首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate recharge estimation is essential for effective groundwater management, especially in the North China Plain, where irrigation return flow is significant to vertical recharge but brings difficulty for recharge estimation. Three environmental tracers (F?, Cl? and SO4 2?) were used to estimate vertical recharge based on the mass balance and cumulative methods. Four boreholes were dry-drilled to 5–25 m depth beneath irrigated farmland and one was drilled to 5 m beneath non-irrigated woodland; soil samples were collected in all boreholes at set depths. The results indicated that F?, Cl? and SO4 2?were suitable tracers beneath the non-irrigated woodland, yielding recharge rates of 16.9, 18.8 and 19.4 mm/year, respectively. Recharge estimation was not straightforward when taking account of crop type, irrigation and/or fertilizer use. After comparing with previous research, conclusions were drawn: Cl? was an appropriate tracer for irrigated farmland when taking account of Cl? input from irrigation and absorption by crops; recharge rates were 65.9–126.8 mm/year. However, F? was a more suitable tracer for irrigated regions where account is made of the proportion of precipitation to irrigation return flow, provided low F? concentrations can be measured reliably.  相似文献   

2.
The amount and timing of aquifer recharge and the evolution of lakes and groundwater in the south-eastern Badain Jaran desert of Inner Mongolia, with high megadunes, has been investigated using stable isotopes and hydrochemistry. Unsaturated zone moisture profiles down to 22 m have recorded recharge over 1185 years. Small but finite amounts of recharge are recorded with mean recharge rates of 0.95-1.33 mm year?1, determined using a chloride mass balance technique. The unsaturated profile also acts as a unique archive of hydrological and climate change. Before 1300, it was relatively dry but distinct wet periods may be recognised during 1340-1450, 1500-1610 and 1710-1820. Since the mid 1800s, the climate shows a trend towards greater aridity. The interdune lakes are generally fresh but locally, hypersaline lakes are found in juxtaposition. This implies that in general, the lakes have low residence times and flow back into the dune system, but sedimentary obstruction locally prevents outflow and extreme evaporation occurs. The stable isotope records show that the lakes are fed by palaeowaters which on the basis of other proxy data must predate the Last Glacial Maximum. Their recharge source is problematic but most likely this derives from a diminishing water table extending some 30 m south to the Yabulai Mountains.  相似文献   

3.
In this study, hydrochemical and isotope investigations were conducted in the Yanqi Basin to determine the chemical composition, and to gain insight into the groundwater recharge process in the Yanqi Basin. It mainly used hydrochemistry, environmental isotopes, and a series of comprehensive data interpretation, e.g., statistics, ionic ratios, and Piper diagram to obtain a better understanding of the functioning of the system. The following hydrochemical processes were identified as the main factors controlling the water quality of the groundwater system: weathering of silicate minerals, dissolution, ion exchange, and to a lesser extent, evaporation, which seemed to be more pronounced down gradient of the flow system. As groundwater flows from the recharge to discharge areas, chemical patterns evolve in the order of Ca2+–HCO3 ?, Ca2+/Mg2+–HCO3 ? to Ca2+–Mg2+–Cl?–SO4 2?, Na+–K+–Cl?–SO4 2? and Na+–Cl? according to lithology. The environmental isotope (δ 18O, δ 2H, 3H) measurements further revealed that precipitation was the main recharge source for the groundwater system; some local values indicated high levels of evaporation. Tritium and CFC analysis were used to estimate the ages of the different groundwater; the tritium values of the groundwater samples varied from 2.82 to 29.7 TU. The age of the groundwater at depths of <120 m is about 30–50 years. CFC values obtained for six samples to determine groundwater age; the age of the groundwater is about 20–50 years.  相似文献   

4.
We investigated major ions, stable isotopes, and radiocarbon dates in a Quaternary aquifer in semi-arid northwestern China to gain insights into groundwater recharge and evolution. Most deep and shallow groundwater in the Helan Mountains was fresh, with total dissolved solids <1,000 mg L?1 and Cl? <250 mg L?1. The relationships of major ions with Cl? suggest strong dissolution of evaporites. However, dissolution of carbonates, albite weathering, and ion exchange are also the major groundwater process in Jilantai basin. The shallow desert groundwater is enriched in δ18O and intercepts the local meteoric water line at δ18O = ?13.4 ‰, indicating that direct infiltration is a minor recharge source. The isotope compositions in intermediate confined aquifers resemble those of shallow unconfined groundwater, revealing that upward recharge from intermediate formations is a major source of shallow groundwater in the plains and desert. The estimated residence time of 10.0 kyr at one desert site, indicating that some replenishment of desert aquifers occurred in the late Pleistocene and early Holocene with a wetter and colder climate than at present.  相似文献   

5.
Analysis of soil, soil water and groundwater in the Mount William Creek catchment, southeastern Australia, shows that Mg2+ and Ca2+ within infiltrating rainfall are rapidly depleted by plant uptake and adsorption on clay minerals. Na+ and K+ may exhibit minor enrichment at shallow depths but are quickly readsorbed, so that cation/Cl ratios typical of groundwater are observed in soil water within the upper 200 cm of the soil profile for all species. The concentrations of K+ and Ca2+ in soil and groundwater are more depleted than Na+ and Mg2+ due to preferential uptake by vegetation. Removal of organic matter results in a continuing, long-term export of all major cations from the soil profiles. The processes of biogeochemical fractionation within the unsaturated zone rapidly modify the cation/Cl ratios of infiltrating rainfall to values characteristic of seawater. These mechanisms may have reached steady state, because groundwaters with seawater ion/Cl ratios are thousands of years old; the exchange sites on the soil clays are probably saturated, so cations supplied in rainfall are exported in organic matter and incorporated into recharge infiltrating into the groundwater. Much of the chemical evolution of groundwater traditionally attributed to processes within the aquifer is complete by the time recharge occurs; this evolutionary model may have broad application.  相似文献   

6.
Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10?5 m/s. Discharge was estimated at 1.28×10?3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10?5–2.0×10?3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10?9–2.0×10?4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.  相似文献   

7.
Soil moisture variability and controls are little known in large gullies of the Loess Plateau which represent complex topography with steep slopes. This study analyzed spatial–temporal variability of soil moisture at the 0–20, 20–40, 40–60, and 60–80 cm depths in a large gully of the Loess Plateau based on root-zone soil moisture measurements for 3 years (2009–2011). The result showed that mean soil moisture, standard deviation (SD), and coefficient of variation, were highly dependent on depth; the highest mean value was observed at the 20–40 cm depth, while the lowest one was at the 0–20 cm depth. The SD increased with mean soil moisture for various depths as soil moisture was relatively wet; however, a transition that SD decreased with mean soil moisture occurred when soil moisture was relatively dry. Positive correlations exist between moisture contents over different depths, and that the relationships of the neighboring layers are relatively high with R 2 from 0.70 to 0.76. Correlation analysis, principle component analysis, and stepwise multiple regression analysis showed that soil particle size distribution and topography (slope and elevation) were the main environmental factors controlling soil moisture variability in the large gully.  相似文献   

8.
Globally, aquifers are suffering from large abstractions resulting in groundwater level declines. These declines can be caused by excessive abstraction for drinking water, irrigation purposes or industrial use. Basaltic aquifers also face these conflicts. A large flood basalt area (1.1?×?105 km2) can be found in the Northwest of the USA. This Columbia River Basalt Group (CRBG) consists of a thick series of basalt flows of Miocene age. The two major hydrogeological units (Wanapum and Grand Ronde formations) are widely used for water abstraction. The mean decline over recent decades has been 0.6 m year?1. At present day, abstraction wells are drying up, and base flow of rivers is reduced. At the eastern part of CRBG, the Moscow sub-basin on the Idaho/Washington State border can be found. Although a thick poorly permeable clay layer exists on top of the basalt aquifer, groundwater level dynamics suggest that groundwater recharge occurs at certain locations. A set of wells and springs has been monitored bi-weekly for 9 months for δ18O and δ2H. Large isotopic fluctuations and d-excess values close to the meteoric water line in some wells are indicating that recharge occurs at the granite/basalt interface through lateral flow paths in and below the clay. A soil moisture routing (SMR) model showed that most recharge occurs on the granitic mountains. The basaltic aquifer receives recharge from these sedimentary zones around the granite/basalt interface. The identification of these types of areas is of major importance for future managed-aquifer recharge solutions to solve problems of groundwater depletion.  相似文献   

9.
Past studies have focused on carbon variation in the upper 1 m of the soil profile. However, there is limited information on carbon variation at deeper depths (e.g., 0–4 m) and mathematical functions to extrapolate carbon content at these depths. The objective of this study was therefore to assess the vertical variation in SOC (reached 4 m) of the Tarim River floodplain in northwestern China. The vertical distribution in SOC was described by exponential and power functions based on (1) soil depth, (2) soil depth and silt content, (3) soil depth and SOC at the shallowest and deepest depths, (4) soil depth, silt content, and SOC at the shallowest and deepest depths, and (5) soil depth and SOC at the shallowest depth. We found SOC content decreased with depth from 6.82 g kg?1 at 0–0.2 m to?<?1.0 g kg?1 below 3.2–3.4 m averaged across five locations along the floodplain. Both the power and exponential functions provided a good fit to the measured data in the upper 1 m of the soil profile, whereas the power function provided a better fit to the data when extrapolating to a depth of 3–4 m. The power function describing SOC as a function of soil depth, silt content, and SOC at the shallowest and deepest depths best portrayed the distribution in SOC with depth. Considering the cost and labor in measuring soil properties, our results suggest that SOC at the shallowest depth can provide good estimates of the vertical distribution in SOC in a floodplain.  相似文献   

10.
The processes and rates of groundwater recharge in arid and semiarid environments are highly related to local climate parameters, particularly precipitation. The chloride profile of an unsaturated zone in an arid and semiarid region can be used to infer the recharge history and past changes in climate, by extension. In this study, a 17-m chloride profile was collected from the sandy loess in the northwestern Chinese Loess Plateau, which also lies in the transition zone between desert and loess. A 71-year groundwater recharge history was reconstructed using the chloride mass balance method with an annual Cl? input of 0.84 g/m2/year. The reconstructed history revealed a long-term decline in recharge with multiple shorter-term oscillations. Five recharge stages between 1938–1946, 1947–1955, 1956–1975, 1976–2000, and 2001–2008 AD were identified, where the lowest average recharge value was 25.1 mm/a in 1976–2000 AD and the highest was 71.7 mm/a in 1947–1955 AD. Climate conditions during these five periods were also inferred based on the reconstructed recharge rates with the knowledge that high recharge corresponds to more humid climates. The climate over the past 71 years generally became drier in the study area, despite some fluctuations. The reconstructed recharge rates, calculated from 1/Cl? in the profile, exhibited the same variability as annual precipitation measured in the region, both in long- and short-term oscillations over the period from 1955 to 2008. The chloride concentration variations in the profile, indicating changes in recharge flux, also well correlated with annual precipitation anomalies in the region to the east of 100°E in China for the whole study period. These comparisons verified that it is feasible to study not only groundwater recharge, but also past climate change using a chloride profile from the sandy loess area. The results suggested that unsaturated zones of sandy loess may be valuable archives for reconstructing recharge history and regional paleoclimate changes in the region.  相似文献   

11.
The Central Godavari delta is located along the Bay of Bengal Coast, Andhra Pradesh, India, and is drained by Pikaleru, Kunavaram and Vasalatippa drains. There is no groundwater pumping for agriculture as wells as for domestic purpose due to the brackish nature of the groundwater at shallow depths. The groundwater table depths vary from 0.8 to 3.4 m and in the Ravva Onshore wells, 4.5 to 13.3 m. Electrical Resistivity Tomography (ERT) surveys were carried out at several locations in the delta to delineate the aquifer geometry and to identify saline water aquifer zones. Groundwater samples collected and analyzed for major ions for assessing the saline water intrusion and to identify the salinity origin in the delta region. The results derived from ERT indicated low resistivity values in the area, which can be attributed to the existence of thick marine clays from ground surface to 12–15 m below ground level near the coast and high resistivity values are due to the presence of coarse sand with freshwater away from the coast. The resistivity values similar to saline water <0.01 Ω m is attributed to the mixing of the saline water along surface water drains. In the Ravva Onshore Terminal low resistivity values indicated up coning of saline water and mixing of saline water from Pikaleru drain. The SO 4 ?2 /Cl?and Na+2/Cl?ratios did not indicate saline water intrusion and the salinity is due to marine palaeosalinity, dilution of marine clays and dissolution of evaporites.  相似文献   

12.
Conventional hydrogeochemical data and environmental stable isotopes are used to identify the recharge sources and the water–rock interactions in the groundwater-flowing direction within the multilayer groundwater system of the Sulin coal-mining district in the north Anhui province in China. δD and δ 18O of groundwater in the mining district decrease along the groundwater-flowing direction in the recharge areas, yet in the runoff or discharge areas, they rise and fall along average δ values (δ 18O = ?8.68 ‰, δD = ?67.4 ‰), which are lower than average δ values of local atmospheric precipitation (δ 18O = ?7.80 ‰, δD = ?52.4 ‰). Principal component analysis is used to analyze the conventional hydrogeochemical data (K+ + Na+, Mg2+, Ca2+, Cl?, SO4 2?, HCO3 ?, CO3 2?) in the groundwater. The first and second principal components have large variance contributions, and represent “pyrite oxidation or groundwater hardening” and “desulfurization or cation exchange and adsorption,” respectively. From conventional hydrogeochemical data and environmental stable isotopes, it is demonstrated that groundwater of the Sulin coal-mining district is characterized by a mixing type, which is confirmed by three recharge end-members: fresh groundwater, leaching groundwater, and retained groundwater. By means of a sample dot-encompassed triangle in the scatter diagram of load scores for Component 1–Component 2, whose vertexes stand for the three end-members, a model for calculating groundwater mixing ratio is established and applied successfully to the evaluation and management of groundwater hazards in the coal-mining districts.  相似文献   

13.
High water demand for domestic use in Douala with over 3 million inhabitants is met mainly by shallow groundwater. Field measurements and water sampling in January 2015 were carried out to examine the major controls on the groundwater composition and spatial view of ions in the water, timing of recharge and link between the recharge process and quality of the water. Fifty-two water samples were analysed for major ions and stable hydrogen and oxygen isotopes. Low pH values (3.61–6.92) in the groundwater indicated an acidic aquifer; thus, prone to acidification. The dominant water type was Na–Cl. Nitrate, which exceeded the WHO guide value of 50 mg/l in 22% of the groundwater, poses a health problem. Mass ratios of Cl?/Br? in the water ranged from 54 to 3249 and scattered mostly along the mixing lines between dilute waters, septic-tank effluent and domestic sewage. A majority of the samples, especially the high NO3 ? shallow wells, clustered around the septic-tank effluent-end-member indicating high contamination by seepage from pit latrines; hence, vulnerable to pollution. Stable isotopes in the groundwater indicated its meteoric origin and rapid infiltration after rainfall. The δ18O values showed narrow ranges and overlaps in rivers, springs, open wells and boreholes. These observations depict hydraulic connectivity, good water mixing and a homogeneous aquifer system mainly receiving local direct uniform areal recharge from rainfall. The rapid and diffused recharge favours the leaching of effluent from the pit toilets into the aquifer; hence, the high NO3 ? and Cl? in shallow wells. Silicate weathering, ion exchange and leaching of waste from pit toilets are the dominant controls on the groundwater chemistry. Drilling of deep boreholes is highly recommended for good-quality water supply. However, due the hydraulic connection to the shallow aquifer, geochemical modelling of future effects of such an exploitation of the deeper aquifer should support groundwater management and be ahead of the field actions.  相似文献   

14.
Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl?) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl? from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl? concentrations than a power-law relationship (Archie’s Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl? concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl? = 1,978 ECa – 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl? as porosity data become available and the site-specific ECw–Cl? relationship is determined.  相似文献   

15.
A study of environmental chloride, deuterium, oxygen-18, and tritium in deep sand profiles (35 m) has been carried out in order to estimate their relative value for measuring average groundwater recharge. The investigation was located at a 0.1-km2 site in Quaternary sands near the northwestern coast of Senegal in a zone of rainfed agriculture. By using a steady-state model for duplicate unsaturated zone chloride profiles, the long-term average recharge at the site was estimated to be 30 mm yr–1 or around 10% of the average precipitation (290 mm). The chloride concentration of adjacent shallow groundwater was relatively uniform and comparable to the unsaturated zone average, while the spatial variability in the depth distribution of Cl in the unsaturated zone was considerable. Stable isotope (deuterium and oxygen-18) data show that there is some isotopic enrichment due to direct evaporation through the soil surface. The degree of heavy isotope enrichment is proportional to the extent of evaporative loss and there is good correspondance with the chloride enrichment. Nevertheless, stable isotopes cannot be used quantitatively to estimate the recharge. The excellent preservation of the peak in thermonuclear tritium in precipitation in the unsaturated zone at depths between 12 and 20 m enables an estimated annual recharge of 24 mm yr–1 in this area to be calculated, using the piston flow model. Agreement therefore between Cl and3H as tools for recharge measurement is reasonable over the site.  相似文献   

16.
Groundwater is the major source of water and a critical resource for socioeconomic development in semi-arid environments like the Johannesburg area. Environmental isotopes are employed in this study to characterise groundwater recharge and flow mechanisms in the bedrock aquifers of Johannesburg, which is known for polluted surface water. With the exception of boreholes near the Hartbeespoort Dam, groundwater in the study area was derived from meteoric water that has undergone some degree of evaporation before recharge, possibly via diffuse mechanisms. Boreholes that tap groundwater from the Transvaal Supergroup Formation show depletion in δ18O and δ2H values. This is attributed to diffuse recharge through weathering fractures at high elevation that are undergoing deep circulation or recharge from depleted rainfall from the high-latitude moisture sources. The influence of focused recharge from the Hartbeespoort Dam was observed in the boreholes north of the dam, possibly as a result of the north–south trending fault lines and the north-dipping fractures in the bedding planes of quartzites. This is also supported by a reservoir water budget method which indicated a mean annual net flux of 2,084,131 m3 from Hartbeespoort Dam recharging groundwater per annum. Using tritium in the dam and boreholes located at 750 m and 5400 m downstream, average groundwater flow velocity was estimated as 202 m/year. An open system was observed in shale, andesite and granitic-gneiss aquifers indicating soil CO2 as a dominant source of carbon (δ13C) in groundwater. A closed system was also observed in dolomitic aquifers indicating carbonate dissolution as the predominant source of carbon.  相似文献   

17.
18.
Soil structural disturbance influences the downward flow of water that percolates deep enough to become aquifer recharge. Data from identical experiments in an undisturbed silt-loam soil and in an adjacent simulated waste trench composed of the same soil material, but disturbed, included (1) laboratory- and field-measured unsaturated hydraulic properties and (2) field-measured transient water content profiles through 24 h of ponded infiltration and 75 d of redistribution. In undisturbed soil, wetting fronts were highly diffuse above 2 m depth, and did not go much deeper than 2 m. Darcian analysis suggests an average recharge rate less than 2 mm/year. In disturbed soil, wetting fronts were sharp and initial infiltration slower; water moved slowly below 2 m without obvious impediment. Richards’ equation simulations with realistic conditions predicted sharp wetting fronts, as observed for disturbed soil. Such simulations were adequate for undisturbed soil only if started from a post-initial moisture distribution that included about 3 h of infiltration. These late-started simulations remained good, however, through the 76 d of data. Overall results suggest the net effect of soil disturbance, although it reduces preferential flow, may be to increase recharge by disrupting layer contrasts.  相似文献   

19.
Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55–71 mm yr?1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160–400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July–September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.  相似文献   

20.
Rapid population growth in sub-Saharan West Africa and related cropland expansion were shown in some places to have increased focused recharge through ponds, raising the water table. To estimate changes in diffuse recharge, the water content and matric potential were monitored during 2009 and 2010, and modeling was performed using the Hydrus-1D code for two field sites in southwest Niger: (1) fallow land and (2) rainfed millet cropland. Monitoring results of the upper 10 m showed increased water content and matric potential to greater depth under rainfed cropland (>2.5 m) than under fallow land (≤1.0 m). Model simulations indicate that conversion from fallow land to rainfed cropland (1) increases vadose-zone water storage and (2) should increase drainage flux (~25 mm year?1) at 10-m depth after a 30–60 year lag. Therefore, observed regional increases in groundwater storage may increasingly result from diffuse recharge, which could compensate, at least in part, groundwater withdrawal due to observed expansion in irrigated surfaces; and hence, contribute to mitigate food crises in the Sahel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号