首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Selected field measurements of evening stable boundary layers are presented in detail comparable with published Large Eddy Simulation results. Such models appear to match idealized theories more closely than do some boundary-layer observations. Any attempt to compare detailed observations with idealized models therefore highlights the variability of the real boundary layer.Here direct turbulence measurements across the stable boundary layer from a heterogeneous and an ideal site are contrasted. Recommendations are made for the information needed to distinguish heterogeneous and ideal cases.The companion paper (Part II) discusses further the issues of data, analysis in the presence of variability, and the effects of averaging over heterogeneous terrain.Part of UK Meteorological Office Atmospheric Process Research Division.  相似文献   

2.
The South American Summer Monsoon (SASM) is a prominent feature of summertime climate over South America and has been identified in a number of paleoclimatic records from across the continent, including records based on stable isotopes. The relationship between the stable isotopic composition of precipitation and interannual variations in monsoon strength, however, has received little attention so far. Here we investigate how variations in the intensity of the SASM influence δ18O in precipitation based on both observational data and Atmospheric General Circulation Model (AGCM) simulations. An index of vertical wind shear over the SASM entrance (low level) and exit (upper level) region over the western equatorial Atlantic is used to define interannual variations in summer monsoon strength. This index is closely correlated with variations in deep convection over tropical and subtropical South America during the mature stage of the SASM. Observational data from the International Atomic Energy Agency-Global Network of Isotopes in Precipitation (IAEA-GNIP) and from tropical ice cores show a significant negative association between δ18O and SASM strength over the Amazon basin, SE South America and the central Andes. The more depleted stable isotopic values during intense monsoon seasons are consistent with the so-called ’‘amount effect‘’, often observed in tropical regions. In many locations, however, our results indicate that the moisture transport history and the degree of rainout upstream may be more important factors explaining interannual variations in δ18O. In many locations the stable isotopic composition is closely related to El Niño-Southern Oscillation (ENSO), even though the moisture source is located over the tropical Atlantic and precipitation is the result of the southward expansion and intensification of the SASM during austral summer. ENSO induces significant atmospheric circulation anomalies over tropical South America, which affect both SASM precipitation and δ18O variability. Therefore many regions show a weakened relationship between SASM and δ18O, once the SASM signal is decomposed into its ENSO-, and non-ENSO-related variance.  相似文献   

3.
Summary  High resolution aircraft observations made along flight tracks over inhomogeneous surface in the late wintertime boreal zone are described and compared to 2D mesoscale model simulations with surface properties defined at 2 km resolution from maps. All observations displayed the expected small-scale turbulence. On top of that, the near-surface wind speeds (but not directions) showed mesoscale variations related to local topography and roughness. Upward (but not downward) SW and LW radiative fluxes and ground temperature also displayed mesoscale variability; in SW radiation this was clearly due to local albedo changes. In the sensible heat flux there was strong horizontal variation near the surface in correlation with surface types. The above observed mesoscale along-track variations were reasonably well represented by the mesoscale model simulation. The track-averaged observed sensible and latent heat flux profiles were in rough agreement with a mixing length approach, which used the track-averaged wind, temperature and moisture profiles as input (mimicking a first-order turbulence closure scheme of a GCM). Received September 20, 1999 Revised January 21, 2000  相似文献   

4.
This paper reports on the further development of a new technique for standardization of tree-ring records called the eigen analysis of tree-ring records. The data are from the same sample set of 56 long-lived Qilian junipers (Sabina przewalskii Kom.) from the Dulan region in western China as was used in our previous paper (Yang et al. 2011b). To assess the heteroscedasticity of individual record deviations from the sample set regional curve (RC), we tested five different definitions of those deviations. Direct computations of eigenvectors of all relevant intrarecord covariation matrices turned out to be greatly affected by observational and computational noise; an analytic approximation of these vectors was therefore desirable. The Bessel function of the first kind and the zero order proved suitable for such an approximation, especially because the deviations were defined via subtraction of the RC from raw ring width records. Exclusion of the contributions of the first segment of the Bessel approximation, corresponding to the extremely large first eigenvalue, rendered individual record deviations from RC homoscedastic. Therefore, the routine Fourier basis became applicable to extract climate-dependent components of the residual deviations. A Fourier expansion of the Dulan chronology revealed the quasi-200-year-long solar activity cycle to be the main factor affecting Dulan tree growth.  相似文献   

5.
6.
We propose a method for studying the influence of intraseasonal variability on the interannual variability of seasonal mean fields. The method, using monthly mean data, provides estimates of the interannual variance and covariance, in the seasonal mean field, associated with intraseasonal variability. These estimates can be used to derive patterns of interannual variability associated with meteorological phenomena that vary significantly within a season, such as atmospheric blocking, or intraseasonal oscillations. By removing this intraseasonal component from the total interannual variance/covariance, one can define a slow component of interannual variability that is closely related to very slowly varying (interannual/supra-annual) external forcings and internal dynamics. Together these patterns may help in our understanding of the source of climate predictive skill, and also the influence of intraseasonal variability on interannual variability. To show the efficacy of our methodology, we have tested it on synthetic data, using Monte Carlo simulations of the 500-hPa geopotential heights for boreal winter over the North Pacific/North American region. The synthetic data has been constructed in such a way that the intraseasonal and slow components of interannual variability are known a priori. It is demonstrated that our methodology can effectively separate the spatial patterns of both components of variability. The methodology is also applied to diagnose meteorological phenomena that play major roles in the variability and predictability of DJF New Zealand temperatures.  相似文献   

7.
21个气候模式对东亚夏季环流模拟的评估II:年际变化   总被引:2,自引:2,他引:2  
张宏芳  陈海山 《气象科学》2011,31(3):247-257
利用欧洲中期天气预报中心的ERA40再分析资料, 评估了参与政府间气候变化专门委员会第四次评估报告的21个全球海气耦合模式对东亚地区夏季大气环流年际变率的模拟能力,结果表明:(1)模式对东亚地区不同要素的年际变率模拟能力整体偏弱, 500 hPa高度场的模拟能力总体优于海平面气压场及850 hPa风场;(2)两大环流系统年际变率的模拟结果评估表明:就相关系数而言,副高强度、面积的模拟能力优于印度低压,多数模式能正确模拟出副高1970s后期增强的趋势;就标准差来看,模式对印度低压、印度低压东伸槽模拟效果相对较好;(3)评估三种季风指数的模拟能力结果显示,环流异常指数模拟效果略好,但多数模式都不能模拟出海陆气压差、经向风、环流异常季风指数的年际变化。  相似文献   

8.
A two-dimensional (2-D) mesoscale numerical model is applied to simulate the January 28 cold-air outbreak over the Gulf Stream region during the Intensive Observation Period-2 (IOP-2) of the 1986 Genesis of Atlantic Lows Experiment (GALE). The model utilizes a turbulence closure which involves the turbulent kinetic energy (TKE) and dissipation () equations and combines the level 2.5 formulations of Mellor and Yamada (1982) for better determination of the eddy Prandtl number.The modeled marine boundary layer (MBL) is in good agreement with the observations (Wayland and Raman, 1989) showing a low-level jet west of the Gulf Stream warm core and a constrained boundary layer due to the middle-level (2–4.5 km) stable layer. The MBL-induced single cloud and rain band first appears east of the Gulf Stream boundary, and then moves offshore at the speed of the circulation front. The front, however, moves slightly slower than the ambient flow. Removal of the tropopause does not influence the low-level circulation and the movement of the front. The speed of the front is slightly larger in the baroclinic downshear flow than in the barotropic flow. The results also indicate that the observed high cloud streets propagating downwind of the Gulf Stream may be related to upper-level baroclinic lee waves triggered by an elevated density mountain. The density mountain waves, however, become evanescent as the baroclinity (which gives a larger Scorer parameter) is removed.The modeled 2-D circulation systems are found to be sensitive to differing eddy Prandtl numbers, in contrast to the 1-D model results presented in Part I. Sensitivities become increasingly important as the clouds begin to interact with the MBL. A constant eddy Prandtl number of unity produces a more slantwise convection compared to that by the level 2.5 case. Cloud development is stronger in slantwise convection than in upright convection. The fastest development of clouds can be explained in terms of the conditional symmetric instability (CSI), which begins as the MBL baroclinity becomes sufficiently large.  相似文献   

9.
Various combinations of thirteen regional climate models (RCM) and six general circulation models (GCM) were used in FP6-ENSEMBLES. The response to the SRES-A1B greenhouse gas concentration scenario over Europe, calculated as the difference between the 2021–2050 and the 1961–1990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance explained for temperature and precipitation changes over eight European sub-areas. Three sources of uncertainty can be evaluated from the ENSEMBLES database. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30) despite a non-negligible interannual variability. Regional model uncertainty is due to the fact that the RCMs use different techniques to discretize the equations and to represent sub-grid effects. Global model uncertainty is due to the fact that the RCMs have been driven by different GCMs. Two methods are presented to fill the many empty cells of the ENSEMBLES RCM?×?GCM matrix. The first one is based on the same approach as in FP5-PRUDENCE. The second one uses the concept of weather regimes to attempt to separate the contribution of the GCM and the RCM. The variance of the climate response is analyzed with respect to the contribution of the GCM and the RCM. The two filling methods agree that the main contributor to the spread is the choice of the GCM, except for summer precipitation where the choice of the RCM dominates the uncertainty. Of course the implication of the GCM to the spread varies with the region, being maximum in the South-western part of Europe, whereas the continental parts are more sensitive to the choice of the RCM. The third cause of spread is systematically the interannual variability. The total uncertainty about temperature is not large enough to mask the 2021–2050 response which shows a similar pattern to the one obtained for 2071–2100 in PRUDENCE. The uncertainty about precipitation prevents any quantitative assessment on the response at grid point level for the 2021–2050 period. One can however see, as in PRUDENCE, a positive response in winter (more rain in the scenario than in the reference) in northern Europe and a negative summer response in southern Europe.  相似文献   

10.
This study focuses on the intrusion of dry air into the convective boundary layer (CBL) originating from the top of the CBL. Aircraft in-situ measurements from the IHOP_2002 field campaign indicate a prevalence of negative skewness of the water vapour distribution within the growing daytime CBL over land. This negative skewness is interpreted according to large-eddy simulations (LES) as the result of descending dry downdrafts originating from above the mixed layer. LES are used to determine the statistical properties of these intrusions: their size and thermodynamical characteristics. A conditional sampling analysis demonstrates their significance in the retrieval of moisture variances and fluxes. The rapid CBL growth explains why greater negative skewness is observed during the growing phase: the large amounts of dry air that are quickly incorporated into the CBL prevent a full homogenisation by turbulent mixing. The boundary-layer warming in this phase also plays a role in the acquisition of negative buoyancy for these dry tongues, and thus possibly explains their kinematics in the lower CBL. Budget analysis helps to identify the processes responsible for the negative skewness. This budget study underlines the main role of turbulent transport, which distributes the skewness produced at the top or the bottom of the CBL into the interior of the CBL. The dry tongues contribute significantly to this turbulent transport.  相似文献   

11.
Observed boundary-layer circulations close to the confluence of the Negro and Solimões rivers near Manaus in the Brazilian equatorial Amazon forest were presented in Part I. These are shown through linear analysis and second-order turbulence modelling to be aspects of a river breeze superimposed on the basic flow. Linear analysis is presented to estimate the spatial structure and intensity of a breeze induced by a river with width and thermal contrast similar to that observed in the central Amazon. It is found that observed thermal contrasts are sufficient to produce a river breeze that can be perceived more than 20 km inland daily. A one-dimensional second-order closure model is used to show that observed nocturnal low-level wind maxima and diurnal surface wind rotation are aspects of a river breeze interacting with the seasonally-varying mean flow. At night, partial decoupling of the surface from the lower atmosphere allows the land breeze to be expressed as a low-level wind maximum. During the day, convective mixing communicates upper level winds to the surface during rapid morning boundary-layer growth. Rotation of the surface wind follows as the river breeze circulation is then superimposed.  相似文献   

12.
We examine the representation of the mean state and interannual variability of Antarctic sea ice in six simulations of the twentieth century from coupled models participating in the Intergovernmental Panel on Climate Change fourth assessment report. The simulations exhibit a largely seasonal southern hemisphere ice cover, as observed. There is a considerable scatter in the monthly simulated climatological ice extent among different models, but no consistent bias when compared to observations. The scatter in maximum winter ice extent among different models is correlated to the strength of the climatological zonal winds suggesting that wind forced ice transport is responsible for much of this scatter. Observations show that the leading mode of southern hemisphere ice variability exhibits a dipole structure with anomalies of one sign in the Atlantic sector associated with anomalies of the opposite sign in the Pacific sector. The observed ice anomalies also exhibit eastward propagation with the Antarctic circumpolar current, as part of the documented Antarctic circumpolar wave phenomenon. Many of the models do simulate dipole-like behavior in sea ice anomalies as the leading mode of ice variability, but there is a large discrepancy in the eastward propagation of these anomalies among the different models. Consistent with observations, the simulated Antarctic dipole-like variations in the ice cover are led by sea-level pressure anomalies in the Amundsen/ Bellingshausen Sea. These are associated, to different degrees in different models, with both the southern annular mode and the El Nino-Southern Oscillation (ENSO). There are indications that the magnitude of the influence of ENSO on the southern hemisphere ice cover is related to the strength of ENSO events simulated by the different models.  相似文献   

13.
14.
Abstract

This paper presents the seasonal dependence of the stationary and transient eddies of the GLAS/UMD GCM from a two‐year annual cycle integration.

The simulated Northern Hemisphere stationary waves are realistic in winter (below 250 mb) and in spring and fall; in winter a large anomalous ridge over the date‐line is noted above 250 mb. The model does not simulate the winter barotropic trough over eastern Canada. In summer the mid‐latitude stationary waves are poorly simulated (possibly owing to anomalous summer rainfall), but the monsoonal structure in the tropics is captured.

The stationary wave field at 500 mb in the Southern Hemisphere is not well simulated, with the range of season‐to‐season variability being much larger than observed. The zonally averaged stationary wave rms is realistic below 200 mb in winter and spring, but is less so in summer and autumn, possibly due to erroneous summertime precipitation.

The geographical distributions of 500‐mb transient and band‐pass height rms, of transient 850‐mb heat flux and of 200‐mb momentum flux in the Northern Hemisphere are well simulated except for summer. The latitude‐height dependence of height rms and low‐level transient heat flux is realistic in both summer and winter, but the transient momentum flux is not well simulated in summer. The mid‐level transient heat flux is too strong.

The overall pattern of transient activity at 500 mb in the Southern Hemisphere is reasonable in the GCM, although there is too much variability in the eastern Pacific, while the observed peak in rms in the New Zealand sector is displaced eastwards in the GCM. The latitude‐height dependence of transient height rms and transient fluxes of heat and momentum looks quite realistic, and is similar in accuracy to the Northern Hemispheric results.  相似文献   

15.
Four models of surface boundary-layer flow in complex terrain are compared with observations made at Blashaval Hill, North Uist, Scotland. The field experiment is described by Mason and King (1985). Three of the models are derived from the two-dimensional theory of Jackson and Hunt (1975) and are described in Mason and King (1985), Walmsley et al. (1986) and Troen and Petersen (1989). The fourth is a mass-consistent code based on Traci et al. (1979). The model results are in good agreement with each other and are generally within the observed range of variation ( ~ ± 16%) in normalized wind speed. For most wind direcions (7 of 11), model results of normalized wind speed at the summit were within 7% of the observed mean values. For some wind directions, calculations using the Guidelines of Walmsley et al. (1989) suggested that variations in surface roughness were important. This led us to apply one of our models incorporating nonuniform surface roughness. The lack of significant improvement for cases when water lay upstream of Blashaval Hill is attributed to compensating changes at summit and reference sites and to very local effects on the wind data. Sensitivity to topography lying to the west and northwest of Blashaval was also investigated. Results suggested an influence from those distant topographic features for some wind directions. When those features were incorporated, maximum errors in normalized wind speed at the summit were reduced from 18 to 13%.  相似文献   

16.
The transition in a marine boundary layer (MBL) from stratocumulus topped to shallow cumulus topped is investigated by using a large eddy simulation (LES) model. The experiments performed aim to examine the influence on the transition of (1) the probability of buoyancy reversal at the MBL top (i.e. situations in which the mixture of two air parcels becomes denser than either of the original parcels due to phase change or other nonlinear processes involved in the mixing), and (2) the degree of decoupling in the MBL (i.e. the strength of a shallow stably stratified layer near cloud base). Our results suggest that a stratocumulus-topped MBL is most likely to transit to a cumulus-topped one when (1) there exists high probability of buoyancy reversal at the MBL top, and (2) the MBL is decoupled due to large surface evaporation. We argue that a parameterization that includes representation of those two effects combined has the potential to provide a simple way of predicting the MBL transition in climate models.  相似文献   

17.
Summary An unusually strong nocturnal downvalley wind can be regularly observed in the upper Isar Valley close to Mittenwald (Bavarian Alps) when a high-pressure system is located over Central Europe or when ambient southerly winds are present. Due to the structure of the local topography, this downvalley wind has foehn-like properties in the sense that the breakthrough of the flow into the valley is characterized by a strong increase in temperature and a decrease in relative humidity. Therefore the author called this flow Minifoehn. In fact, wind speeds are low in comparison to deep foehn, but gusts may reach values up to 20ms–1, even under the influence of high pressure systems with weak atmospheric pressure gradients. To investigate the Minifoehn, surface stations have been installed for collecting temperature, humidity, wind and pressure data. Measurements have shown that the Minifoehn represents the upper part of one of the drainage currents which flows over a mountain ridge into the valley at Mittenwald. Nocturnally cooled air drains from a plateau south of Mittenwald through different valleys which merge again near Mittenwald. It seems that the forcing of the nocturnal currents is dominated by the temperature difference between this plateau and the free atmosphere above Mittenwald at the same level. Strong temperature differences are found during clear winter nights and in case of subsidence inversions. Moreover, the appearance of the Minifoehn in autumn and winter is so frequent that we even may find a climatic effect: the upper Isar Valley is usually free of fog during these seasons and nocturnal temperatures are often considerably higher than in other Bavarian Alpine valleys at comparable altitude.  相似文献   

18.
An observational analysis of boundary layer moisture evolution during the dryline on 22 May 2002 is presented. This dryline occurred during the International H2O Project (IHOP) and was well observed by a variety of instruments at the intensive observing region (IOR), Homestead site. Although the observed strong upward air motion and the well-mixed boundary layer favored convection, the dryline did not trigger a convective storm. Several operational and research forecast models predicted deep convection at the IOR. High spatial and temporal resolution observational data from National Aeronautics and Space Administration (NASA) lidar instruments, Atmospheric Emitted Radiance Interferometer (AERI), sounding profiles and simulation results are used to investigate the role of moisture during this dryline. It is hypothesized that in addition to convection and lifting, abundant, deep and persistent moisture is required for a dryline to trigger convection. The possible reason why the dryline failed to trigger convection over the IOR is discussed.  相似文献   

19.
A discriminant analysis is applied in order to determine the relationships between circulation types in the middle troposphere and prevailing weather types over two major Greek cities, Athens and Thessaloniki. In order to describe the synoptic conditions, an automatic classification scheme for the Greek region is used. For each circulation type identified (14 in total), several meteorological parameters at the 500 hPa level are calculated such as geopotential heights and their anomalies, temperature and relative vorticity. Weather group-types that reflect the conditions at the surface, were previously defined using a two-step cluster analysis. These types result from a combination of five meteorological parameters—maximum temperature, precipitation amount, relative humidity, wind velocity and sunshine duration. The study period is 43 years long (1958–2000) and is restricted to the cold and wet period of the year, from December until March. For Athens, six weather types are developed, whereas for Thessaloniki five are produced. By means of a stepwise discriminant analysis (DA) model, the most important variables from the 500 hPa level are found and are used to generate the necessary functions that can discriminate weather types over the two stations. The aim of the present study is first to discriminate weather types effectively and to identify the most important discriminating variables, and second, to connect these weather types to elements of the prevailing synoptic pattern, through mathematical functions provided by DA. The results of the evaluation of the aforementioned procedure are considered to be very satisfactory.  相似文献   

20.
The objective of this study is to investigate the predictability of monthly climate variables in the Mediterranean area by using statistical models. It is a well-known fact that the future state of the atmosphere is sensitive to preceding conditions of the slowly varying ocean component with lead times being sufficiently long for predictive assessments. Sea surface temperatures (SSTs) are therefore regarded as one of the best variables to be used in seasonal climate predictions. In the present study, SST-regimes which have been derived and discussed in detail in Part I of this paper, are used with regard to monthly climate predictions for the Mediterranean area. Thus, cross-correlations with time lags from 0 up to 12?months and ensuing multiple regression analyses between the large-scale SST-regimes and monthly precipitation and temperature for Mediterranean sub-regions have been performed for the period 1950?C2003. Statistical hindcast ensembles of Mediterranean precipitation including categorical forecast skill can be identified only for some months in different seasons and for some individual regions of the Mediterranean area. Major predictors are the tropical Atlantic Ocean and the North Atlantic Ocean SST-regimes, but significant relationships can also be found with tropical Pacific and North Pacific SST-regimes. Statistical hindcast ensembles of Mediterranean temperature with some categorical forecast skill can be determined primarily for the Western Mediterranean and the North African regions throughout the year. As for precipitation the major predictors for temperature are located in the tropical Atlantic Ocean and the North Atlantic Ocean, but some connections also exist with the Pacific SST variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号