首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
柴达木盆地西部地区新生代沉积与构造演化   总被引:1,自引:0,他引:1  
新生代柴西地区南北变形具有很好的对称性,盆地边缘发育高角度逆冲断层,古近纪时期库木库里和苏干湖盆地与柴达木盆地相连,据此认为柴西地区是地壳纵弯褶皱的机制下形成的新生代向斜沉降区。其构造演化经历了古新世-渐新世早期纵弯褶皱形成、晚渐新世-中新世纵弯褶皱发展和晚期盆内断褶构造强烈活动三个阶段,控制了相应时期的沉积边界和沉积相分布。古近纪时期库木库里盆地和苏干湖盆地是柴达木盆地的一部分,新近纪以来,由于盆缘逆冲断层的活动,库木库里和苏干湖盆地逐步与柴达木盆地分割开来。据此认为盆地中部一里坪地区和盆地边缘的油气勘探有较大潜力。  相似文献   

2.
柴达木盆地西部地区新生代沉积与构造演化   总被引:2,自引:0,他引:2  
方向 《地质与勘探》2014,50(1):28-36
[摘要]新生代柴西地区南北变形具有很好的对称性,盆地边缘发育高角度逆冲断层,古近纪时期库木库里和苏干湖盆地与柴达木盆地相连,据此认为柴西地区是地壳纵弯褶皱的机制下形成的新生代向斜沉降区。其构造演化经历了古新世~渐新世早期纵弯褶皱形成、晚渐新世~中新世纵弯褶皱发展和晚期盆内断褶构造强烈活动三个阶段,控制了相应时期的沉积边界和沉积相分布。古近纪时期库木库里盆地和苏干湖盆地是柴达木盆地的一部分,新近纪以来,由于盆缘逆冲断层的活动,库木库里和苏干湖盆地逐步与柴达木盆地分割开来。据此认为盆地中部一里坪地区和盆地边缘的油气勘探有较大潜力。  相似文献   

3.
阿尔金断裂带新生代活动在柴达木盆地中的响应   总被引:4,自引:0,他引:4  
阿尔金断裂新生代以来发生多期次的走滑运动,并伴随强烈的隆升作用,进而影响柴达木盆地新生代的构造演化。本文通过遥感卫星影像解译、地震反射剖面解释、区域地层分析,结合野外考察资料对阿尔金断裂新生代活动在柴达木盆地中的响应进行了研究。对柴达木盆地卫星影像的解译发现盆地中褶皱形态指示了近东西走向的褶皱构造带与近南北走向的褶皱构造带的叠加干涉效应,其中近东西向褶皱构造带是在印度/欧亚板块碰撞作用下青藏高原隆升并向北东扩展过程的响应,近南北向褶皱构造带是阿尔金断裂新生代活动的响应。对NW-SE向穿过阿尔金山-柴达木盆地的盆山结合带地震反射剖面的再解释,发现新生代地层中发育的多层生长地层,记录了阿尔金断裂新生代活动的信息。对盆地中新生代地层分布等厚图褶皱干涉样式的分析表明,上油砂山组沉积时期(14.9Ma)阿尔金断裂活动已经明显影响到柴达木盆地,而狮子沟组沉积时期(8.2~2.6Ma)断裂活动对柴达木盆地改造最强。通过对研究区已有的低温热年代学数据和沉积、构造、磁性地层年代学等方面研究成果的总结和分析,认为阿尔金断裂在新生代至少存在三期(~30Ma,~8Ma、~2.6Ma)强烈的构造活动和隆升作用,在柴达木盆地内表现为相应地质时代沉积速率的加快、沉积物岩性的变化、构造地貌的变形和同构造生长地层的出现。其中后两期(~8Ma、~2.6Ma)构造活动在整个青藏高原及周边地区广泛存在,为准同期构造事件,而月牙山地区地震地表破裂带的发现则表明阿尔金断裂带现在仍在强烈活动,并且直接影响到了柴达木盆地。阿尔金断裂带新生代以来的构造活动具有多期性,并影响和改造了柴达木盆地,可能对油气成藏有重要影响。  相似文献   

4.
陕西凤太晚古生代拉分盆地动力学与金-多金属成矿   总被引:3,自引:0,他引:3  
方维萱  黄转盈 《沉积学报》2012,30(3):405-421
采用沉积盆地构造-古地理位置恢复重建和构造-岩相学等新方法研究认为,凤太晚古生代沉积盆地属于受板块斜向俯冲碰撞动力学控制下的拉分盆地。在中泥盆世初期,凤太沉积盆地被周缘垂向基底隆起分隔,其成盆构造动力学主要受四组同生断层,晚古生代沉降中心和沉积中心不断发生迁移。中泥盆世中期在盆地北部形成了北西向沉降中心和沉积中心,晚泥盆世末期沉积盆地萎缩,沉降中心和沉积中心收缩于沉积盆地中心。石炭纪沉降中心和沉积中心从盆地中心迁移到盆地四周边缘的同生断裂带附近,在沉积盆地北侧边缘商丹带南侧,形成了石炭纪-早三叠世与俯冲消减带有关的楔状沉积充填体。在凤太拉分盆地中形成的近东西向、北北东向、近南北向和北西向网状同生断裂带系统共同控制了凤太泥盆纪拉分盆地形成与演化过程。其中,商丹带(西段)、礼县-凤县-凤镇-山阳同生断裂带(中段)和酒奠梁-镇安-板岩镇同生断裂带(西段)三个主控同生断裂带不但在泥盆纪期间对于凤太泥盆纪拉分盆地形成具有显著控制作用,而且石炭纪-早三叠世拉分盆地演化过程也具有十分重要的控制作用,石炭纪-早三叠世同生断裂带发生构造反转并控制了沉降中心和沉积中心。采用沉积盆地动力学和构造-岩相学等新方法研究认为,在凤太晚古生代拉分盆地具有分级特征,西部凤县二级盆地为金-多金属成矿集中区,东部太白二级盆地为金矿成矿集中区。在八方山-银母寺三级拉分盆地中,八方山和银母寺等多金属矿床与八卦庙超大型金矿床具有矿田尺度上成矿分带,主要由于三级盆地、同生断裂、热水沉积岩相和构造热流体叠加岩相控制了矿田和矿床尺度上金与多金属成矿分带。凤太拉分盆地北部和东部金矿矿源层和初步富集成矿形成主要与泥盆纪钠长岩相和钠质热水沉积岩相有关,并受钠长碳酸质角砾岩-铁白云石钠长石角砾岩等石炭纪构造-热流体岩相叠加;凤太拉分盆地南部温江寺三叠系浊积岩系中热水硅质岩相和层状英安质凝灰岩是卡林型金矿重要赋矿层位;凤太拉分盆地中部热水沉积-改造型铅锌矿主要与硅质岩相和菱铁矿铁白云岩相等热水沉积相密切有关。  相似文献   

5.
可可西里西段羊湖盆地沉积、构造特征及其动力学意义   总被引:1,自引:0,他引:1  
对可可西里西段新生代盆地缺乏了解是导致该区新生代地质演化存在争议的重要原因.本文以沉积学和构造变形分析为主要手段,对可可西里西段羊湖盆地时代、充填序列、物源区和变形特征进行了分析,结果表明,羊湖盆地新生界沉积厚度大于1302m,主要由下部雅西错组冲积扇相碎屑岩和上部五道梁群湖泊相碳酸盐岩组成,其岩石组合和充填序列与可可西里东段具有一致性,同时古流向和碎屑锆石U-Pb年代学分析显示盆地物源来南部的羌塘地块,盆地形成演化受南部褶皱冲断带制约,盆地构造变形强烈,沿褶皱冲断带和羊湖盆地地壳分别发生51%和41%的缩短.沉积充填结构和变形特征表明,羊湖盆地与东段可可西里盆地具有相同的演化历史和性质,预示青藏高原中部在渐新世-中新世在存在一个大的、统一的可可西里盆地.  相似文献   

6.
陆相坳陷型沉积盆地通常发育在克拉通的内部差异沉降和裂谷盆地后期的热沉降等不同的大地构造阶段,是一类独特而又十分重要的沉积盆地。本文基于该类盆地的特点,提出了综合利用盆地沉积相、残余厚度图、区域构造大剖面及其平衡恢复等多方面资料对其盆地原型进行恢复的方法和流程,具体包括以残余沉积相恢复盆地原始边界、以平衡剖面恢复盆地原始形态、以关键钻井资料与平衡剖面相结合恢复原始沉积厚度。该方法消除了构造运动对盆地形态的改变,真正将盆地原型纳入到其原始形态框架下进行研究。本文还利用该方法对柴达木盆地新生代各地层沉积时的盆地原型分别进行了恢复,并据此对其新生代的沉积演化进行了分析,结果表明柴达木盆地新生代的沉积格局变化与阿尔金断裂的活动息息相关。  相似文献   

7.
本文通过对南海北部大陆边缘东、西部新生代沉积盆地基底岩性特征、基底构造格局、地壳结构和基底沉降结构等方面的论述,分析了北部陆缘东西部的地质差异,探讨了这些差异产生的原因。认为南海北部陆缘东西部新生代沉积盆地发育于不同的构造单元上,在形成演化过程中,基底具有不同的沉降结构和构造活动性,而地壳结构的明显差异,揭示了东、西部沉积盆地形成内因的差异,东部盆地发育于拉张减薄的陆壳之上,并伴有地幔隆起与地壳的上拱作用,西部盆地则主要以地壳的裂陷作用为主。  相似文献   

8.
柴达木盆地新生代不同层次构造特征   总被引:8,自引:1,他引:8       下载免费PDF全文
应用柴达木盆地地震、非地震资料进行综合解释研究发现,新生代盆地深、浅层构造存在较大差异,盆地沉积在不同时期受到不同构造格局的控制。古近系受近东西向构造控制,新近系受北西向构造控制,显示了柴达木盆地新生代为不同时期受不同方向构造控制的大型叠合盆地。盆地地层深、浅层构造变形特征不同,深层表现为陡倾的逆冲断裂构造,以断块构造为主要特征;中浅层表现为滑脱褶皱与滑脱断裂构造;地表在背斜核部发育斜列展布的正断层构造。盆地经历了多旋回沉积和多方式的后期改造,不同的构造组合形成了不同的储油气构造模式,认识这一点对于盆地深层的油气勘探,特别是寻找隐蔽油气藏具有重要意义。  相似文献   

9.
为了研究渭河盆地新生代沉积速率特征与成因,系统收集、整理了研究区已有的重力和磁力资料,结合地震、地质、钻井等研究成果,分析了新生代各期沉积速率变化,探讨了盆地内新生代各期沉积速率与盆内基底、断裂、周缘构造的关系。研究表明,中新世,西安凹陷沉积速率较大,几乎是固市凹陷的2倍,沉积速率最大处位于渭深10井附近,约为93m/Ma;上新世,西安凹陷沉积速率仍较固市凹陷大,二者的沉积速率最大处分别为1 800,1 400m/Ma;第四纪三门期,盆内沉积速率逐渐变缓,沉积速率最大处位于固市凹陷内,约为380m/Ma;秦川期,盆地整体沉积速率明显加快。新生代西安凹陷沉降中心变化不大,主要位于户县以北地区,而固市凹陷沉降中心多变,主要位于华县和临潼以北地区,沉降中心整体偏南。沉积速率的变化受多种因素控制,古近纪,盆地周缘板块运动导致地壳加厚及深部地幔对流对盆内沉积速率影响较小;新近纪早中新世,受青藏高原快速隆升影响,渭河盆地沉积速率显著增大;晚中新世,秦岭北缘大型正断层活动导致渭河盆地发生大规模的沉降和扩展;上新世到第四纪,盆内沉积速率受秦岭山脉和渭北隆起共同作用。  相似文献   

10.
南宁盆地北湖凹陷沉积体系发育特征   总被引:1,自引:0,他引:1  
刘春光 《云南地质》1999,18(3):266-274
南宁盆地是华南加里东褶皱系,右江印支褶皱带南部之西大明山-昆仑关隆起带内,早古生代褶皱基底上的新生代断陷盆地。盆地的北缘为控盆地沉降的盆缘断裂,南部为盆地的斜坡带。南宁盆地新生代地层沉积时的主要物源来自盆地的两端,盆地的南北两侧提供次要物源。  相似文献   

11.
管树巍 《地质科学》2018,(1):221-241
利用天然地震环境噪声成像研究柴达木盆地及邻区的岩石圈结构,利用工业地震剖面研究新生代构造变形的几何学与运动学特征,在此基础上讨论柴达木盆地新生代的成盆动力学过程与演化。柴达木盆地及邻区的岩石圈表现出向南和向北挠曲的特征。其中,东昆仑-可可西里地区地壳深度30~40 km 的低速层向北抬升,可与柴达木盆地内部深度15 km 左右的低速区相连接,反映了东昆仑-祁漫塔格山向柴达木盆地的逆冲推覆作用,因此在岩石圈尺度上,柴达木新生代成盆动力学过程与前陆盆地是相似的,表现为构造负荷引起的挠曲沉降。柴达木盆地新生代构造变形受控于柴西南和柴北缘两期冲断系统,柴北缘冲断系统形成于古新世-始新世路乐河-下干柴沟期,主要记录于祁连山山前、阿尔金山山前北段及冷湖和鄂博梁深层;柴西南冲断系统形成于早中新世下油砂山期以来,现今盆地南部的北西向构造带和盆地北部的冷湖和鄂博梁浅层构造都属于这期冲断系统。由于柴西南冲断系统的前锋构造已扩展至柴达木盆地北缘,并受到阿尔金山和祁连山的阻挡,缺少稳定的台盆区,因而使得柴达木盆地新生界不发育前陆盆地特有的楔状沉积结构。柴西南和柴北缘两期冲断系统的叠加,不仅使得柴达木新生代构造变形在时间和空间上呈现有次序的分布,也使得新生代盆地呈现出开启到封闭的演化格局,从而对新生界油气生成和聚集产生了重要影响。  相似文献   

12.
The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area and LA-ICP MS zircon U-Pb dating of Paleozoic and Mesozoic magmatisms of granitoids in the basement of the eastern Qaidam Basin on the basis of 16 granitoid samples collected from the South Qilian Mountains, the Qaidam Basin basement and the East Kunlun Mountains. According to the results in this paper, the basement of the basin, from the northern margin of the Qaidam Basin to the East Kunlun Mountains, has experienced at least three periods of intrusive activities of granitoids since the Early Paleozoic, i.e. the magmatisms occurring in the Late Cambrian (493.1±4.9 Ma), the Silurian (422.9±8.0 Ma-420.4±4.6 Ma) and the Late Permian-Middle Triassic (257.8±4.0 Ma-228.8±1.5 Ma), respectively. Among them, the Late Permian - Middle Triassic granitoids form the main components of the basement of the basin. The statistics of dated zircons in this paper shows the intrusive magmatic activities in the basement of the basin have three peak ages of 244 Ma (main), 418 Ma, and 493 Ma respectively. The dating results reveal that the Early Paleozoic magmatism of granitoids mainly occurred on the northern margin of the Qaidam Basin and the southern margin of the Qilian Mountains, with only weak indications in the East Kunlun Mountains. However, the distribution of Permo-Triassic (P-T) granitoids occupied across the whole basement of the eastern Qaidam Basin from the southern margin of the Qilian Mountains to the East Kunlun Mountains. An integrated analysis of the age distribution of P-T granitoids in the Qaidam Basin and its surrounding mountains shows that the earliest P-T magmatism (293.6-270 Ma) occurred in the northwestern part of the basin and expanded eastwards and southwards, resulting in the P-T intrusive magmatism that ran through the whole basin basement. As the Cenozoic basement thrust system developed in the eastern Qaidam Basin, the nearly N-S-trending shortening and deformation in the basement of the basin tended to intensify from west to east, which went contrary to the distribution trend of N-S-trending shortening and deformation in the Cenozoic cover of the basin, reflecting that there was a transformation of shortening and thickening of Cenozoic crust between the eastern and western parts of the Qaidam Basin, i.e., the crustal shortening of eastern Qaidam was dominated by the basement deformation (triggered at the middle and lower crust), whereas that of western Qaidam was mainly by folding and thrusting of the sedimentary cover (the upper crust).  相似文献   

13.
Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozoic Ordos Basin, it is demonstrated that the depocenters migrated counterclockwise from southeast to the north and then to the southwest from the Middle-Late Triassic to the Early Cretaceous. There were no unified and larger-scale accumulation centers except several small isolated accumulation centers before the Early Cretaceous. The reasons why belts of relatively thick strata were well developed in the western basin in several stages are that this area is near the west boundary of the original Ordos Basin, there was abundant sediment supply and the hydrodynamic effect was strong. Therefore, they stand for local accumulation centers. Until the Early Cretaceous, depocenters, accumulation centers and subsidence centers were superposed as an entity in the southwest part of the Ordos Basin. Up to the end of the Middle Jurassic, there still appeared a paleogeographic and paleostructural higher-in-west and lower-in-east framework in the residual basin to the west of the Yellow River. The depocenters of the Ordos Basin from the Middle–Late Triassic to the Middle Jurassic were superposed consistently. The relatively high thermal maturation of Mesozoic and Paleozoic strata in the depocenters and their neighborhood suggest active deep effects in these areas. Generally, superposition of depocenters in several periods and their consistency with high thermal evolution areas reveal the control of subsidence processes. Therefore, depocenters may represent the positions of the subsidence centers. The subsidence centers (or depocenters) are located in the south of the large-scale cratonic Ordos Basin. This is associated with flexural subsidence of the foreland, resulting from the strong convergence and orogenic activity contemporaneous with the Qinling orogeny.  相似文献   

14.
Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies,sedimentary provenance analysis and thickness distribution of the Mesozoic Ordos Basin,it is demonstrated that the depocenters migrated counterclockwise from southeast to the north and then to the southwest from the Middle-Late Triassic to the Early Cretaceous.There were no unified and larger-scale accumulation centers except several small isolated accumulation c...  相似文献   

15.
In contrast to previously published models for the area, the seismic reflection Moho is essentially flat beneath the NE German Basin along the DEKORP deep seismic profile Basin'96. This raises the question, whether the present structure of the crust and flat Moho reflect the initial formation of the basin or modification by more recent processes. A 2D flexural model, developed for a thin elastic plate, is presented together with lithospheric strength profiles calculated along the BASIN 9601 reflection seismic line. The analysis shows a southward decrease of lithospheric strength below the Basin, with a lithospheric decoupling between the crust and the mantle. The modelling supports the hypothesis that the present Moho topography is caused by flexural buckling which caused subsidence of the NE German Basin during the Upper Cretaceous–Early Cenozoic inversion event. This suggests that the basin is in isostatic disequilibrium, and that compressive stresses are required to keep the present basin geometry.  相似文献   

16.
The Central European Basin System (CEBS) is composed of a series of subbasins, the largest of which are (1) the Norwegian–Danish Basin (2), the North German Basin extending westward into the southern North Sea and (3) the Polish Basin. A 3D structural model of the CEBS is presented, which integrates the thickness of the crust below the Permian and five layers representing the Permian–Cenozoic sediments. Structural interpretations derived from the 3D model and from backstripping are discussed with respect to published seismic data. The analysis of structural relationships across the CEBS suggests that basin evolution was controlled to a large degree by the presence of major zones of crustal weakness. The NW–SE-striking Tornquist Zone, the Ringkøbing-Fyn High (RFH) and the Elbe Fault System (EFS) provided the borders for the large Permo–Mesozoic basins, which developed along axes parallel to these fault systems. The Tornquist Zone, as the most prominent of these zones, limited the area affected by Permian–Cenozoic subsidence to the north. Movements along the Tornquist Zone, the margins of the Ringkøbing-Fyn High and the Elbe Fault System could have influenced basin initiation. Thermal destabilization of the crust between the major NW–SE-striking fault systems, however, was a second factor controlling the initiation and subsidence in the Permo–Mesozoic basins. In the Triassic, a change of the regional stress field caused the formation of large grabens (Central Graben, Horn Graben, Glückstadt Graben) perpendicular to the Tornquist Zone, the Ringkøbing-Fyn High and the Elbe Fault System. The resulting subsidence pattern can be explained by a superposition of declining thermal subsidence and regional extension. This led to a dissection of the Ringkøbing-Fyn High, resulting in offsets of the older NW–SE elements by the younger N–S elements. In the Late Cretaceous, the NW–SE elements were reactivated during compression, the direction of which was such that it did not favour inversion of N–S elements. A distinct change in subsidence controlling factors led to a shift of the main depocentre to the central North Sea in the Cenozoic. In this last phase, N–S-striking structures in the North Sea and NW–SE-striking structures in The Netherlands are reactivated as subsidence areas which are in line with the direction of present maximum compression. The Moho topography below the CEBS varies over a wide range. Below the N–S-trending Cenozoic depocentre in the North Sea, the crust is only 20 km thick compared to about 30 km below the largest part of the CEBS. The crust is up to 40 km thick below the Ringkøbing-Fyn High and up to 45 km along the Teisseyre–Tornquist Zone. Crustal thickness gradients are present across the Tornquist Zone and across the borders of the Ringkøbing-Fyn High but not across the Elbe Fault System. The N–S-striking structural elements are generally underlain by a thinner crust than the other parts of the CEBS.The main fault systems in the Permian to Cenozoic sediment fill of the CEBS are located above zones in the deeper crust across which a change in geophysical properties as P-wave velocities or gravimetric response is observed. This indicates that these structures served as templates in the crustal memory and that the prerift configuration of the continental crust is a major controlling factor for the subsequent basin evolution.  相似文献   

17.
东海陆架盆地新生代扩张率的估算   总被引:4,自引:0,他引:4       下载免费PDF全文
郝重涛  叶洪 《地质科学》1999,34(1):29-39
东海陆架盆地是位于中国大陆东部边缘大陆地壳之上的边缘海盆地。盆地新生代构造演化经历了断陷(初始沉降)和坳陷(热控沉降)两个阶段。本文利用钻井及地震反射剖面资料,通过钻井古地层剥蚀量和剥蚀时间的恢复,应用Mckenzie(1978)的均一拉伸模式和Sclater(1985)的双层拉伸模式对陆架盆地,主要是浙东坳陷的西湖凹陷进行了基底沉降和地壳岩石圈扩张率的定量估算。计算结果表明东海陆架盆地沉降速率早期较快,后期变慢。西湖凹陷新生代以来地壳岩石圈扩张率,在凹陷北部(D800测线)为40%-50%,中部(D688测线)为100%-140%,南部(G455测线)为60%-120%。  相似文献   

18.
柴达木盆地为一中-新生代盆地,位于青藏高原北缘,盆内中-新生代地层发育,很好地记录了印度板块与欧亚板块自距今55Ma以来碰撞传播到高原北缘的地质事件。本文以最新的高精度磁性地层和年代地层为约束,通过盆地内部一条北东——南西向地震大剖面,用平衡剖面方法恢复新生代以来盆地因两大板块碰撞而引起的北东——南西向地壳缩短量,揭示盆地的性质和变形历史。结果表明:柴达木盆地在印度板块与欧亚板块碰撞的早期就开始变形,呈现弱的挤压状态,至始新世中——晚期变形明显增强,然后略为减弱,从中新世中-晚期尤其更新世以来地壳缩短速率快速增加,反映此时挤压变形最强烈,高原北部快速隆升。  相似文献   

19.
The Late Cretaceous–Cenozoic evolution of the North German Basin has been investigated by 3-D thermomechanical finite element modelling. The model solves the equations of motion of an elasto-visco-plastic continuum representing the continental lithosphere. It includes the variations of stress in time and space, the thermal evolution, surface processes and variations in global sea level.The North German Basin became inverted in the Late Cretaceous–Early Cenozoic. The inversion was most intense in the southern part of the basin, i.e. in the Lower Saxony Basin, the Flechtingen High and the Harz. The lower crustal properties vary across the North German Basin. North of the Elbe Line, the lower crust is dense and has high seismic velocity compared to the lower crust south of the Elbe Line. The lower crust with high density and high velocity is assumed to be strong. Lateral variations in lithospheric strength also arise from lateral variations in Moho depth. In areas where the Moho is deep, the upper mantle is warm and the lithosphere is thereby relatively weak.Compression of the lithosphere causes shortening, thickening and surface uplift of relatively weak areas. Tectonic inversion occurs as zones of preexisting weakness are shortened and thickened in compression. Contemporaneously, the margins of the weak zone subside. Cenozoic subsidence of the northern part of the North German Basin is explained as a combination of thermal subsidence and a small amount of deformation and surface uplift during compression of the stronger crust in the north.The modelled deformation patterns and resulting sediment isopachs correlate with observations from the area. This verifies the usefulness and importance of thermomechanical models in the investigation of intraplate sedimentary basin formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号