共查询到14条相似文献,搜索用时 0 毫秒
1.
Character and distribution of hybrid sediment gravity flow deposits from the outer Forties Fan, Palaeocene Central North Sea, UKCS 总被引:1,自引:0,他引:1
Christopher Davis Peter Haughton William McCaffrey Erik Scott Nicholas Hogg David Kitching 《Marine and Petroleum Geology》2009,26(10):1919
Seven categories of event bed (1–7) are recognised in cores from hydrocarbon fields in the outer part of the Palaeocene Forties Fan, a large mixed sand-mud, deep-water fan system in the UK and Norwegian Central North Sea. Bed Types 1, 6 and 7 resemble conventional high-density turbidite, debrite and low-density turbidite, respectively. However the cores are dominated by distinctive hybrid event beds (Types 2–5; 81% by thickness) that comprise an erosively-based graded and structureless and/or banded sandstone overlain by an argillaceous sandstone or sandy-mudstone unit containing mudstone-clasts and common carbonaceous fragments. Many of the hybrid beds are capped by a thin laminated sandstone–mudstone couplet (the deposit of a dilute wake behind the head of the turbidity current). Different types of hybrid event bed Types are defined on the basis of the ratio of sandier lower part to upper argillaceous part of the bed, and the internal structure, particularly the presence of banding. Although the argillaceous and clast-rich upper divisions could reflect post-depositional mixing, sand injection or substrate deformation, they can be shown to be dominantly primary depositional features and record both a temporal (and by implication) spatial change from turbidite to debrite deposition beneath rheologically complex hybrid flows. Where banding occurs between lower sandy and upper argillaceous divisions, the flow may have passed through a transitional flow regime. Significantly, the often soft-sediment sheared and partly sand-injected argillaceous divisions are present in cores both close to and remote from salt diapirs and hence are not a local product of remobilisation around salt-cored topography. Lateral correlations between wells establish that sandy hybrid beds (Types 2, 3S) pass down-dip and laterally into packages dominated by muddier hybrid beds (Types 3M, 4) over relatively short distances (several km). Type 5 beds have minimal or no lower sandier divisions, implying that the debritic component outran the sandier component of the flow. The Forties hybrid beds are thought to record flow transformations affecting fluidal flows following erosion and bulking with mudstone clasts and clays that suppressed near-bed turbulence and induced a change to plastic flow. Hybrid beds dominate the muddier parts of sandying-upward, muddying-upward and sandying to muddying-upward successions, interpreted to record splay growth and abandonment, overall fan progradation, and local non-uniformity effects that either delayed or promoted the onset of flow transformations. The dominance of hybrid event beds in the outer Forties Fan may reflect very rapid delivery of sand to the basin, an uneven substrate that promoted flow non-uniformity, tilting as a consequence of source area uplift and extensive inner-fan erosion to create deep fan valleys. This combination of factors could have promoted erosion and bulking, and hence transformations leading to the predominance of hybrid beds in the outer parts of the fan. 相似文献
2.
Christopher A.-L. Jackson A. Adli Zakaria Howard D. Johnson Felix Tongkul Paul D. Crevello 《Marine and Petroleum Geology》2009,26(10):1957
The West Crocker Formation (Oligocene–Early Miocene), NW Borneo, consists of a large (>20 000 km2) submarine fan deposited as part of an accretionary complex. A range of gravity-flow deposits are observed, the most significant of which are mud-poor, massive sandstones interpreted as turbidites and clast-rich, muddy sandstones and sandy mudstones interpreted as debrites. An upward transition from turbidite to debrite is commonly observed, with the contact being either gradational and planar, or sharp and highly erosive. Based on their repeated vertical relationship and the nature of the contact between them, these intervals are interpreted as being deposited from one flow event which consisted of two distinct flow phases: fully turbulent turbidity current and weakly turbulent to laminar debris flow. The associated bed is called a co-genetic turbidite–debrite, with the upper debrite interval termed a linked debrite. Linked debrites are best developed in the non-channellised parts of the fan system, and are absent to poorly-developed in the proximal channel-levee and distal basin floor environments. Due to outcrop limitations, the genesis of linked debrites within the West Crocker Formation is unclear. Based on clast size and type, it seems likely that a weakly turbulent to laminar debris-flow flow phase was present when the flow event entered the basin. A change in flow behaviour may have led to deposition of a sand-rich unit with ‘turbidite’ characteristics, which was subsequently overlain by a mud-rich unit with ‘debrite’ characteristics. Flow transformation may have been enhanced by the disintegration and incorporation into the flow of muddy clasts derived from the upstream channel floor, channel mouth or from channel-levee collapse. Lack of preservation of this debrite in proximal areas may indicate either bypass of this flow phase or that the available outcrops fail to capture the debris flow entry point. Establishing robust sedimentological criteria from a variety of datasets may lead to the increasing recognition of co-genetic turbidite-debrite beds, and an increased appreciation of the importance of bipartite flows in the transport and deposition of sediments in deepwater environments. 相似文献
3.
《Marine and Petroleum Geology》2003,20(6-8):883-899
Results from a small set of laboratory experiments are presented here that help further constrain the processes governing the production of turbidity currents from impulsive failures of continental shelf and slope deposits. Three mechanisms by which sediment can be transferred from a parent debris flow to a less-dense turbidity current were observed and quantified. These mechanisms are grain-by-grain erosion of sediment from the leading edge of the parent flow, detachment of thin layers of shearing material from the head of the parent flow, and turbulent mixing at the head of the parent flow. Which transfer process dominates an experimental run depends on whether the large dynamic stresses focused on the head of the debris flow are sufficient to overcome a effective yield strength for the parent sediment+water mixture and on whether the dynamic stresses are sufficient to induce the turbulent flow of the parent mixture. Analysis of data from Marr et al. [Geol. Soc. Am. Bull. 113 (2001) 1377] and Mohrig et al. [Geol. Soc. Am. Bull. 110 (1998) 387] support the use of a shear strength to dynamic stress ratio in constraining necessary critical values for occurrence of the different production mechanisms. Direct sampling of turbidity currents using racks of vertically stacked siphons was used to measure both the quantity of sediment eroded from the heads of non-mixing parent flows and the distribution of particle sizes transported by the developing turbidity currents. Acoustic backscatter imaging was used to better resolve the internal boundary separating any turbulent mixing zone near the front of a flow from unmodified parent material. 相似文献
4.
Two scales of levee confinement are commonly recognised from submarine channel-levee systems on the seafloor and in the subsurface. Large-scale external levees bound the entire system whilst smaller-scale internal levees bound individual thalweg channels within the channel-belt. Although thin beds are commonly identified in core and well logs, their origin, and consequently their stratigraphic significance is currently poorly understood. This knowledge gap stems, in part, from the lack of unambiguously identified outcrop analogues of channel-levees, and in particular the lack of identifiable internal and external levees. Here we report from two exhumed channel-levee systems where both scales of confinement can be recognised: the Rosario Fm. of Baja California, and the Fort Brown Fm. of South Africa. A suite of characteristic sedimentary features are recognised from internal and external levees respectively: internal levees are characterised by structures indicative of complexity in the waxing-waning style of overspill, interactions with topography and flow magnitude variability; in contrast, external levees are characterised by structures indicative of simple surge-like waning flows, relatively uniform flow directions, laterally extensive beds, and a lack of erosive events. Using these observations, together with published literature, we propose a simple nomenclatural scheme for levee sub-environments, and criteria to differentiate between levee sub-environments in core or outcrop. 相似文献
5.
Distribution and origin of hybrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa 总被引:1,自引:1,他引:1
This study documents the stratigraphic and palaeogeographic distribution of hybrid event beds that comprise both debris-flow (cohesive) and turbidity current (non-cohesive) deposits. This is the first study of such beds in a submarine fan system to combine outcrop and research borehole control, and uses a dataset from the Skoorsteenberg Formation of the Tanqua depocentre in the Karoo Basin, South Africa. Three types of 0.1–1.0 m thick hybrid beds are observed, which have a basal weakly graded fine-grained sandstone turbidite division overlain by a division of variable composition that can comprise 1) poorly sorted carbonaceous-rich material supported by a mud-rich and micaceous sand-matrix; 2) poorly sorted mudstone clasts in a mud-rich sand-silt matrix; or 3) gravel-grade, rounded mudstone clasts in a well sorted (mud-poor) sandstone matrix. These upper divisions are interpreted respectively as: 1) the deposit of a debris-flow most likely derived from shelf-edge collapse; 2) the deposit of a debris flow, most likely developed through flow transformation from turbidity current that eroded a muddy substrate; and 3) from a turbidity current with mudstone clasts transported towards the rear of the flow. All three hybrid bed types are found concentrated at the fringes of lobes that were deposited during fan initiation and growth. The basinward stepping of successive lobes means that the hybrid beds are concentrated at the base of stratigraphic successions in medial and distal fan settings. Hybrid beds are absent in proximal fan positions, and rare and thin in landward-stepping lobes deposited during fan retreat. This distribution is interpreted to reflect the enhanced amounts of erosion and availability of mud along the transport route during early lowstands of sea level. Therefore, hybrid beds can be used to indicate a fan fringe setting, infer lobe stacking patterns, and have a sequence stratigraphic significance. 相似文献
6.
Efthymios K. Tripsanas David J.W. Piper D. Calvin Campbell 《Marine and Petroleum Geology》2008,25(7):645-662
A series of submarine canyons on the southwest slope of Orphan Basin experienced complex failure at 7–8 cal ka that resulted in the formation of a large variety of mass-transport deposits (MTDs) and sediment gravity flows. Ultra-high-resolution seismic-reflection profiles and multiple sediment cores indicate that evacuation zones and sediment slides characterize the canyon walls, whereas the canyon floors and inner-banks are occupied by cohesive debris-flow deposits, which at the mouths of the canyons on the continental rise form large, coalescing lobes (up to 20 m thick and 50 km long). Erosional channels, extending throughout the length of the study area (<250 km), are observed on the top of the lobes. Piston cores show that the channels are partially filled by poorly sorted muddy sand and gravel, capped by inversely to normally graded gravel and sand. Such deposits are interpreted to originate from multi-phase gravity flows, consisting of a lower part behaving as a cohesionless debris flow and an upper part that was fully turbulent.The Holocene age and the widespread synchronous occurrence of these failures indicate a large magnitude earthquake as their possible triggering mechanism. The large debris-flow deposits on the continental rise originated from large failures on the upper continental slope, involving proglacial sediments. Retrogression of these failures led to the eventual failure of marginal sandy till deposits on the upper slope and outer shelf, which due to their low cohesion disintegrated into multi-phase gravity flows. The evacuation zones and slide deposits on the canyon walls were triggered either by the earthquake, or from erosion of the canyon walls by the debris flows. The slides, debris-flows, and multi-phase gravity flows observed in this study are petrographically different, indicating different sediment sources. This indicates that not all failures lead through flow transformation to the production of a multi-phase gravity flow, but only when the sediment source contains ample coarse-grained material. The spatial segregation of the slide, debris-flow, and multi-phase gravity-flow deposits is attributed to the different mobility of each transport process. 相似文献
7.
A physical experiment shows that shortening applied to existing diapirs and minibasins produces anomalous structural styles that are unlike those of more typical foldbelts. Strong minibasins remain largely undeformed while weak diapirs localize contractional strain. Short diapirs form the cores to folds and thrusted folds, whereas tall diapirs are squeezed and often welded, commonly leading to the extrusion of allochthonous material. Key features of the model are observed in real examples. In the northern Gulf of Mexico passive margin, minibasins were originally separated by a polygonal pattern of deep salt ridges, with diapirs located at ridge intersections. Gravity spreading resulted in squeezed diapirs (and associated allochthonous salt) connected by variably oriented contractional, extensional, and strike-slip structures. In the Flinders Ranges convergent-margin foldbelt of South Australia, preexisting diapirs were squeezed, welded, and thrusted, with anticlines plunging away in multiple directions, so that minibasins are surrounded by highly variable structures. A different geometry is observed in La Popa Basin, Mexico, where squeezing of a linear salt wall produced a vertical weld with diapirs at the terminations, rather than the culmination. In all areas, foldbelt geometries are strongly influenced by the preestablished salt-minibasin architecture. 相似文献
8.
Shuo Chen Renhai Pu Huiqiong Li Hongjun Qu Tianyu Ji Siyu Su Yunwen Guan Hui Zhang 《海洋学报(英文版)》2022,41(9):86-106
The Dongfang1-1 gas field (DF1-1) in the Yinggehai Basin is currently the largest offshore self-developed gas field in China and is rich in oil and gas resources. The second member of the Pliocene Yinggehai Formation (YGHF) is the main gas-producing formation and is composed of various sedimentary types; however, a clear understanding of the sedimentary types and development patterns is lacking. Here, typical lithofacies, logging facies and seismic facies types and characteristics of the YGHF are identified based on high-precision 3D seismic data combined with drilling, logging, analysis and testing data. Based on 3D seismic interpretation and attribute analysis, the origin of high-amplitude reflections is clarified, and the main types and evolution characteristics of sedimentary facies are identified. Taking gas formation upper II (IIU) as an example, the plane distribution of the delta front and bottom current channel is determined; finally, a comprehensive sedimentary model of the YGHF second member is established. This second member is a shallowly buried “bright spot” gas reservoir with weak compaction. The velocity of sandstone is slightly lower than that of mudstone, and the reflection has medium amplitude when there is no gas. The velocity of sandstone decreases considerably after gas accumulation, resulting in an increase in the wave impedance difference and high-amplitude (bright spot) reflection between sandstone and mudstone; the range of high amplitudes is consistent with that of gas-bearing traps. The distribution of gas reservoirs is obviously controlled by dome-shaped diapir structural traps, and diapir faults are channels through which natural gas from underlying Miocene source rocks can enter traps. The study area is a delta front deposit developed on a shallow sea shelf. The lithologies of the reservoir are mainly composed of very fine sand and coarse silt, and a variety of sedimentary structural types reflect a shallow sea delta environment; upward thickening funnel type, strong toothed bell type and toothed funnel type logging facies are developed. In total, 4 stages of delta front sand bodies (corresponding to progradational reflection seismic facies) derived from the Red River and Blue River in Vietnam have developed in the second member of the YGHF; these sand bodies are dated to 1.5 Ma and correspond to four gas formations. During sedimentation, many bottom current channels (corresponding to channel fill seismic facies) formed, which interacted with the superposed progradational reflections. When the provenance supply was strong in the northwest, the area was dominated by a large set of delta front deposits. In the period of relative sea level rise, surface bottom currents parallel to the coastline were dominant, and undercutting erosion was obvious, forming multistage superimposed erosion troughs. Three large bottom current channels that developed in the late sedimentary period of gas formation IIU are the most typical. 相似文献
9.
AbstractArctic coasts are sensitive indicators of polar environment change. Here we present the results of a study that examines the coastal morphodynamics of the Calypsostranda coastline in Svalbard (High Arctic) between 2007 to 2017 and compare these short-term changes to previous studies for the period 1936–2007. During the 2007–2017 study period, the study area lost ca. 10,710 m2, at a mean Net Shoreline Movement (NSM) of ?1.86 m and End Point Rate (EPR) ?0.19 m/yr. Erosion also dominated between 1936–2007, ?28,800 m2, at a mean NSM of ?4.99 m and EPR ?0.07 m/yr. Using EPR and Linear Regression Rate (LRR) parameters, we divide the Calypsostranda coastline into eroding and aggrading zones. The overall pattern of coastline change during the two study periods is similar, but the rate of erosion is higher in the recent interval, reflecting stronger climate-driven processes. Recent climate warming in the study area has been accompanied by an intensification of extreme events such as storms (e.g. ocean swell). The situation is becoming more pronounced due to the progressively reduced period of winter shore ice. Depending on the anemometric conditions, the Calypsostranda coast is modified by wind waves, and consequently longshore currents and associated sediment movement. 相似文献
10.
分析了泉州湾溶解无机氮(DIN)春季的含量分布、组成、潮周期及其与环境因子的关系.根据高值区判断洛阳江口以县区农田养殖输入硝酸氮(NO_3~--N)为主,而晋江口以市区生活污水输入氨氮(NH_4~+-N)为主,DIN含量的平面分布受NO_3~--N与NH_4~+-N共同控制.DIN的平均组成为NO_3~--N最高,NH_4~+-N其次,NO_2~--N远低于二者,NH_4~+-N平均占比达35%左右,DIN的组成未达到热力学平衡.根据DIN含量与溶解氧(DO)及化学需氧量(COD)的相关性分析,推测三氮转换不仅受到氧化还原过程的影响,还受更为复杂的来源、人类活动及生物过程等的影响;根据DIN含量与盐度的关系,NO_3~--N及NO2--N均呈现保守行为,NH_4~+-N淡水端有一定的增加现象,DIN含量与盐度的关系受NO_3~--N和NH_4~+-N共同控制;DIN含量还受到悬浮物含量、温度、盐度及p H值等环境因子的控制,结合DIN含量与叶绿素a的相关性及分布情况,可推测春季DIN主要来源不是浮游植物分解.不同站位DIN含量的潮期变化相似,基本上都表现为涨潮冲淡作用下含量降低而落潮后回升.除此之外,泉州湾DIN含量的年际增长及超标均比较严重,需要采取相应的治理措施. 相似文献
11.
12.
作为一种重要的模式识别因子,凝集素在多个领域中均有着广泛的应用价值,因此,开发和利用新型凝集素将具有重要意义.本研究以生活在深海热液区极端环境条件下的管状蠕虫Ridgeia piscesae为材料,首次从管状蠕虫中克隆获得Ricin B-lectin基因rgal.序列分析表明,RGAL与已知序列的相似性较低,其含有2个Ricin B-lectin型结构域,并且该结构域具有该家族所特有的β-三叶草形三维结构.多方面的分析结果显示RGAL可能是一个新颖的凝集素蛋白.对RGAL进行了原核重组表达,并对其复性条件进行了摸索优化,成功获得了其可溶性表达产物,为后续RGAL的生物活性分析奠定了坚实的基础. 相似文献
13.
Scorpaena onaria Jordan & Snyder (Scorpaeniformes: Scorpaenidae), previously known only from the northwestern Pacific Ocean, is reported from the southwestern Pacific Ocean for the first time on the basis of 19 specimens. The southwestern Pacific specimens are regarded as a southern population of S. onaria, characterised by a shorter supraocular tentacle and larger body size compared with the northwestern Pacific specimens. The southern population is described in detail including comparisons with all known Indo‐Pacific species of the genus Scorpaena. Analyses of 37 measurements of the southern population of S. onaria found that relative orbit diameter and second anal‐fin spine length became significantly smaller with growth. Initially cycloid, the scales enclosed by the posterior tips of the upper and lower opercular spines and opercular margin change to ctenoid with growth at c. 160–170 mm standard length. A mature female differed from an immature female and males in having a longer upper jaw, steeper dorsal profile of the snout, and shorter nasal spine. As a consequence, the species previously reported as S. neglecta from the Andaman Sea and northwestern Australia was re‐identified as S. onaria. 相似文献
14.
Tight-gas reservoirs, characterized by low porosity and low permeability, are widely considered to be the product of post-depositional, diagenetic processes associated with progressive burial. This study utilizes a combination of thin section petrography, scanning electron microscopy, microprobe and back scatter electron analysis, stable isotope geochemistry and fluid inclusion analysis to compare the diagenetic history, including porosity formation, within sandstones of the second member of Carboniferous Taiyuan Formation (C3t2) and the first member of Permian Xiashihezi Formation (P1x1) in the Ordos Basin in central China.In the P1x1 member, relatively high abundances of metamorphic rock fragments coupled with a braided river and lacustrine delta environment of deposition, produced more smectite for transformation to illite (50–120 °C). This reaction was driven by dissolution of unstable minerals (K-feldspar and rock fragments) during the early to middle stages of mesodiagenesis and consumed all K-feldspar. Abundant intragranular porosity (average values of 2.8%) and microporosity in kaolinite (average values of 1.5%) formed at these burial depths with chlorite and calcite developed as by-products.In the C3t2 member, relatively low abundances of metamorphic rock fragments coupled with an incised valley-coastal plain environment of deposition resulted in less smectite for transformation to illite. High K+/H+ ratios in the early pore waters related to a marine sedimentary environment of deposition promoted this reaction. Under these conditions, K-feldspar was partially preserved. During the middle to late stages of mesodiagenesis, K-feldspar breakdown produced secondary intragranular (average values of 1.4%) and intergranular pores (average values of 1.2%). Release of K+ ions promoted illitization of kaolinite with quartz overgrowths and ferrous carbonates developed as by-products.This study has demonstrated that whereas both members are typical tight-gas sandstones, they are characterized by quite different diagenetic histories controlled by the primary detrital composition, especially during mesodiagenesis. Types of secondary porosity vary between the two members and developed at different stages of progressive burial. The content of unstable detrital components, notably feldspar, was the key factor that determined the abundance of secondary porosity. 相似文献