clusters in the Two-degree Field (2dF) galaxy redshift survey  (0.05 < z < 0.1)  and measurements from recently published work on higher-redshift clusters, up to almost   z = 1  . We focus our attention on galaxies in the cluster core, i.e. galaxies with   r < 0.7  h −170 Mpc  . Averaging over clusters in redshift bins, we find that the fraction of galaxies with strong [O  ii ] emission is ≲20 per cent in cluster cores, and the fraction evolves little with redshift. In contrast, field galaxies from the survey show a very strong increase over the same redshift range. It thus appears that the environment in the cores of rich clusters is hostile to star formation at all the redshifts studied. We compare this result with the evolution of the colours of galaxies in cluster cores, first reported by Butcher and Oemler. Using the same galaxies for our analysis of the [O  ii ] emission, we confirm that the fraction of blue galaxies, which are defined as galaxies 0.2 mag bluer in the rest-frame B – V than the red sequence of each cluster, increases strongly with redshift. Because the colours of galaxies retain a memory of their recent star formation history, while emission from the [O  ii ] line does not, we suggest that these two results can best be reconciled if the rate at which the clusters are being assembled is higher in the past, and the galaxies from which it is being assembled are typically bluer.  相似文献   

3.
We have measured central line strengths for a complete sample of early-type galaxies in the Fornax cluster, comprising 11 elliptical and 11 lenticular galaxies, more luminous than M B  = −17. In contrast to the elliptical galaxies in the sample studied by González (and recently revisited by Trager) we find that the Fornax ellipticals follow the locus of galaxies of fixed age in Worthey's models and have metallicities varying from roughly solar to three times solar. The lenticular galaxies, however, exhibit a substantial spread to younger luminosity-weighted ages, indicating a more extended star formation history. We present measurements of the more sensitive indices: C4668 and HγA; these confirm and reinforce the conclusions that the elliptical galaxies are coeval and that only the lenticular galaxies show symptoms of late star formation. The inferred difference in the age distribution between lenticular and elliptical galaxies is a robust conclusion as the models generate consistent relative ages using different age and metallicity indicators even though the absolute ages remain uncertain. The young luminosity-weighted ages of the S0s in the Fornax cluster are consistent with the recent discovery that the fraction of S0 galaxies in intermediate-redshift clusters is a factor of 2–3 lower than found locally, and suggest that a fraction of the cluster spiral galaxy population has evolved to quiescence in the 5-Gyr interval from z  = 0.5 to the present. Two of the faintest lenticular galaxies in our sample have blue continua and strong Balmer-line absorption, suggesting starbursts ≲2 Gyr ago. These may be the low-redshift analogues of the starburst or post-starburst galaxies seen in clusters at z  = 0.3, similar to the Hδ-strong galaxies in the Coma cluster.  相似文献   

4.
Different compositions of galaxy types in the field in comparison to galaxy clusters as described by the morphology–density relation in the local universe are interpreted as a result of transformation processes from late- to early-type galaxies. This interpretation is supported by the Butcher–Oemler effect. We investigate E+A galaxies as an intermediate state between late-type galaxies in low-density environments and early-type galaxies in high-density environment to constrain the possible transformation processes. For this purpose, we model a grid of post-starburst galaxies by inducing a burst and/or a halting of star formation on the normal evolution of spiral galaxies with our galaxy evolution code galev . From our models, we find that the common E+A criteria exclude a significant number of post-starburst galaxies, and propose that comparing their spectral energy distributions leads to a more sufficient method to investigate post-starburst galaxies. We predict that a higher number of E+A galaxies in the early universe cannot be ascribed solely to a higher number of starburst, but is a result of a lower metallicity and a higher burst strength due to more gas content of the galaxies in the early universe. We find that even galaxies with a normal evolution without a starburst have an Hδ-strong phase at early galaxy ages.  相似文献   

5.
The galaxy populations in present-day clusters are distinctly different from those of the field, indicating that environment plays a strong role in galaxy evolution. This review discusses some of the recent observations of moderate to high redshift clusters. A consistent picture of galaxy evolution in clusters appears to be emerging, which includes a population of galaxies which formed early in the cluster history, as well as field galaxies which have had their star formation truncated upon falling into the cluster potential. Galaxy interactions probably play an important role in exhausting star formation in some of these galaxies. However, there is significant variation in the populations of different cluster samples, with substantial evidence that some galaxies have their star formation terminated more gradually. This suggests that different mechanisms may dominate in different clusters, perhaps because of the recent merging history of the clusters. We also present a recent analysis of population gradients in clusters which suggests that the observed evolution in cluster populations is consistent with a scenario where changing infall rates drive the fraction of star forming galaxies in clusters, rather than a changing physical mechanism within the cluster. Thus, galaxy populations may provide a fundamental measure of the growth of large scale structure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Hubble Space Telescope observations of distant clusters have suggested a steep increase in the proportion of S0 galaxies between clusters at high redshifts and similar systems at the present day. It has been proposed that this increase results from the transformation of the morphologies of accreted field galaxies from spirals to S0s. We have simulated the evolution of the morphological mix in clusters based on a simple phenomenological model where the clusters accrete a mix of galaxies from the surrounding field, the spiral galaxies are transformed to S0s (through an unspecified process) and are added to the existing cluster population. We find that in order to reproduce the apparently rapid increase in the ratio of S0 galaxies to ellipticals in the clusters, our model requires that: (1) the galaxy accretion rate has to be high (typically, more than half of the present-day cluster population must have been accreted since z ∼0.5) , and (2) most of the accreted spirals, with morphological types as late as Scdm, must have transformed to S0s. Although the latter requirement may be difficult to meet, it is possible that such bulge-weak spirals have already been 'pre-processed' into the bulge-strong galaxies prior to entering the cluster core and are eventually transformed into S0s in the cluster environment. On the basis of the evolution of the general morphological mix in clusters our model suggests that the process responsible for the morphological transformation takes a relatively long time (∼ 1–3 Gyr) after the galaxy has entered the cluster environment.  相似文献   

7.
The evolution of galaxies in groups may have important implications for the evolution of the star formation history of the Universe, since many processes which operate in groups may suppress star formation and the fraction of galaxies in bound groups grows rapidly between   z = 1  and the present day. In this paper, we present an investigation of the properties of galaxies in galaxy groups at intermediate redshift  ( z ∼ 0.4)  . The groups were selected from the Canadian Network for Observational Cosmology Redshift Survey (CNOC2) redshift survey as described by Carlberg et al., with further spectroscopic follow-up undertaken at the Magellan telescope in order to improve the completeness and depth of the sample. We present the data for the individual groups, and find no clear trend in the fraction of passive galaxies with group velocity dispersion and group concentration. We stack the galaxy groups in order to compare the properties of group galaxies with those of field galaxies at the same redshift. The groups contain a larger fraction of passive galaxies than the field, this trend being particularly clear for galaxies brighter than   M B J < −20  in the higher velocity dispersion groups. In addition, we see evidence for an excess of bright passive galaxies in the groups relative to the field. In contrast, the luminosity functions of the star-forming galaxies in the groups and the field are consistent. These trends are qualitatively consistent with the differences between group and field galaxies seen in the local Universe.  相似文献   

8.
Stellar populations in spiral bulges are investigated using the Lick system of spectral indices. Long-slit spectroscopic observations of line strengths and kinematics made along the minor axes of four spiral bulges are reported. Comparisons are made between central line strengths in spiral bulges and those in other morphological types [elliptical, spheroidal (Sph) and S0]. The bulges investigated are found to have central line strengths comparable to those of single stellar populations of approximately solar abundance or above. Negative radial gradients are observed in line strengths, similar to those exhibited by elliptical galaxies. The bulge data are also consistent with correlations between Mg2, Mg2 gradient and central velocity dispersion observed in elliptical galaxies. In contrast to elliptical galaxies, central line strengths lie within the loci defining the range of 〈Fe〉 and Mg2 achieved by Worthey's solar abundance ratio, single stellar populations (SSPs). The implication of solar abundance ratios indicates significant differences in the star formation histories of spiral bulges and elliptical galaxies. A 'single zone with infall' model of galactic chemical evolution, using Worthey's SSPs, is used to constrain the possible star formation histories of our sample. We show that the 〈Fe〉, Mg2 and H β line strengths observed in these bulges cannot be reproduced using primordial collapse models of formation but can be reproduced by models with extended infall of gas and star formation (2–17 Gyr) in the region modelled. One galaxy (NGC 5689) shows a central population with a luminosity-weighted average age of ∼5 Gyr, supporting the idea of extended star formation. Kinematic substructure, possibly associated with a central spike in metallicity, is observed at the centre of the Sa galaxy NGC 3623.  相似文献   

9.
N -body/hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a Λ cold dark matter (ΛCDM) cosmology are used in order to follow the building-up of the colour–magnitude relation in two clusters and in 12 groups. We have found that galaxies, starting from the more massive, move to the red sequence (RS) as they get aged over times and eventually set upon a 'dead sequence' (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However, galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z ∼ 1, after which major events only involve the brightest cluster galaxies.
The emerging scenario is that the evolution of the colour–magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter haloes assembly. Galaxies progressively quenching their star formation settle to a very sharp 'red and dead' sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z ∼ 1.5) and environment.
Differently from the DS, the operatively defined RS evolves more evidently with z , the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star-forming one: this goes from z ≃ 1 in clusters down to 0.4 in normal groups.  相似文献   

10.
We analyse the K -band Hubble diagram for a sample of brightest cluster galaxies (BCGs) in the redshift range 0< z <1. In good agreement with earlier studies, we confirm that the scatter in the absolute magnitudes of the galaxies is small (0.3 mag). The BCGs exhibit very little luminosity evolution in this redshift range: if q 0=0.0, we detect no luminosity evolution; for q 0=0.5, we measure a small negative evolution (i.e., BCGs were about 0.5 mag fainter at z =1 than today). If the mass in stars of these galaxies had remained constant over this period of time, substantial positive luminosity evolution would be expected: BCGs should have been brighter in the past, since their stars were younger. A likely explanation for the observed zero or negative evolution is that the stellar mass of the BCGs has been assembled over time through merging and accretion, as expected in hierarchical models of galaxy formation. The colour evolution of the BCGs is consistent with that of an old stellar population ( z for>2) that is evolving passively. We can thus use evolutionary population synthesis models to estimate the rate of growth in stellar mass for these systems. We find that the stellar mass in a typical BCG has grown by a factor ≃2 since z ≃1 if q 0=0.0, or by factor ≃4 if q 0=0.5. These results are in good agreement with the predictions of semi-analytic models of galaxy formation and evolution set in the context of a hierarchical scenario for structure formation. The models predict a scatter in the luminosities of the BCGs that is somewhat larger than the observed one, but that depends on the criterion used to select the model clusters.  相似文献   

11.
Using semi-analytic models of galaxy formation set within the cold dark matter (CDM) merging hierarchy, we investigate several scenarios for the nature of the high-redshift     ) Lyman-break galaxies (LBGs). We consider a 'collisional starburst' model in which bursts of star formation are triggered by galaxy–galaxy mergers, and find that a significant fraction of LBGs are predicted to be starbursts. This model reproduces the observed comoving number density of bright LBGs as a function of redshift and the observed luminosity function at     and     with a reasonable amount of dust extinction. Model galaxies at     have star formation rates, half-light radii,     colours and internal velocity dispersions that are in good agreement with the data. Global quantities such as the star formation rate density and cold gas and metal content of the Universe as a function of redshift also agree well. Two 'quiescent' models without starbursts are also investigated. In one, the star formation efficiency in galaxies remains constant with redshift, while in the other, it scales inversely with disc dynamical time, and thus increases rapidly with redshift. The first quiescent model is strongly ruled out, as it does not produce enough high-redshift galaxies once realistic dust extinction is accounted for. The second quiescent model fits marginally, but underproduces cold gas and very bright galaxies at high redshift. A general conclusion is that star formation at high redshift must be more efficient than locally. The collisional starburst model appears to accomplish this naturally without violating other observational constraints.  相似文献   

12.
Using galaxy samples drawn from the Sloan Digital Sky Survey and the DEEP2 Galaxy Redshift Survey, we study the relationship between star formation and environment at   z ∼ 0.1  and 1. We estimate the total star formation rate (SFR) and specific star formation rate (sSFR) for each galaxy according to the measured [O  ii ]λ 3727 Å nebular line luminosity, corrected using empirical calibrations to match more robust SFR indicators. Echoing previous results, we find that in the local Universe star formation depends on environment such that galaxies in regions of higher overdensity, on average, have lower SFRs and longer star formation time-scales than their counterparts in lower density regions. At   z ∼ 1  , we show that the relationship between sSFR and environment mirrors that found locally. However, we discover that the relationship between total SFR and overdensity at   z ∼ 1  is inverted relative to the local relation. This observed evolution in the SFR–density relation is driven, in part, by a population of bright, blue galaxies in dense environments at   z ∼ 1  . This population, which lacks a counterpart at   z ∼ 0  , is thought to evolve into members of the red sequence from   z ∼ 1  to ∼0. Finally, we conclude that environment does not play a dominant role in the cosmic star formation history at   z < 1  : the dependence of the mean galaxy SFR on local galaxy density at constant redshift is small compared to the decline in the global SFR space density over the last 7 Gyr.  相似文献   

13.
Hubble Space Telescope images of a sample of 285 galaxies with measured redshifts from the Canada–France Redshift Survey (CFRS) and Autofib–Low Dispersion Spectrograph Survey (LDSS) redshift surveys are analysed to derive the evolution of the merger fraction out to redshifts z ∼1. We have performed visual and machine-based merger identifications, as well as counts of bright pairs of galaxies with magnitude differences δm ≤1.5 mag. We find that the pair fraction increases with redshift, with up to ∼20 per cent of the galaxies being in physical pairs at z ∼0.75–1. We derive a merger fraction varying with redshift as ∝(1+ z )3.2±0.6, after correction for line-of-sight contamination, in excellent agreement with the merger fraction derived from the visual classification of mergers for which m =3.4±0.6. After correcting for seeing effects on the ground-based selection of survey galaxies, we conclude that the pair fraction evolves as ∝(1+ z )2.7±0.6. This implies that an average L * galaxy will have undergone 0.8–1.8 merger events from z =1 to z =0, with 0.5 to 1.2 merger events occuring in a 2-Gyr time-span at around z ∼0.9. This result is consistent with predictions from semi-analytical models of galaxy formation. From the simple coaddition of the observed luminosities of the galaxies in pairs, physical mergers are computed to lead to a brightening of 0.5 mag for each pair on average, and a boost in star formation rate of a factor of 2, as derived from the average [O  ii ] equivalent widths. Mergers of galaxies are therefore contributing significantly to the evolution of both the luminosity function and luminosity density of the Universe out to z ∼1.  相似文献   

14.
15.
The colour–magnitude relation (CMR) of cluster elliptical galaxies has been widely used to constrain their star formation histories (SFHs) and to discriminate between the monolithic collapse and merger paradigms of elliptical galaxy formation. We use a Λ cold dark matter hierarchical merger model of galaxy formation to investigate the existence and redshift evolution of the elliptical galaxy CMR in the merger paradigm. We show that the SFH of cluster ellipticals predicted by the model is quasi-monolithic , with only ∼10 per cent of the total stellar mass forming after   z ∼ 1  . The quasi-monolithic SFH results in a predicted CMR that agrees well with its observed counterpart in the redshift range  0 < z < 1.27  . We use our analysis to argue that the elliptical-only CMR can be used to constrain the SFHs of present-day cluster ellipticals only if we believe a priori in the monolithic collapse model. It is not a meaningful tool for constraining the SFH in the merger paradigm, since a progressively larger fraction of the progenitor set of present-day cluster ellipticals is contained in late-type star-forming systems at higher redshift, which cannot be ignored when deriving the SFHs. Hence, the elliptical-only CMR is not a useful discriminant between the two competing theories of elliptical galaxy evolution.  相似文献   

16.
The global star formation rate has decreased significantly since   z ∼ 1  , for reasons that are not well understood. Red-sequence galaxies, dominating in galaxy clusters, represent the population that have had their star formation shut off, and may therefore be the key to this problem. In this work, we select 127 rich galaxy clusters at  0.17 ≤ z ≤ 0.36  , from 119 deg2 of the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) optical imaging data, and construct the r '-band red-sequence luminosity functions (LFs). We show that the faint end of the LF is very sensitive to how red-sequence galaxies are selected, and an optimal way to minimize the contamination from the blue cloud is to mirror galaxies on the redder side of the colour–magnitude relation. The LFs of our sample have a significant inflexion centred at     , suggesting a mixture of two populations. Combining our survey with low-redshift samples constructed from the Sloan Digital Sky Survey, we show that there is no strong evolution of the faint end of the LF (or the red-sequence dwarf-to-giant ratio) over the redshift range  0.2 ≲ z ≲ 0.4  , but from   z ∼ 0.2  to ∼0 the relative number of red-sequence dwarf galaxies has increased by a factor of ∼3, implying a significant build-up of the faint end of the cluster red sequence over the last 2.5 Gyr.  相似文献   

17.
We compare deep Magellan spectroscopy of 26 groups at  0.3 ≤ z ≤ 0.55  , selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O  ii ]λ3727 emission (≥5 Å) increases strongly with redshift, from ∼29 per cent in 2dFGRS to ∼58 per cent in CNOC2, for all galaxies brighter than  ∼ M *+ 1.75  . This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from ∼53 to ∼75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation ( P trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers  ( P trunc≳ 0.3 Gyr−1)  . However, without assuming significant density evolution, P trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts   z ≳ 0.45  .  相似文献   

18.
The aim of this study is to determine the fractions of different spiral galaxy types, especially bulgeless disks, from a complete and homogeneous sample of 15 127 edge‐on disk galaxies extracted from the sixth data release from the Sloan Digital Sky Survey. The sample is divided in broad morphological classes and sub types consisting of galaxies with bulges, intermediate types and galaxies which appear bulgeless. A small fraction of disky irregulars is also detected. The morphological separation is based on automated classification criteria which resemble the bulge sizes and the flatness of the disks. Each of these broad classes contains about 1/3 of the total sample. Using strict criteria for selecting pure bulgeless galaxies leads to a fraction of 15% of simple disk galaxies. We compare this fraction to other galaxy catalogs and find an excellent agreement of the observed frequency of bulgeless galaxies. Although the fraction of simple disk galaxies in this study does not represent a “cosmic” fraction of bulgeless galaxies, it shows that the relative abundance of pure disks is comparable to other studies and offers a profound value of the frequency of simple disks in the local Universe. This fraction of simple disks emphasizes the challenge for formation and evolution models of disk galaxies since these models are hard pressed to explain the observed frequency of these objects (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We explore the implications for the high-redshift universe of 'state-of-the-art' models for the chemical and spectrophotometric evolution of spiral galaxies. The models are based on simple 'scaling relations' for discs, obtained in the framework of cold dark matter models for galaxy formation, and were 'calibrated' so as to reproduce the properties of the Milky Way and of nearby discs (at redshift z ∼0) . In this paper, we compare the predictions of our 'hybrid' approach to galaxy evolution to observations at moderate and high redshift. We find that the models are in fairly good agreement with observations up to z ∼1 , while some problems appear at higher redshift (provided there is no selection bias in the data); these discrepancies may suggest that galaxy mergers (not considered in this work) played a non-negligible role at z >1 . We also predict the existence of a 'universal' correlation between abundance gradients and disc scalelengths, independent of redshift.  相似文献   

20.
We have constructed a family of simple models for spiral galaxy evolution to allow us to investigate observational trends in star formation history with galaxy parameters. The models are used to generate broad-band colours from which ages and metallicities are derived in the same way as the data. We generate a grid of model galaxies and select only those that lie in regions of parameter space covered by the sample. The data are consistent with the proposition that the star formation history of a region within a galaxy depends primarily on the local surface density of the gas but that one or two additional ingredients are required to explain the observational data fully. The observed age gradients appear steeper than those produced by the density dependent star formation law, indicating that the star formation law or infall history must vary with galactocentric radius. Furthermore, the metallicity–magnitude and age–magnitude correlations are not reproduced by a local density dependence alone. These correlations require one or both of the following: (i) a combination of mass dependent infall and metal enriched outflow, or (ii) a mass dependent galaxy formation epoch. Distinguishing these possibilities on the basis of current data is extremely difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号