首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rotational periods P, period derivatives dP/dt, and magnetic fields B in the region where the emission of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) is generated are calculated using a model that associates the emission of these objects with the existence of drift waves at the periphery of the magnetosphere of a neutron star. The values obtained for these parameters are P = 11?737 ms, dP/dt = 3.7 × 10?16?5.5 × 10?12, and log B (G) = 2.63?6.25. We find a dependence between the X-ray luminosity of AXPs and SGRs, L x, and the rate at which they lose rotational energy, dE/dt, which is similar to the L x(dE/dt) dependence for radio pulsars with detected X-ray emission. Within the errors, AXPs/SGRs and radio pulsars with short periods (P < 0.1 s) display the same slopes for their log(dP/dt)-log P relations and for the dependence of the efficiency of their transformation of rotational energy into radiation on their periods. A dipole model is used to calculate the surface magnetic fields of the neutron stars in AXPs and SGRs, which turn out to be, on average, comparable to the surface fields of normal radio pulsars (〈log B s (G)〉 = 11.90).  相似文献   

2.
The spin evolution of X-ray pulsars in high-mass X-ray binaries is discussed under various assumptions about the geometry and physical parameters of the accretion flow. The torque applied to the neutron star by the accretion flow and the equilibrium periods of the pulsars are estimated. It is shown that the observed spin evolution of the pulsars can be explained in a scenario in which the neutron star accretes material from a magnetized stellar wind.  相似文献   

3.
A new model is put forward to explain the observed features of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs). It is shown that drift waves can be excited in the magnetosphere of a neutron star with a rotational period of P~0.1 s, surface magnetic field Bs~1012 G, and angle between the rotational axis and magnetic moment β<10°. These waves lead to the formation of radiation pulses with a period of Pdr~10 s. The rate of loss of rotational energy by such a star (~1037 erg/s) is sufficient to produce the observed increase in the period \((\dot P \sim 10^{ - 10} )\), the X-ray luminosities of AXPs and SGRs (~1034–1036 erg/s), and an injection of relativistic particles into the surrounding supernova remnant. A modulation of the constant component of the radiation with a period of P~0.1 s is predicted. In order for SGRs to produce gamma-ray bursts, an additional source of energy must be invoked. Radio pulsars with periods of Pobs>5 s can be described by the proposed model; in this case, their rotational periods are considerably less than Pobs and the observed pulses are due to the drift waves.  相似文献   

4.
5.
We have modeled the mass transfer in the three semidetached binaries U Cep, RZ Sct, and V373 Cas taking into account radiative cooling both implicitly and explicitly. The systems have asynchronously rotating components and high mass-transfer rates of the order of 10?6M/yr; they are undergoing various stages of their evolution. An accreting star rotates asynchronously if added angular momentum is redistributed over the entire star over a time that exceeds the synchronization time. Calculations have indicated that, in the model considered, mass transfer through the point L1 is unable to desynchronize the donor star. The formation of an accretion disk and outer envelope depends on the component-mass ratio of the binary. If this ratio is of the order of unity, the flow makes a direct impact with the atmosphere of the accreting star, resulting in the formation of a small accretion disk and a relatively dense outer envelope. This is true of the disks in U Cep and V373 Cas. When the component-mass ratio substantially exceeds unity (the case in RZ Sct), the flow forms a large, dense accretion disk and less dense outer envelope. Taking into account radiative cooling both implicitly and explicitly, we show that a series of shocks forms in the envelopes of these systems.  相似文献   

6.
We explore the possibility of explaining Anomalous X-ray Pulsars (AXPs) and Soft Gammaray Repeaters (SGRs) in a scenario with fall-back magnetic accretion onto a young isolated neutron star. The X-ray emission of the pulsar in this case originates due to the accretion of matter onto the surface of the neutron star from a magnetic slab surrounding its magnetosphere. The spin-down rate of the neutron star expected in this picture is close to the observed value. We show that such neutron stars are relatively young and are going through the transition from the propeller state to the accretor state. The pulsar’s activity in gamma-rays is connected with its relative youth, and is enabled by energy stored in a non-equilibrium layer located in the crust of the low-mass neutron star. This energy can be released due to the mixing of matter in the neutron star crust with super heavy nuclei approaching its surface and becoming unstable. The fission of nuclei in the low-density region initiates chain reactions leading to a nuclear explosion. Outbursts are probably triggered by instability developing in the region where the matter accreted by the neutron star accumulates in the magnetic polar regions.  相似文献   

7.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

8.
We present results of two-dimensional hydrodynamical simulations of mass transfer in the close binary system β Lyr for various radii of the accreting star and coefficients describing the interaction of the gaseous flow and the main component (primary). We take the stellar wind of the donor star into account and consider various assumptions about the radiative cooling of the gaseous flow. Our calculations show that the initial radius of the flow corresponding to our adopted mass-transfer rate through the inner Lagrange point (L1) of (1–4) × 10?5M/yr is large: 0.22–0.29 (in units of the orbital separation). In all the models, the secondary loses mass through both the inner and outer (L1 and L2) Lagrange points, which makes the mass transfer in the system nonconservative. Calculations for various values of the primary radius show a strong dependence on the coefficient fv that models the flow-primary interaction. When the radius of the primary is 0.5, there is a strong interaction between the gas flow from L1 and the flow reflected from the primary surface. For other values of the primary radius (0.1 and 0.2), the flow does not interact directly with the primary. The flow passes close to the primary and forms an accretion disk whose size is comparable to that of the Roche lobe and a dense circum-binary envelope surrounding both the disk and the binary components. The density in the disk varies from 1012 to 1014 cm?3, and is 1010–1012 cm?3 in the circum-binary envelope. The temperature in the accretion disk ranges from 30000 to 120000 K, while that in the circum-binary envelope is 4000–18000 K. When radiative cooling is taken into account explicitly, the calculations reveal the presence of a spiral shock in the accretion disk. The stellar wind blowing from the secondary strongly interacts with the accretion disk, circum-binary envelope, and flow from L2. When radiative cooling is taken into account explicitly, this wind disrupts the accretion disk.  相似文献   

9.
It is shown that a model with accretion in a “quasi-propeller” mode can explain the observed spindown of pulsars with periods P<0.1 s. The mean accretion rate for 39 selected objects is \(\dot M = 5.6 \times 10^{ - 11} M_ \odot /year\). If \(\dot M\) is constant during the pulsar’s lifetime, the neutron star will stop rotating after 107 years. The mean magnetic field at the neutron-star surface calculated in this model, \(\bar H_0 = 6.8 \times 10^8 G\), is consistent to an order of magnitude with the values of H0 for millisecond pulsars from known catalogs. However, the actual value of H0 for particular objects can differ from the catalog values by appreciable factors, and these quantities must be recalculated using more adequate models. The accretion disk around the neutron star should not impede the escape of the pulsar’s radiation, since this radiation is generated near the light cylinder in pulsars with P<0.1 s. Pulsars such as PSR 0531+21 and PSR 0833-45 have probably spun down due to the effect of magnetic-dipole radiation. If the difference in the braking indices for these objects from n=3 is due to the effect of accretion, the accretion rate must be of the order of 1018 g/s.  相似文献   

10.
The latest observational data are analyzed to investigate their consistency with two known models for anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs): the magnetar and drift models. The results of spectral measurements disagree with the predictions of theories that assume the presence of super-strong magnetic fields on AXPs and SGRs and associated processes for the generation of electron-positron plasma in the upper layers of the neutron-star magnetosphere. We present arguments against the use of magnetic-dipole braking for these objects. The rotational periods P, period derivatives dP/dt, and magnetic fields B of known AXPs and SGRs are calculated for the drift model. The mean values of these parameters in the sample used are 〈P〉 = 108 ms and 〈log B s [G]〉 = 12.08. Overall, the measured profiles, polarizations, and spectra can be brought into agreement with the drift model.  相似文献   

11.
We analyze heating and cooling processes in accretion disks in binaries. For realistic parameters of the accretion disks in close binaries (\(\dot M \simeq 10^{ - 12} - 10^7 M_ \odot /yr\) and α?10?1–10?2), the gas temperature in the outer parts of the disk is from ~104 to ~106 K. Our previous gas-dynamical studies of mass transfer in close binaries indicate that, for hot disks (with temperatures for the outer parts of the disk of several hundred thousand K), the interaction between the stream from the inner Lagrange point and the disk is shockless. To study the morphology of the interaction between the stream and a cool accretion disk, we carried out three-dimensional modeling of the flow structure in a binary for the case when the gas temperature in the outer parts of the forming disk does not exceed 13 600 K. The flow pattern indicates that the interaction is again shockless. The computations provide evidence that, as is the case for hot disks, the zone of enhanced energy release (the “hot line”) is located beyond the disk and originates due to the interaction between the circumdisk halo and the stream.  相似文献   

12.
Three-dimensional numerical hydrodynamical modeling of a radiative wind and accretion disk in a close binary system with a compact object is carried out, using the massive X-ray binary LMC X-3 as an example. This system contains a precessing disk, and may have relativistic jets. These computations show that an accretion disk with a radius of about 0.20 (in units of the component separation) forms from the radiative wind from the donor when the action of the wind on the central source is taken into account, when the accretion rate is equal to the observed value (about 3.0 × 10?8 M /year, which corresponds to the case when the donor overflows its Roche lobe by nearly 1%). It is assumed that the speed of the donor wind at infinity is about 2200 km/s. The disk that forms is geometrically thick and nearly cylindrical in shape, with a low-density tunnel at its center extending from the accretor through the disk along the rotational axis. We have also modeled a flare in the disk due to short-term variations in the supply of material through the Lagrange point L1, whose brightnesses and durations are able to explain flares in cataclysmic variables and X-ray binaries. The accretion disk is not formed when the donor underfills its Roche lobe by 0.5%, which corresponds to an accretion rate onto the compact object of 2.0 × 10?9 M /year. In place of a disk, an accretion envelope with a radius of about 0.03 forms, within which gas moves along very steep spiral trajectories before falling onto the compact object. As in the accretion-disk case, a tunnel forms along the rotational axis of the accretion envelope; a shock forms behind the accretor, where flares occur in a compact region a small distance from the accretor at a rate of about six flares per orbital period, with amplitudes of about 10 m or more. The flare durations are two to four minutes, and the energies of individual particles at the flare maximum are about 100–150 keV. These flares appear to be analogous to the flares observed in gamma-ray and X-ray burst sources. We accordingly propose a model in which these phenomena are associated with massive, close X-ray binary systems with component-mass ratios exceeding unity, in which the donor does not fill its Roche lobe. Although no accretion disk forms around the compact object, an accretion region develops near the accretor, where the gamma-ray and X-ray flares occur.  相似文献   

13.
We analyze possible origins of the observed high rotational and spatial velocities of radio pulsars. In particular, these can be understood if all radio pulsars originate in close binary systems with orbital periods of 0.1–100 days, with the neutron star being formed by a type Ib,c supernova. The high spatial velocities of pulsars (v p up to 1000 km/s) reflect the high Keplerian velocities of the components of these binaries, while their short periods of rotation (P p < 4 s) are due to the rapid rotation of the presupernova helium-star components with masses of 2.5–10 M, which is synchronous with their orbital rotation. Single massive stars or components in wide binaries are likely to produce only slowly rotating (P p > 4 s) neutron stars or black holes, which cannot be radio pulsars. As a result, the rate of formation of radio pulsars should be a factor of a few lower than the rate of type II and type Ib,c supernovae estimated from observations. This scenario for the formation of radio pulsars is supported by (i) the bimodal spatial velocity distribution of radio pulsars; (ii) the coincidence of the observed spatial velocities of radio pulsars with the orbital velocities of the components of close binaries with nondegenerate helium presupernovae; (iii) the correlation between the orbital and rotational periods for 22 observed radio pulsars in binaries with elliptical orbits; and (iv) the similarity of the observed rate of formation of radio pulsars and the rate of type Ib,c supernovae.  相似文献   

14.
We consider the evolution of close binaries in which the initial secondary component is a nondegenerate helium star with mass MHe = 0.4–60 M, while the initially more massive primary has evolved into a black hole, neutron star, or degenerate dwarf. The neutron star is assumed to originate as a result of the evolution of a helium star with a mass of 2.5 MMHe ≤ 10 M after the explosion of a type Ib,c supernova. If the axial rotation of the helium star before the explosion is rigid-body and synchronized with the orbital rotation, for Porb ≤ 0.16 day, the rotational energy of the young neutron star will exceed the energy of an ordinary supernova. If the magnetic field of the neutron star is sufficiently strong, the necessary conditions for a magnetic-rotational supernova are provided. The initial rotational period of a young neutron star originating in a system with an orbital period shorter than ~50 days is shorter than ~4 s, which, according to observations, is required for the appearance of a radio pulsar. A helium star whose mass exceeds ~10 M in a close binary with an orbital period shorter than one day and with the axial rotation of the helium presupernova synchronous with the orbital rotation evolves into a Kerr black hole, whose formation is likely to be accompanied by a gamma-ray burst with a duration longer than two seconds. In particular, we consider close binaries in which the second supernova results in the formation of a neutron star that remains in the binary. The theoretical distribution of orbital periods and eccentricities for such systems is consistent with that observed for radio pulsars in the Galactic disk in binaries with compact components and orbital eccentricities exceeding ~0.09, providing an explanation for the observed correlation between the orbital eccentricities and orbital periods for these systems.  相似文献   

15.
The spin-down mechanism of accreting neutron stars is discussedwith an application to one of the best studied X-ray pulsars GX301-2. We show that the maximum possible spin-down torque applied to a neutron star from the accretion flow can be evaluated as K sd (t) = ??2/(r m r cor)3/2. The spin-down rate of the neutron star in GX301-2 can be explained provided the magnetospheric radius of the neutron star is smaller than its canonical value. We calculate the magnetospheric radius considering the mass-transfer in the binary system in the frame of the magnetic accretion scenario suggested by V.F. Shvartsman. The spin-down rate of the neutron star expected within this approach is in a good agreement with that derived from observations of GX301-2.  相似文献   

16.
The magnetic fields of soft gamma-ray repeaters and anomalous X-ray pulsars have been estimated, taking into account the appreciable increase in the deceleration of the neutron star if it is embedded in a dense interstellar medium. These estimates yield the usual values of B?1012 G.  相似文献   

17.
The formation of neutron stars in the closest binary systems (P orb<12 h) gives the young neutron star/pulsar a high rotational velocity and energy. The presence of a magnetic field of 3×1011–3×1013 G, as is observed for radio pulsars, enables the neutron star to transfer ~1051 erg of its rotational energy to the envelope over a time scale of less than an hour, leading to a magnetorotational supernova explosion. Estimates indicate that about 30% of all type-Ib,c supernovae may be the products of magnetorotational explosions. Young pulsars produced by such supernovae should exhibit comparatively slow rotation (P rot>0.01 s), since a large fraction of their rotational angular momentum is lost during the explosion. The magnetorotational mechanism for the ejection of the envelope is also reflected by the shape of the envelope. It is possible that the Crab radio pulsar is an example of a product of a magnetorotational supernova. A possible scenario for the formation of the close binary radio pulsar discovered recently by Lyne et al. is considered.  相似文献   

18.
We analyze the late stages of evolution of massive (M 0 ? 8 M ) close binaries, from the point of view of possible mechanisms for the generation of gamma-ray bursts. It is assumed that a gamma-ray burst requires the formation of a massive (~1 M ), compact (R ? 10 km) accretion disk around a Kerr black hole or neutron star. Such Kerr black holes are produced by core collapses of Wolf-Rayet stars in very close binaries, as well as by mergers of neutron stars and black holes or two neutron stars in binaries. The required accretion disks can also form around neutron stars that were formed via the collapse of ONeMg white dwarfs. We estimate the Galactic rate of events resulting in the formation of rapidly rotating relativistic objects. The computations were carried out using the “Scenario Machine.”  相似文献   

19.
The parameters of radio pulsars in binary systems and globular clusters are investigated. It is shown that such pulsars tend to have short periods (of the order of several milliseconds). Themagnetic fields of most of the pulsars considered are weak (surface fields of the order of 108?109 G). This corresponds to the generally accepted view that short-period neutron stars are spun up by angular momentum associated with the stellar wind from a companion. However, the fields at the light cylinders in these objects are two to three orders of magnitude higher than for the main population of single neutron stars. The dependence of the pulse width on the period does not differ from the corresponding dependences for single pulsars, assuming the emission is generated inside the polar cap, at moderate distances from the surface or near the light cylinder. The radio luminosities of pulsars in binary systems do not show the correlation with the rate of loss of rotational energy that is characteristic for single pulsars, probably due to the influence of accreting matter from a companion. Moreover, accretion apparently decreases the power of the emergent radiation, and can explain the observed systematic excess of the radio luminosity of single pulsars compared to pulsars in binary systems. The distributions and dependences presented in the article support generally accepted concepts concerning the processes occurring in binary systems containing neutron stars.  相似文献   

20.
Previously developed methods for estimating the angle β between the spin axis of a neutron star and its magnetic moment together with observational data for anomalous X-ray pulsars (AXPs) indicate that these objects are nearly aligned rotators, and that the drift model can be applied to them. The magnetospheres of aligned rotators are appreciably more extended than in pulsars with large values of β. With such extents for the magnetosphere, the conditions for the generation of transverse waves via the cyclotron instability are satisfied. The expected spectrum of the resulting radiation is very steep (its spectral index is α > 3), consistent with the observed radio spectra of known AXPs (α > 2). A large magnetosphere also favors the appearance of appreciable pitch angles for relativistic electrons, and therefore the generation of synchrotron emission. The maximum of this emission falls in the microwave range. This mechanism provides appreciable fluxes at frequencies of tens of gigahertz and can explain the observed enhanced AXP radiation in this range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号