首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Annual, seasonal and semiannual variations of F2-layer electron density (NmF2) and height (hmF2) have been compared with the coupled thermosphere-ionosphere-plasmasphere computational model (CTIP), for geomagnetically quiet conditions. Compared with results from ionosonde data from midlatitudes, CTIP reproduces quite well many observed features of NmF2, such as the dominant winter maxima at high midlatitudes in longitude sectors near the magnetic poles, the equinox maxima in sectors remote from the magnetic poles and at lower latitudes generally, and the form of the month-to-month variations at latitudes between about 60°N and 50°S. CTIP also reproduces the seasonal behaviour of NmF2 at midnight and the summer-winter changes of hmF2. Some features of the F2-layer, not reproduced by the present version of CTIP, are attributed to processes not included in the modelling. Examples are the increased prevalence of the winter maxima of noon NmF2 at higher solar activity, which may be a consequence of the increase of F2-layer loss rate in summer by vibrationally excited molecular nitrogen, and the semiannual variation in hmF2, which may be due to tidal effects. An unexpected feature of the computed distributions of NmF2 is an east-west hemisphere difference, which seems to be linked to the geomagnetic field configuration. Physical discussion is reserved to the companion paper by Rishbeth et al.  相似文献   

2.
The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produces regions of large [O/N2] ratio. Because the thermospheric circulation is influenced by the high-latitude energy inputs, which are related to the geometry of the Earth’s magnetic field, the latitude of the downwelling regions varies with longitude. The downwelling regions give rise to large F2-layer electron densities when they are sunlit, but not when they are in darkness, with implications for the distribution of seasonal and semiannual variations of the F2-layer. It is also found that the vertical distributions of O and N2 may depart appreciably from diffusive equilibrium at heights up to about 160 km, especially in the summer hemisphere where there is strong upwelling.  相似文献   

3.
This paper presents results from the TIME-GCM-CCM3 thermosphere–ionosphere–lower atmosphere flux-coupled model, and investigates how well the model simulates known F2-layer day/night and seasonal behaviour and patterns of day-to-day variability at seven ionosonde stations. Of the many possible contributors to F2-layer variability, the present work includes only the influence of ‘meteorological’ disturbances transmitted from lower levels in the atmosphere, solar and geomagnetic conditions being held at constant levels throughout a model year.In comparison to ionosonde data, TIME-GCM-CCM3 models the peak electron density (NmF2) quite well, except for overemphasizing the daytime summer/winter anomaly in both hemispheres and seriously underestimating night NmF2 in summer. The peak height hmF2 is satisfactorily modelled by day, except that the model does not reproduce its observed semiannual variation. Nighttime values of hmF2 are much too low, thus causing low model values of night NmF2. Comparison of the variations of NmF2 and the neutral [O/N2] ratio supports the idea that both annual and semiannual variations of F2-layer electron density are largely caused by changes of neutral composition, which in turn are driven by the global thermospheric circulation.Finally, the paper describes and discusses the characteristics of the F2-layer response to the imposed ‘meteorological’ disturbances. The ionospheric response is evaluated as the standard deviations of five ionospheric parameters for each station within 11-day blocks of data. At any one station, the patterns of variability show some coherence between different parameters, such as peak electron density and the neutral atomic/molecular ratio. Coherence between stations is found only between the closest pairs, some 2500 km apart, which is presumably related to the scale size of the ‘meteorological’ disturbances. The F2-layer day-to-day variability appears to be related more to variations in winds than to variations of thermospheric composition.  相似文献   

4.
Semiannual and annual variations in the height of the ionospheric F2-peak   总被引:4,自引:0,他引:4  
Ionosonde data from sixteen stations are used to study the semiannual and annual variations in the height of the ionospheric F2-peak, hmF2. The semiannual variation, which peaks shortly after equinox, has an amplitude of about 8 km at an average level of solar activity (10.7 cm flux = 140 units), both at noon and midnight. The annual variation has an amplitude of about 11 km at northern midlatitudes, peaking in early summer; and is larger at southern stations, where it peaks in late summer. Both annual and semiannual amplitudes increase with increasing solar activity by day, but not at night. The semiannual variation in hmF2 is unrelated to the semiannual variation of the peak electron density NmF2, and is not reproduced by the CTIP and TIME-GCM computational models of the quiet-day thermosphere and ionosphere. The semiannual variation in hmF2 is approximately isobaric, in that its amplitude corresponds quite well to the semiannual variation in the height of fixed pressure-levels in the thermosphere, as represented by the MSIS empirical model. The annual variation is not isobaric. The annual mean of hmF2 increases with solar 10.7 cm flux, both by night and by day, on average by about 0.45 km/flux unit, rather smaller than the corresponding increase of height of constant pressure-levels in the MSIS model. The discrepancy may be due to solar-cycle variations of thermospheric winds. Although geomagnetic activity, which affects thermospheric density and temperature and therefore hmF2 also, is greatest at the equinoxes, this seems to account for less than half the semiannual variation of hmF2. The rest may be due to a semiannual variation of tidal and wave energy transmitted to the thermosphere from lower levels in the atmosphere.  相似文献   

5.
Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes) above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs). The calculated zonal electric field disturbances also help to create the positive ionospheric disturbances both at middle and low latitudes. Minor contributions arise from the general density enhancement of all constituents during geomagnetic storms, which favours ion production processes above ion losses at fixed height under day-light conditions.  相似文献   

6.
Ionospheric data observed in 30 stations located in 3 longitude sectors (East Asia/Australia Sector, Europe/Africa Sector and America/East Pacific Ocean Sector) during 1974–1986 are used to analyse the characteristics of semiannual variation in the peak electron density of F2 layer (NmF2). The results indicate that the semiannual variation of NmF2 mainly presents in daytime. In nighttime, except in the region of geomagnetic equator between the two crests of ionospheric equatorial anomaly, NmF2 has no obvious semiannual variation. In the high latitude region, only in solar maxima years and in daytime, there are obvious semiannual variations of NmF2. The amplitude distribution of the semiannual variation of daytime NmF2 with latitude has a “double-humped structure”, which is very similar to the ionospheric equatorial anomaly. There is asymmetry between the Southern and the Northern Hemispheres of the profile of the amplitude of semiannual variation of NmF2 and longitudinal difference. A new possible mechanism of semiannual variation of NmF2 is put forward in this paper. The semiannual variation of the diurnal tide in the lower thermosphere induces the semiannual variation of the amplitude of the equatorial electrojet. This causes the semiannual variation of the amplitude of ionospheric equatorial anomaly through fountain effect. This process induces the semiannual variation of the low latitude NmF2.  相似文献   

7.
Daytime F2-layer positive storm effect at middle and lower latitudes   总被引:3,自引:0,他引:3  
Daytime F2-layer positive storm effects at middle and lower latitudes in the winter thermosphere are analyzed using AE-C, ESRO-4 neutral gas composition data, ground-based ionosonde observations and model calculations. Different longitudinal sectors marked by the storm onset as ‘night-time’ and ‘daytime’ demonstrate different F2-layer positive storm mechanisms. Neutral composition changes in the ‘night-time’ sector with increased [O] and [N2] absolute concentrations, while (N2/O)storm/(N2/O)quiet\approx1 at F2-layer heights, are shown to contribute largely to the background NmF2 increase at lower latitudes lasting during daytime hours. Storm-induced surges of the equatorward wind give rise to an additional NmF2 increase above this background level. The mid-latitude F2-layer positive storm effect in the ‘daytime’ sector is due to the vertical plasma drift increase, resulting from the interaction of background (poleward) and storm-induced (equatorward) thermospheric winds, but not to changes of [O] and [N2] concentrations.  相似文献   

8.
The F-region peak electron densities NmF2 measured during daytime quiet geomagnetic conditions at low solar activity on January 22, 2008, April 8, 1997, July 12, 1986, and October 26, 1995, are compared. Ionospheric parameters are measured by the ionosonde and incoherent scatter radar at Millstone Hill and calculated with the use of a 1D nonstationary ionosphere–plasmasphere model of number densities and temperatures of electrons and ions at middle geomagnetic latitudes. The formation of the semiannual anomaly of the midlatitudinal NmF2 under daytime quiet geomagnetic conditions at low solar activity is studied. The study shows that the semiannual NmF2 anomaly occurs due to the total impact of three main causes: seasonal variations in the velocity of plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity; seasonal variations in the composition and temperature of the neutral atmosphere; and the dependence of the solar zenith angle on a number of the day in the year at the same solar local time.  相似文献   

9.
Using data from ground-based ionospheric sounding stations, we studied the morphologic features of the disturbance pattern of the electron concentration at the midlatitude F2-layer maximum (NmF2) in the period of a magnetic superstorm, which began on July 15, 2000. In the Southern (winter) Hemisphere in the latitudinal sector, where the main storm phase began after sunrise, negative NmF disturbances were observed at quite high midlatitudes both day and night; whereas large positive NmF disturbances took place at lower midlatitudes in nighttime hours. In the Northern (summer) Hemisphere at latitudes where the main storm phase occurred in the local evening, only long-term negative disturbances were observed in daytime and nighttime hours; whereas at latitudes where the main storm phase began in the afternoon, NmF2 experienced both negative and positive disturbances. Based on analysis of data of KOMPSAT-l, ROCSAT-1, DMSP F13, F14, and F15 satellites, we present clear arguments for the viewpoint of many authors that it is just the enhancement of the eastward electric field in the evening sector that led to formation of the large-scale trough in the nighttime low-latitude upper ionosphere. This field enhancement was due to penetration of the magnetospheric electric field to low latitudes, not to the dynamo action of the disturbed neutral wind. It is also shown that, due to equatorward expansion of the magnetospheric convection system during the main storm phase, the plasmapause and the main ionospheric trough were shifted to a magnetic latitude of 40° (L ∼ 1.7).  相似文献   

10.
利用IGS数据分析全球TEC的周年和半年变化特性   总被引:10,自引:1,他引:9       下载免费PDF全文
利用太阳活动高年(2000年)IGS提供的全球TEC数据,采用傅里叶展开的方法,分析了白天电离层TEC周年和半年变化的全球特征.结果显示:电离层TEC周年变化幅度在南北半球中高纬度地区较大、赤道和低纬地区很小.半年变化的幅度在“远极地区”(远离地球南北地磁极点的东北亚和南美地区) 比“近极地区”(靠近地球南北地磁极点的北美和澳大利亚)大得多.进一步的统计显示,全球大部分地区TEC在春秋月份出现最大值,北半球近极地区最大值在冬季出现.南半球的南美和澳大利亚部分地区,最大值出现在夏季.同样,采用傅里叶方法分析了中性大气模式MSIS90计算的全球大气原子分子浓度比值([O/N2])的数据,发现在南北半球中高纬度地区,中性成分[O/N2]周年变化幅度较大且有明显的冬季异常现象,依据Rishbeth等提出的理论,我们认为大气成分[O/N2]可能对TEC周年变化的产生有重要作用,并且也是TEC在近极地区出现冬季异常现象的主要原因.TEC半年变化的全球分布特征形成的原因较复杂,我们初步分析可能是由于中性成分[O/N2]、太阳天顶角控制的电离层光化学产生率变化共同作用而产生的.  相似文献   

11.
Ionospheric electron content (IEC) observed at Delhi (geographic co-ordinates: 28.63°N, 77.22°E; geomagnetic co-ordinates: 19.08°N, 148.91E; dip Latitude 24.8°N), India, for the period 1975/80 and 1986/89 belonging to an ascending phase of solar activity during first halves of solar cycles 21 and 22 respectively have been used to study the diurnal, seasonal, solar and magnetic activity variations. The diurnal variation of seasonal mean of IEC on quiet days shows a secondary peak comparable to the daytime peak in equinox and winter in high solar activity. IECmax (daytime maximum value of IEC, one per day) shows winter anomaly only during high solar activity at Delhi. Further, IECmax shows positive correlation with F10.7 up to about 200 flux units at equinox and 240 units both in winter and summer; for greater F10.7 values, IECmax is substantially constant in all the seasons. IECmax and magnetic activity (Ap) are found to be positively correlated in summer in high solar activity. Winter IECmax shows positive correlation with Ap in low solar activity and negative correlation in high solar activity in both the solar cycles. In equinox IECmax is independent of Ap in both solar cycles in low solar activity. A study of day-to-day variations in IECmax shows single day and alternate day abnormalities, semi-annual and annual variations controlled by the equatorial electrojet strength, and 27-day periodicity attributable to the solar rotation.  相似文献   

12.
In this paper, we present analyses of the great geomagnetic storms observed during last two cycles of solar activity. This study is based on data from a network of ionosondes located within the longitudinal sector of 80–150°Е. it was found that the superstorms were observed predominantly in equinox. Long-lasting severe decreases of ionization at high and middle latitudes were the most impressive storm effect. A short-time positive phase occurred in response to the onset of both ssc and recovery phases of the magnetic storm in the daytime at high and middle latitudes. Large time-varying rates of foF2 were observed at low latitudes. Modeling results of the ionospheric response to two superstorms are also presented. It is established that the storm effect at middle latitudes was controlled predominantly by disturbed thermospheric composition. At high latitudes, the impact of magnetospheric processes and thermospheric composition on the ionosphere was the same.  相似文献   

13.
The morphology of averaged diurnal variations of total electron content (TEC) under quiet helio-geomagnetic conditions for all latitudinal bands and various longitudes has been studied using Global Ionospheric Maps (GIMs) datasets. The diurnal TEC variation maximum is generally registered at 14–15 LT. The maximum is 38±5, 14±2, 10±2 TECU (TECU is generally accepted TEC unit) at the equatorial, middle and high latitudes. The nighttime TEC minimum is within 5–7 TECU regardless of a season, latitude and longitude. At the equatorial latitudes TEC exhibits the most significant daily/season variations and the asymmetry of its behavior in the hemispheres near the equinox. Abnormal diurnal TEC variations (evening maximum, near-noon minimum) are observed at middle and high latitudes in summer due to atmospheric wind effects. The comparison of the averaged diurnal TEC variations with the behavior of the ionospheric F2-layer critical frequency indicated that GIMs describe daily/annual TEC variations reasonably well.  相似文献   

14.
电离层电场的半年变化对F2区峰值电子浓度的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
利用一个电离层理论模式,模拟了太阳活动低年、地磁宁静情况下,中低纬和赤道地区电离层F2区峰值电子浓度(NmF2)的半年变化规律,重点讨论了电离层电场对NmF2半年变化的影响.模拟结果表明,当输入的电场没有周年和半年变化时,磁赤道地区电离层NmF2本身就具有一定的半年变化特征,而在稍高的纬度上,NmF2半年变化的强度较弱.当输入的电场具有一定的半年变化时,电离层NmF2的半年变化强度有明显的改变,且这种改变随地方时和地磁纬度不同有明显的差别.在地磁赤道附近的电离层赤道槽地区,从上午到午夜的时间内,具有半年变化的电场对电离层NmF2半年变化的强度是减弱的作用,在其他的时间内,电场对电离层NmF2半年变化强度是加强的作用.而在稍高纬度的电离层驼峰地区,情况明显不同.从上午一直到翌日日出前,具有半年变化的电场对电离层NmF2半年变化的幅度都是加强的作用.在其他的时间内,电场对电离层NmF2半年变化的幅度是减弱的作用.同时,研究表明电离层电场对NmF2半年变化的作用和“赤道喷泉”现象强烈相关.  相似文献   

15.
Observations made by the Hinotori satellite have been analysed to determine the yearly variations of the electron density and electron temperature in the low-latitude topside ionosphere. The observations reveal the existence of an equinoctial asymmetry in the topside electron density at low latitudes, i.e. the density is higher at one equinox than at the other. The asymmetry is hemisphere-dependent with the higher electron density occurring at the March equinox in the Northern Hemisphere and at the September equinox in the Southern Hemisphere. The asymmetry becomes stronger with increasing latitude in both hemispheres. The behaviour of the asymmetry has no significant longitudinal and magnetic activity variations. A mechanism for the equinoctial asymmetry has been investigated using CTIP (coupled thermosphere ionosphere plasmasphere model). The model results reproduce the observed equinoctial asymmetry and suggest that the asymmetry is caused by the north-south imbalance of the thermosphere and ionosphere at the equinoxes due to the slow response of the thermosphere arising from the effects of the global thermospheric circulation. The observations also show that the relationship between the electron density and electron temperature is different for daytime and nighttime. During daytime the yearly variation of the electron temperature has negative correlation with the electron density, except at magnetic latitudes lower than 10°. At night, the correlation is positive.  相似文献   

16.
The mechanism of the NmF2 peak formation at different levels of solar activity is analyzed using Millstone Hill IS radar observations. The hmF2 nighttime increase due to thermospheric winds and the downward plasmaspheric fluxes are the key processes responsible for the NmF2 peak formation. The electron temperature follows with the opposite sign the electron density variations in this process. This mechanism provides a consistency with the Millstone Hill observations on the set of main parameters. The observed decrease of the nighttime NmF2 peak amplitude with solar activity is due to faster increasing of the recombination efficiency compared to the plasmaspheric flux increase. The E × B plasma drifts are shown to be inefficient for the NmF2 nighttime peak formation at high solar activity.  相似文献   

17.
The paper presents results obtained by analyzing high-resolution ionospheric vertical total electron content (vTEC) data set evaluated from a chain of European ground-based Global Positioning System (GPS) stations and its equivalent slab thickness, as well as the F2-layer critical frequency foF2 and propagation factor M(3000)F2 from nearby ionosonde stations over the period 2006–2007. The study covers data within an area between 36°N and 68°N geographic latitude, and 7°W and 21°E geographic longitude during these last two years of minimum solar activity in the 23rd solar cycle. It reveals 15 extraordinary events, all of which exhibited some form of large short-lived vTEC and foF2 enhancements of the duration of small-magnitude solar-terrestrial events. The results clearly show a well-defined vTEC and foF2 storm-like disturbance patterns developed under these conditions. They prove that there are still some open questions related to the large electron density variations during weak disturbances that require additional study for both their relevance to different Global Navigation Satellite Systems (GNSS) applications and their role in the formation and evolution of the daytime ionosphere at middle latitudes.  相似文献   

18.
A refined empirical model of the Dynamics Explorer-1 far-ultraviolet (FUV) imaging photometer’s response to Earth’s quiet time FUV dayglow has been developed for thermospheric studies. The mean photometer response is based upon FUV observations in 156 images obtained during the first five months of imager operations (September 1981–January 1982) and is determined as a function of solar and satellite zenith angles, observational azimuth and solar clock angles, and solar radio flux. Variations with each parameter are characterized and, where possible, fitted with an appropriate function. The fitted response, based on the n-th power of the cosine of the solar zenith angle, is within 10% of actual mean values at all observed solar and satellite zenith angles and is consistent with the results of a first-principles calculation. Subtraction of the model background from other DE-1 images indirectly reveals the enhancement or diminution of thermospheric O/N2 column density ratios due to transport and Joule heating effects. An analysis of summer storm-time images from the Southern Hemisphere demonstrates the use of the model in revealing these effects. The technique developed here is readily applicable to other FUV data sets.  相似文献   

19.
Calculations with a full time-varying model are used to study changes in the height and density of the E-layer peak, caused by known changes in the neutral atmosphere. Agreement with mean observed values of NmE requires an increase of 10% in calculated ion densities, and an increase of 33% in the solar-maximum EUV model at λ<150 Å. At a fixed site, changes with the solar zenith angle χ agree well with the simple Chapman theory during most of the daylight hours. Simple modifications to the Chapman equations give improved accuracy near sunrise and sunset. When corrected for changes in χ, model results for summer and equinox show a decrease in the peak density NmE at increasing latitudes. The overall change agrees well with experimental data, as summarised in the IRI model. Known changes in the neutral atmosphere also reproduce the increase in NmE in winter, at latitudes up to 30°. The continuing increase at higher winter latitudes, in the IRI model, requires a major reduction in NO densities in winter. A suitable compromise is suggested. Equations fitted to the model results then provide a simpler and better behaved replacement for the IRI equations. Calculations at night show that known sources of ionisation, largely from starlight, can produce observed peak densities using current chemistry. There is an appreciable change with latitude, as starlight production increases in the southern hemisphere. The improbably large solar cycle change built into the IRI model, at night, cannot be reproduced and is not found in recent data. A new, simpler model is suggested. Changes in zenith angle and atmospheric composition cause the peak height (hmE) to vary between 105 and 120 km, as a function of time, latitude, season and solar flux. These changes are approximated by simple equations that should be definitely preferable over the single, fixed height used in the IRI models.  相似文献   

20.
A self-consistent method for daytime F-region modelling was applied to EISCAT observations during two periods comprising the very disturbed days 3 April 1992 and 10 April 1990. The observed strong Ne decrease at F2-layer heights originated from different physical mechanisms in the two cases. The negative F2-layer storm effect with an NmF2 decrease by a factor of 6.4 on 3 April 1992 was produced by enhanced electric fields (E 85 mV/m) and strong downward plasma drifts, but without any noticeable changes in thermos-pheric parameters. The increase of the O+ + N2 reaction rate resulted in a strong enrichment of the ionosphere with molecular ions even at F2-layer heights. The enhanced electric field produced a wide mid-latitude daytime trough on 03 April 1992 not usually observed during similar polarization jet events. The other strong negative storm effect on 10 April 1990 with a complete disappearance of the F2-layer maximum at the usual heights was attributed mainly to changes in neutral composition and temperature. A small value for the shape parameter S in the neutral temperature profile and a low neutral temperature at 120 km indicate strong cooling of the lower thermosphere. We propose that this cooling is due to increased nitric oxide concentration usually observed at these heights during geomagnetic storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号