首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertical heat and momentum fluxes were measured by the eddy correlation method under near-neutral conditions during both day and night above a spruce forest canopy. Results show that 50% of the heat transported to the spruce canopy during night and away from the canopy during the day occurs in extreme magnitude events, the majority of less than one second duration. Extreme-magnitude events were more frequent and lasted longer during the day than during the night. The distributions of the duration of extreme events in the same direction as the net heat flux and the turbulence intensity for both day and night were similar.During the night, the mean horizontal windspeed was about 1 m s-1 and the measured coincident transport of momentum and heat accounted for 36% of the total heat flux. The predominant mechanism of forced convection during the extreme nightime heat transport events was excess heat sweeps in which the duration of the event is usually less than 1 s. During the day, the mean horizontal windspeed was about 2 m s -1 and the measured coincident transport of momentum and heat accounted for only 16% of the total heat flux. Local free convection was suggested to account for 27% of the total heat flux. The predominant mechanism of mixed convection during the extreme daytime heat transport events is deficit heat inward interactions. During both night and day, about 10% of the total heat transport occurred in extreme events working against the thermal gradient.Now atPurdue University, West Lafayette, IN, U.S.A.  相似文献   

2.
Abstract

Summertime energy budgets of contiguous wetland tundra and forest near Churchill, Manitoba along the coast of Hudson Bay were measured over a five year period, 1989–1993. An examination of differences in energy budgets between the two sites showed that net radiation was similar in all years. Soil heat flux was greater at the tundra site in most, but not all, years. However, sensible heat flux was always larger at the forest site and latent heat flux was always greater at the tundra site. Mean daily Bowen ratios at both sites were less than unity in all years. Average Bowen ratios for the five years were 0.45 for tundra and 0.66 for forest. Wind direction is used as an analogue for changing climatic conditions where onshore winds are cooler and moister than offshore winds. Sensible and latent heat fluxes at both sites varied significantly between onshore and offshore wind regimes. However, differences between onshore and offshore fluxes at the tundra site were larger than for the forest. Thus, Bowen ratios also varied more at the tundra site. We have plotted the ratio of tundra‐to‐forest Bowen ratios as a measure of the relative sensitivity of energy partitioning to climatic change. The ratio decreases with increasing vapour pressure deficit (and increasing air temperature). We interpret these results as suggesting that energy partitioning over the wetland tundra is more sensitive to changes in climate than the treeline forest environment. Thus, as the climate warms and becomes drier, more additional energy goes into evaporation of water from the wetland tundra than from the forest.  相似文献   

3.
Situations have been found in which the application of the Bowen ratio energy balance method has resulted in inconsistent partitioning between sensible and latent heat.The present investigation explains how and why the failure can happen. The conclusion is that advection should always be measured in order to free the analyses of ambiguity.  相似文献   

4.
We measured the methane flux of a forest canopy throughout a year using a relaxed eddy accumulation (REA) method. This sampling system was carefully validated against heat and CO2 fluxes measured by the eddy covariance method. Although the sampling system was robust, there were large uncertainties in the measured methane fluxes because of the limited precision of the methane gas analyzer. Based on the spectral characteristics of signals from the methane analyzer and the diurnal variations in the standard deviation of the vertical wind velocity, we found the daytime and nighttime precision of half-hourly methane flux measurements to be approximately 1.2 and 0.7?μg?CH4?m?2?s?1, respectively. Additional uncertainties caused by the dilution effect were estimated to affect the accuracy by as much as 0.21?μg?CH4?m?2?s?1 on a half-hourly basis. Diurnal and seasonal variations were observed in the measured fluxes. The biological emission from plant leaves was not observed in our studies, and thus could be negligible at the canopy-scale exchange. The annual methane sink was 835?±?175?mg?CH4?m?2?year?1 (8.35?kg?CH4?ha?1?year?1), which was comparable to the flux range of 379–2,478?mg?CH4?m?2?year?1 previously measured in other Japanese forest soils. This study indicated that the REA method could be a promising technique to measure canopy scale methane fluxes over forests, but further improvement of precision of the analyzer will be required.  相似文献   

5.
A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Analysis of meteorological data collected during the 1985 and 1987 Amazon Boundary Layer Experiments (ABLE 2A and 2B) indicates the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3–7 m s-1 between 300 and 1000 m increase to 10–15m s-1 shortly after sunset. The wind speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. The night-time inversion extends up to 300 m with strong vertical shear of the horizontal wind below the inversion top and uniformly strong horizontal winds above the inversion top. Frictional decoupling of the air above the inversion from the rough forest below, however, is responsible for only part of the observed increase. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. We suspect that stronger low-level winds are pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.  相似文献   

6.
The bandpass eddy covariance method has been used to measure the turbulent flux of scalar quantities using a slow-responsescalar sensor. The method issimilar in principle to the traditional eddy correlation method but includes the estimation of high-frequency components of the flux on the basis of cospectral similarity in the atmospheric surface layer. In order to investigate the performance of the method, measurements of the water vapour flux over a forest with the bandpass eddy covariance method and the direct eddy correlation method were compared. The flux obtained by the bandpass eddy covariance method agreed with that by the eddy correlation method within ±20% for most cases, in spite of a rather slow sensor-response of the adopted hygrometer. This result supports its relevance to a long-term continuous operation, since a stable, low-maintenance,general-purpose sensor canbe utilized for scalar quantities. Oneweak point of the method isits difficulty in principle to measure the correct flux when the magnitude of the sensible heat flux is very small, because the method uses the sensible heat flux as a standard reference for the prediction of undetectable high-frequency components of the scalar flux. An advanced method is then presented to increase its robustness. In the new method, output signals from a slow-response sensor are corrected using empirical frequency-responsefunctions for the sensor,thereby extending the width of the bandpass frequency region where components of the flux are directly measured (not predicted). The advanced method produced correct fluxes for all cases including the cases of small sensible heat flux. The advanced bandpass eddy covariance method is thus appropriate for along-term measurement of the scalar fluxes.  相似文献   

7.
8.
The spatiotemporal variability of the greenhouse gas methane(CH_4) in the atmosphere over the Amazon is studied using data from the space-borne measurements of the Atmospheric Infrared Sounder on board NASA's AQUA satellite for the period 2003–12. The results show a pronounced variability of this gas over the Amazon Basin lowlands region, where wetland areas occur. CH_4 has a well-defined seasonal behavior, with a progressive increase of its concentration during the dry season, followed by a decrease during the wet season. Concerning this variability, the present study indicates the important role of ENSO in modulating the variability of CH_4 emissions over the northern Amazon, where this association seems to be mostly linked to changes in flooded areas in response to ENSO-related precipitation changes. In this region, a CH_4 decrease(increase) is due to the El Nino-related(La Ni ?na-related) dryness(wetness). On the other hand, an increase(decrease) in the biomass burning over the southeastern Amazon during very dry(wet) years explains the increase(decrease) in CH_4 emissions in this region. The present analysis identifies the two main areas of the Amazon, its northern and southeastern sectors, with remarkable interannual variations of CH_4. This result might be useful for future monitoring of the variations in the concentration of CH_4, the second-most important greenhouse gas, in this area.  相似文献   

9.
Brazil's Amazon rainforest provides an important environmental service with its storage of carbon, thereby reducing global warming. A growing number of projects and proposals intend to reward carbon storage services. Reducing emissions from deforestation and forest degradation is currently a key issue for negotiations on an international agreement that is to take effect in 2013. Various issues require decisions that will have substantial impacts on both the effectiveness of mitigation and the scale of Amazonia's potential role. These decisions include the effects that money generated from payments can have, the spatial scale of mitigation (e.g. projects or countries and sub-national political units), whether to have voluntary or mandatory markets, and whether these reductions will generate carbon credits to offset emissions elsewhere. It is argued that national-level programmes, combined with a national target under the United Nations Framework Convention on Climate Change, are the best solution for Brazil in terms of both capturing international funding and stimulating the major cuts in global emissions that are needed to minimize climate risk to the Amazon rainforest. The high likelihood of passing a tipping point for maintaining the Amazon rainforest implies the need for urgency in altering current negotiating positions.  相似文献   

10.
11.
The turbulent heat flux was measured with two instruments simultaneously over the Baltic Sea by means of the eddy-correlation method. In one observational period, a small but noticeable divergence in heat flux was found, which may be explained by the advection of colder air. The parameterization of heat flux by the bulk method leads to a value for C Hof 1 × 10–3.  相似文献   

12.
Wind, temperature and humidity fluctuations have been recorded using a sonic anemometer-thermometer, a thrust anemometer, and a La humidiometer. The two anemometers agree in wind speed and stress. Exchange coefficients for momentum, heat and moisture are found to agree with values measured over other bodies of water.Contribution 391, Bedford Institute of Oceanography.Project 75 BL, International Field Year for the Great Lakes.  相似文献   

13.
As land use change (LUC), including deforestation, is a patchy process, estimating the impact of LUC on carbon emissions requires spatially accurate underlying data on biomass distribution and change. The methods currently adopted to estimate the spatial variation of above- and below-ground biomass in tropical forests, in particular the Brazilian Amazon, are usually based on remote sensing analyses coupled with field datasets, which tend to be relatively scarce and often limited in their spatial distribution. There are notable differences among the resulting biomass maps found in the literature. These differences subsequently result in relatively high uncertainties in the carbon emissions calculated from land use change, and have a larger impact when biomass maps are coded into biomass classes referring to specific ranges of biomass values. In this paper we analyze the differences among recently-published biomass maps of the Amazon region, including the official information used by the Brazilian government for its communication to the United Nation Framework on Climate Change Convention of the United Nations. The estimated average pre-deforestation biomass in the four maps, for the areas of the Amazon region that had been deforested during the 1990–2009 period, varied from 205?±?32 Mg ha?1 during 1990–1999, to 216?±?31 Mg ha?1 during 2000–2009. The biomass values of the deforested areas in 2011 were between 7 and 24 % higher than for the average deforested areas during 1990–1999, suggesting that although there was variation in the mean value, deforestation was tending to occur in increasingly carbon-dense areas, with consequences for carbon emissions. To summarize, our key findings were: (i) the current maps of Amazonian biomass show substantial variation in both total biomass and its spatial distribution; (ii) carbon emissions estimates from deforestation are highly dependent on the spatial distribution of biomass as determined by any single biomass map, and on the deforestation process itself; (iii) future deforestation in the Brazilian Amazon is likely to affect forests with higher biomass than those deforested in the past, resulting in smaller reductions in carbon dioxide emissions than expected purely from the recent reductions in deforestation rates; and (iv) the current official estimate of carbon emissions from Amazonian deforestation is probably overestimated, because the recent loss of higher-biomass forests has not been taken into account.  相似文献   

14.
15.
Eddy flux measurements over the ocean and related transfer coefficients   总被引:1,自引:0,他引:1  
Eddy correlation measurements of vertical turbulent fluxes made during AMTEX 1975 are used to assess the reliability of flux prediction from established bulk transfer relations, using both surface-layer and planetary boundary-layer formulations. The surface-layer formulae predict momentum and latent heat fluxes to an accuracy comparable to the direct eddy correlation method, using transfer coefficients of C DN (at 10m and in neutral conditions) increasing with wind speed, and a constant C EN - 1.5 × 10 –3 . The data suggest C CHN , for sensible heat, increases significantly with wind speed and is on average 30% lower than C CEN The boundary-layer drag coefficient, C GD , agrees within about 40% of recently published values using a vertically averaged geostrophic wind to the height of the lowest temperature inversion, corrected for trajectory curvature. Values of * / from which C CGH is derived, are in excellent agreement if the published values are modified to account for inappropriate surface temperatures used in their derivation. Preliminary values of C GE are also presented.  相似文献   

16.
Climate Dynamics - Analyzing December–February (DJF) precipitation in the southern tropical Andes—STA ($$12^{\circ }\,\hbox {S}$$–$$20^{\circ }\,\hbox {S}$$; > 3000...  相似文献   

17.
Simultaneous profile and eddy correlation flux data gathered over Thetford Forest, U.K., have been analysed to find values of the vertical turbulent diffusivitiesK M,K H andK E (for momentum, heat and water vapour transfer, respectively) at a reference heightz R, nine roughness lengths above the zero-plane displacementd. The results show: (i), that values ofK M over the forest are not significantly different from these predicted by semiempirical diabatic influence functions appropriate to much smoother surfaces such as short grass; and (ii), thatK H andK E exceed their values predicted from the semiempirical functions by an average factor of 2 or more in unstable, near neutral and slightly stable conditions. These conclusions are strongly dependent on the assumed behaviour ofd, here taken as 0.76 tree heights, independent of both property and stability. Consideration is given to an alternative analysis procedure, in which values of the zero-plane displacementsd H andd E for heat and water vapour respectively, are obtained from the data by assumingK H andK E to be given by semiempirical diabatic influence functions; this procedure is shown to be unacceptable on both practical and physical grounds. To account for the anomalies inK H andK E, a mechanism is proposed in which the horizontally inhomogeneous temperature structure of the canopy causes free convection to be maintained by discrete; localized heat sources and/or sinks, effectively enhancing turbulent transport processes even in nearneutral conditions.  相似文献   

18.
Summary  Friction velocity data from different heights above a forest are used to evaluate the influence from the surrounding landscape on forest micro-meteorological measurements under near-neutral conditions. Data are used from one field site and two forest sites. The field site data are used to estimate the magnitude of the scatter. Different theoretical friction velocity profiles for the Internal Boundary Layer (IBL) are tested against the forest data. The results yield information on the Internal Equilibrium Layer (IEL) growth and an equation for the IEL height for neutral conditions is derived. For stable conditions the results indicate that very long fetches are required in order to measure parameters in equilibrium with the actual surface. Received November 22, 1999 Revised February 22, 2000  相似文献   

19.
Data from a research tower in Lake Ontario are used to study the validity of Monin--Obukhov scaling in the marine atmospheric boundary layer under various wave conditions. It is found that over pure wind seas, the velocity spectra and cospectra follow established universal scaling laws. However, in the presence of swells outrunning weak winds, velocity spectra and cospectra no longer satisfy universal spectral shapes. Here, Monin–Obukhov similarity theory, and the classical logarithmic boundary layers, are no longer valid. It is further shown that, in the presence of such swells, the momentum flux can be significantly modified in comparison to pure wind sea values. The implications of these findings for bulk flux estimations and on the inertial dissipation method for calculating fluxes are discussed.  相似文献   

20.
Conditional averages of principal components of the Eliassen-Palm flux divergence variability are projected onto the daily precipitation amounts chart. The conditions of calculating the average values are determined by the dates classified in three equiprobable precipitation categories. The classification and calculation of characteristics are performed for the summer and winter seasons. Using the rotated principal component analysis, several regions are revealed of statistically significant interrelation between extreme precipitation and the first EP flux divergence variability modes, a simplified exploratory interpretation of interrelations is given and several recommendations are formulated for correcting seasonal forecasts of meteorological conditions with the use of results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号