首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Dog Creek archaeological site (NcVi‐3), located in the northern Yukon, provides evidence of complex site transformational processes related to microclimatic conditions occurring since the mid‐Holocene. Geoarchaeological research at Dog Creek sought to interpret site formation processes in order to understand the relationship between surficial artifacts, buried artifacts, and stratified sediments. It also attempted to reconstruct the periglacial processes that were active in transforming the site and their relationships to microclimatic conditions. Sedimentology and fabric analysis show that artifacts were buried by solifluction and disturbed by frost heave and cryoturbation. Radiocarbon dating and pollen analysis demonstrated that solifluction took place approximately 5200–2000 years ago when a spruce forest existed at the site. This evidence suggests an onset of cooling conditions that continues to the present. After the mid‐Holocene, the spruce treeline began to move south toward its present position. © 2001 John Wiley & Sons, Inc.  相似文献   

2.
We document the Lateglacial to Holocene sedimentation and vegetation history of a small, infilled crater landform in the West‐Eifel Volcanic Field (WEVF; western Germany). We analysed geomorphological landform change, sedimentological and geochronological data, pollen, and plant macrofossils of a 16‐m‐long sediment core from the Eichholz Maar (EHM). The EHM erupted between ~20 and 15 ka ago (MIS 2). Lacustrine siliclastic infilling was completed about 7500 years ago. Lateglacial rates of sedimentation are generally 2 to 5 times higher than in other maar lakes of the WEVF. Local factors, therefore, overprint the relative efficacy of the climate‐controlled variance of sedimentation rates at the Lateglacial/Holocene transition. The predominance of local factors relates to inherent geomorphological process–response mechanisms that were triggered by the EHM eruption. Rapid crater infilling and its completion by the mid‐Holocene are attributed to a combination of small storage capacity and geomorphological activity. A late Boreal interval of significant lake‐level fall can, however, be attributed to a period of continental‐scale climate change as recorded in other European lacustrine settings. Our findings highlight the importance of utilizing geomorphological information to reveal the relative significance of local controls as opposed to climate control when investigating small‐sized lake settings with active sediment supply systems.  相似文献   

3.
《Applied Geochemistry》1991,6(6):597-612
A small (4 km2) drainage basin in northeastern Washington contains highly uraniferous groundwater and highly uraniferous peaty sediments of Holocene age. The U is derived from granitic bedrock that underlies the entire drainage basin and that contains 9–16 ppm U. This local bedrock was studied by petrographic, chemical and isotopic methods to determine conditions of its petrogenesis and post-emplacement history that may have contributed to its present high U content and source-rock capability. The original magma was derived by anatexis of Precambrian continental crust of probable mixed metaigneous and metasedimentary character. Mineral-melt partitioning controlled the enrichment of U in chemically evolved phases of the crystallizing melt. Following emplacement in the upper crust at ∼100Ma, the pluton interacted with meteoric-hydrothermal water at ambient temperatures 300°C. Locally intense fracturing promoted alteration, and fracturing and alteration probably continued during later regional uplift in the Eocene. Regional uplift was followed by low-temperature alteration and weathering in the middle to late Tertiary. The combined result of hydrothermal alteration and low-temperature alteration and weathering was the redistribution of U from primary mineral hosts such as allanite to new sites on fracture surfaces and in secondary minerals such as hematite. Zones of highly fractured and altered rock show the most obvious evidence of this process. A model is proposed in which high-angle fractures beneath the drainage basin were the sites of Tertiary supergene enrichments of U. Recent glacio-isostatic uplift has elevated these older enriched zones to shallow levels where they are now being leached by oxidizing groundwater. The chemistry, mineralogy, texture and geological history of this U source-rock suggest criteria for locating other granitic terrane that may contain uraniferous waters and associated young surficial U deposits. The details of U distribution and mobility at this site also apply to the general topic of U mobility in granitic rocks.  相似文献   

4.
Umhlatuzana rockshelter is known for its continuous record of Middle and Later Stone Age lithic assemblages. This study presents multiproxy geoarchaeological data (micromorphology, X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy) to reconstruct the depositional and post-depositional history of the site. Although the Stone Age deposits macroscopically appear homogeneous, micromorphological analysis reveals the existence of primary, unaltered depositional microlayering throughout the sequence. Sediments related to combustion activities on-site are observed in both the Holocene and Pleistocene deposits. Post-depositional geochemical alterations result in the formation of several phosphatic minerals that significantly affect the site's preservation conditions. One of those is vashegyite, a rare magnesium phosphate mineral related to acidic and moist sedimentary environments. Bioturbation features are prominent at the microscale, but sediment mixing does not seem to affect the vertical distribution of the artifacts. The observation of horizontal microlayering in both the Pleistocene and Holocene illuminates the dominant mechanism of sedimentation throughout the site's 70,000-year occupational history. It moreover shows that the lithics can be analysed as coherent assemblages.  相似文献   

5.
Changing river courses and fluctuations of the water table were some of the most fundamental environmental changes that humans faced during the Late Glacial, particularly as these changes affected areas intensively used for settlement and resource exploitation. Unfortunately, only a few stratigraphies have been documented in the North European plain that show the interaction between river development, vegetation history, and occupation by Late Palaeolithic humans. Here, we present the results of detailed stratigraphical studies (pedology, archaeology, chrono‐, tephra‐, and palynostratigraphy) at the Federmesser site Grabow 15 located in the broad Elbe River valley. The research aimed to produce a model of site formation based on a multiproxy approach, relating the local evidence to the palaeoenvironmental and settlement history of the wider region. After deposition of fluvial sands during the Late Pleniglacial in a braided setting, the river course developed locally toward a meandering system at the transition from the Older Dryas to the Allerød, while periodic flooding led to the deposition of floodplain sediments during the early Allerød. The floodplain was settled by people of the earliest “Federmessergruppen,” who are believed to have chosen this open floodplain area along the river for collecting and processing amber of local origin. Their artifacts became embedded in the aggrading floodplain sediments. In the late Allerød, floodplain sedimentation ceased and a Fluvisol‐type soil developed, indicating a trend toward geomorphic stability. The Fluvisol was then covered by silty floodplain sediments due to a rising water level during the late Younger Dryas resulting in the cessation of human occupation in the area. Subsequent organic‐rich Late Glacial/Holocene sediments preserved the settlement remains to the present.  相似文献   

6.
This paper presents the history and cryostratigraphy of the upper permafrost in the High‐Arctic Adventdalen Valley, central Svalbard. Nineteen frozen sediment cores, up to 10.7 m long, obtained at five periglacial landforms, were analysed for cryostructures, ice, carbon and solute contents, and grain‐size distribution, and were 14C‐ and OSL‐dated. Spatial variability in ice and carbon contents is closely related to the sedimentary history and mode of permafrost aggradation. In the valley bottom, saline epigenetic permafrost with pore ice down to depths of 10.7 m depth formed in deltaic sediments since the mid‐Holocene; cryopegs were encountered below 6 m. In the top 1 to 5 m, syngenetic and quasi‐syngenetic permafrost with microlenticular, lenticular, suspended and organic‐matrix cryostructures developed due to loess and alluvial sedimentation since the colder late Holocene, which resulted in the burial of organic material. At the transition between deltaic sediments and loess, massive ice bodies occurred. A pingo developed where the deltaic sediments reached the surface. On hillslopes, suspended cryostructure on solifluction sheets indicates quasi‐syngenetic permafrost aggradation; lobes, in contrast, were ice‐poor. Suspended cryostructure in eluvial deposits reflects epigenetic or quasi‐syngenetic permafrost formation on a weathered bedrock plateau. Landform‐scale spatial variations in ground ice and carbon relate to variations in slope, sedimentation rate, moisture conditions and stratigraphy. Although the study reveals close links between Holocene landscape evolution and permafrost history, our results emphasize a large uncertainty in using terrain surface indicators to infer ground‐ice contents and upscale from core to landform scale in mountainous permafrost landscapes.  相似文献   

7.
The history of sea‐level change and sediment accumulation since the last deglaciation along the German North Sea coast is still controversial because of a limitation in the quantity and quality of chronological data. In the current study, the chronology of a 16‐ka coastal sedimentary record from the Garding‐2 core, retrieved from the Eiderstedt Peninsula in Schleswig‐Holstein, northern Germany, was established using OSL and AMS 14C dating techniques. The robust chronology using 14 radiocarbon and 25 OSL dates from the Garding‐2 core is the first long‐term record that covers the Holocene as well as the last deglaciation period in one succession in the German North Sea area. It provides a new insight into understanding the Holocene transgression and coastal accumulation histories. The combined evidence from the sedimentology and chronology investigations indicates that an estuarine environment dominated in Eiderstedt Peninsula from 16 to 13 ka, followed by a depositional hiatus between 13 and 8.3 ka, attributed to erosion caused by the Holocene transgression; the onset of the Holocene transgression at the core site occurred at around 8.3 ka. The sea level continued to rise with a decelerated rate until around 3 ka. Since 3 ka, the shoreline has begun to prograde. Foreshore (tidal flat) sediments have been deposited at the drilling site with a very high sedimentation rate of about 10 m ka?1. At around 2 ka, a sandy beach deposit accumulated in the sedimentary succession, indicating that the coastline shifted landward, which may represent a small‐scale transgression in the late Holocene. At around 1.5 ka, terrestrial clastic sediment started to accumulate, indicating a retreat of the relative sea level in this area, which may be related to local diking activities undertaken since the 11th century.  相似文献   

8.
Outcrops and cored/counter‐flushed boreholes in the coastal area between Espinho and Aveiro (north‐west Portugal) were investigated to reconstruct the changing patterns of sedimentation during the Late Pleistocene–Holocene. To obtain a common comparison basis, the grain‐size data from outcrop and borehole samples were analysed. The outcrops and the cored parts of the boreholes were dated by radiocarbon and optically stimulated luminescence. The results show that, on top of pebble‐rich beds of fluvial origin, a wet aeolian dune and interdune environment was active during the later part of the Pleistocene, turning to dry aeolian at the transition to the Holocene. The data indicate also that aeolian accumulation was controlled by vegetation changes (climate) and groundwater table fluctuations. During the Holocene, a podzol formed on the Pleistocene dunes and extensive vegetation precluded major aeolian accumulations. Remobilization of sand started again because of human deforestation and – last but not least – the Little Ice Age.  相似文献   

9.
Channel‐scale sedimentary units associated with bedrock‐controlled riffle‐pool morphology are examined in detail along Sandy Creek gorge, an ephemeral stream in arid south‐eastern central Australia. Pool‐fills comprise cut‐and‐fill assemblages of poorly sorted sediments ranging in texture from muds to boulders. Five unit types are defined based on particle size, sedimentary structures, geometry and bounding surface character: (1) coarse‐grained bar platform; (2) fine‐grained bar supraplatform; (3) fine‐grained pool‐fill; (4) fine‐grained bench; and (5) modern pool‐fill. The last coarse‐grained unit currently lining the pools suggests an altered sedimentation style over the post‐settlement period (post‐ad 1860s). Situated at bedrock valley constrictions, pool‐fills are compared with other sedimentary units associated with recirculating currents: eddy bars and slackwater deposits. But only the fine‐grained bench units reflect eddy recirculation; the pool‐fills are principally forced‐bars associated with bedrock‐controlled or ‘forced’ riffle‐pool morphology. A late Holocene palaeoflood history is proposed based on radiocarbon ages from the pool‐fills: multiple phases of cut‐and‐fill activity were preceded by a superflood 3400–1900 years ago that eroded the pool‐fills to bedrock. The resilience of the pool‐fills was illustrated by the passage of a 1‐in‐100‐year flood in 1992, which caused only minor erosion. The presence of pool‐fills may provide a window to past phases of river activity that cannot be extracted from either historical records/observations or palaeoflood slackwater sediment analyses. The formation and sedimentary preservation potential of these landforms reflect a combination of hydraulic and structural influences, but the occurrence of high‐magnitude floods exerts the dominant control.  相似文献   

10.
S.J. MAZZULLO 《Sedimentology》2006,53(5):1015-1047
Lithostratigraphy, depositional facies architecture, and diagenesis of upper Pliocene to Holocene carbonates in northern Belize are evaluated based on a ca 290 m, continuous section of samples from a well drilled on Ambergris Caye that can be linked directly to outcrops of Pleistocene limestone, and of overlying Holocene sediments. Upper Pliocene outer‐ramp deposits are overlain unconformably by Pleistocene and Holocene reef‐rimmed platforms devoid of lowstand siliciclastics. Tectonism controlled the location of the oldest Pleistocene platform margin and coralgal barrier reef, and periodically affected deposition in the Holocene. A shallow, flat‐topped, mostly aggradational platform was maintained in the Holocene by alternating periods of highstand barrier‐reef growth and lowstand karstification, differential subsidence, and the low magnitude of accommodation space increases during highstands. Facies in Pleistocene rocks to the lee of the barrier reef include: (i) outer‐shelf coralgal sands with scattered coral patch reefs; (ii) a shoal–water transition zone comprising nearshore skeletal and oolitic sands amidst scattered islands and tidal flats; and (iii) micritic inner‐shelf deposits. Four glacio‐eustatically forced sequences are recognized in the Pleistocene section, and component subtidal cycles probably include forced cycles and autocycles. Excluding oolites, Holocene facies are similar to those in the Pleistocene and include mud‐mounds, foraminiferal sand shoals in the inner shelf, and within the interiors of Ambergris and surrounding cayes, mangrove swamps, shallow lagoons, and tidal and sea‐marginal flats. Meteoric diagenesis of Pliocene and Pleistocene rocks is indicated by variable degrees of mineralogic stabilization, generally depleted whole‐rock δ18O and δ13C values, and meniscus and whisker‐crystal cements. Differences in the mineralogy and geochemistry of the Pliocene and Pleistocene rocks are attributed to variable extent of meteoric alteration. Dolomitization in the Pliocene carbonates may have begun syndepositionally and continued into the marine shallow‐burial environment. Positive dolomite δ18O and δ13C values suggest precipitation from circulating, near‐normal marine fluids that probably were modified somewhat by methanogenesis. Sedimentologic and diagenetic attributes of the Pliocene–Pleistocene rocks in the study area are similar to those in the Bahamas with which they share a common history of sea‐level fluctuations and climate change.  相似文献   

11.
Physical properties, grain size, bulk mineralogy, elemental geochemistry and magnetic parameters of three sediment piston cores recovered in the Laurentian Channel from its head to its mouth were investigated to reconstruct changes in detrital sediment provenance and transport related to climate variability since the last deglaciation. The comparison of the detrital proxies indicates the succession of two sedimentary regimes in the Estuary and Gulf of St. Lawrence (EGSL) during the Holocene, which are associated with the melting history of the Laurentide Ice Sheet (LIS) and relative sea‐level changes. During the early Holocene (10–8.5 cal. ka BP), high sedimentation rates together with mineralogical, geochemical and magnetic signatures indicate that sedimentation in the EGSL was mainly controlled by meltwater discharges from the local retreat of the southeastern margin of the LIS on the Canadian Shield. At this time, sediment‐laden meltwater plumes caused the accumulation of fine‐grained sediments in the ice‐distal zones. Since the mid‐Holocene, postglacial movements of the continental crust, related to the withdrawal of the LIS (c. 6 cal. ka BP), have triggered significant variations in relative sea level (RSL) in the EGSL. The significant correlation between the RSL curves and the mineralogical, geochemical, magnetic and grain‐size data suggest that the RSL was the dominant force acting on the sedimentary dynamics of the EGSL during the mid‐to‐late Holocene. Beyond 6 cal. ka BP, characteristic mineralogical, geochemical, magnetic signatures and diffuse spectral reflectance data suggest that the Canadian Maritime Provinces and western Newfoundland coast are the primary sources for detrital sediments in the Gulf of St. Lawrence, with the Canadian Shield acting as a secondary source. Conversely, in the lower St. Lawrence Estuary, detrital sediments are mainly supplied by the Canadian Shield province. Finally, our results suggest that the modern sedimentation regime in the EGSL was established during the mid‐Holocene.  相似文献   

12.
13.
Understanding loess sedimentation rates is crucial for constraining past atmospheric dust dynamics, regional climatic change and local depositional environments. However, the derivation of loess sedimentation rates is complicated by the lack of available methods for independent calculation; this limits interpretation of the environmental changes revealed by the loess record. In particular, while the Quaternary/Neogene Chinese loess and Red Clay sequences have the potential to provide detailed records of past sedimentation and climate change, there is great uncertainty concerning: (i) the influences on sediment grain‐size and accumulation; and (ii) their relationship through time and across the depositional region. This uncertainty has led to the widespread use of assumptions concerning the relationship between sedimentation rate and grain‐size in order to derive age models and climate reconstructions. To address this uncertainty, detailed independent age models, based on optically stimulated luminescence dating, undertaken at 10 to 40 cm intervals at five sections across the Loess Plateau in China, have been used to calculate sedimentation rates and make comparisons with grain‐size changes over the late Pleistocene and Holocene. The results demonstrate that sedimentation rates are site specific, extremely variable over millennial timescales and that this variation is often not reflected in grain‐size changes. In the central part of the Loess Plateau, the relationship between grain‐size and sedimentation rate appears most complex, suggesting an interplay between local conditions at source and sink and a changing emplacement mechanism. This observation further undermines the common use of loess sedimentation age models that rely on a derived relationship between grain‐size and sedimentation rate from a type section. The results also highlight the difficulty in assigning specific environmental causes to sedimentation rate changes and, to a lesser extent, grain‐size shifts.  相似文献   

14.
Controlled by a local base level of downfaulted Edwards and Comanche Peak limestone, and aided by landsliding in Glen Rose marl, the Sabinal River and its tributaries have developed a large valley in the Edwards Plateau. Extensive soil-covered pediments that cut Glen Rose bedrock and Pleistocene terrace gravels are present along each side of the valley. Six alluvial deposits of late Pleistocene and Holocene age were recognized in the upper Sabinal River valley. The Holocene series is represented by three deposits. The oldest of these exhibits a Stage II calcic horizon and appears to have been deposited before ca. 5000 yr B.P. The Pleistocene deposits have a calcrete zone (calcic Stage IV and III horizon) in the upper 3-4 m. The Holocene alluviums, locally beveled by stream action, parallel the river's course and contain Archaic and younger artifacts, which in central Texas range in age from about 8000-350 yr B.P. One of the Holocene deposits (Q2) is correlated with the Georgetown and Fort Hood alluviums of the Cowhouse Creek at Fort Hood, which range in age from 11,000 yr B.P. to 5200 yr B.P., with the Wilson-Leonard terrace site in the Lampasas Cut Plain that ranges from about 11,000 to 5000 yr B.P., and with Unit E of Blum and Valastro (1989) in the Pedernales River valley, ranging from 10,550 to 7150 yr B.P. Modern climate in the valley is drought-prone, and fluctuates from semiarid to dry subhumid. Paleoclimate has ranged from much drier during the Middle Holocene to much cooler and wetter during the Late Pleistocene.  相似文献   

15.
Jakobshavn Isbræ is one of the largest ice streams in the Greenland Ice Sheet, presently draining c. 6.5% of the Inland Ice. Here we present high‐resolution Chirp and Sparker sub‐bottom profiles from a seismic survey conducted just outside of the Jakobshavn Isfjord, which provides detailed insight into the glacimarine sedimentary history of the Jakobshavn ice stream during the Holocene. We observe acoustically stratified and homogeneous sediments that drape an irregular substratum and were deposited between ~10 and c. 7.6k cal a BP. The stratified lower units are interpreted as the product of ice‐proximal glacimarine sedimentation deposited rapidly when the grounded ice margin was located close to depositional basins on topographic highs. The upper acoustically homogenous units reflect suspension settling of fine‐grained material and gravitational flows that were extruded from an increasingly unstable ice margin as the ice retreated into the fjord. Proximity to the ice margin and bedrock topography were the dominant controls on sediment accumulation during deglaciation although the 8.2‐ka cooling event probably influenced the position of the ice margin at the fjord mouth. The post‐glacial sedimentary record is characterized by glacimarine and hemipelagic rainout with an increased ice‐rafted detritus fraction that records sedimentation following ice stream retreat into Jakobshavn Isfjord sometime after c. 7.8k cal a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Calcrete zones of cemented sands are found repeatedly at beach sites in the Mariana Islands, western Pacific region, with mid‐ to late‐Holocene artifacts and midden sealed within and beneath these layers. Three site‐specific cases demonstrate that the cementation process of the calcareous sand material post‐dated the deposition of artifacts and midden. Archaeological efforts must be prepared for deep excavation through zones of cemented sand. Also, recovery of preserved ancient materials can proceed by excavating large hardened blocks and soaking in light (5%) acid. This knowledge about formation process and recovery technique may prove useful not only in the Mariana Islands but also more broadly in other regions with similar settings. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
An inlier of Jurassic rocks is identified for the first time at the surface of the first terrace above a floodplain composed of Holocene sediments on the left side of the Lena River. It represents a block of Jurassic rocks similar compositionally to rocks in outcrops on the left slope of the river valley. It is shown that the block was displaced along faults in the Holocene. The rocks of the inlier are deformed, and the Paleogene–Neogene sequence covering the plateau (altitude approximately 200 m) is displaced in the stepwise mode to the level corresponding to the bottom of the Lena River valley (altitude approximately 100 m). The Holocene alluvium enveloping the inlier belongs to the constratal type being up to 40 m thick. Steep faceted morphostructures on the left slope of the Lena River valley coincide with the faults. The left slope of the valley is crossed exclusively by young incisions. It is assumed that Holocene movements may be reactivated in the future.  相似文献   

18.
Lithology and Mineral Resources - The results of petrographic, petrogeochemical and isotopic studies of sedimentary rocks obtained from bedrock outcrops of the Alpha–Mendeleev Rise, Arctic...  相似文献   

19.
The Ombrone palaeovalley was incised during the last glacial sea‐level fall and was infilled during the subsequent Late‐glacial to Holocene transgression. A detailed sedimentological and stratigraphic study of two cores along the palaeovalley axis led to reconstruction of the post‐Last Glacial Maximum valley‐fill history. Stratigraphic correlations show remarkable similarity in the Late‐glacial to early‐Holocene succession, but discrepancy in the Holocene portion of the valley fill. Above the palaeovalley floor, about 60 m below sea‐level, Late‐glacial sedimentation is recorded by an unusually thick alluvial succession dated back to ca 18 cal kyr bp . The Holocene onset was followed by the retrogradational shift from alluvial to coastal facies. In seaward core OM1, the transition from inner to outer estuarine environments marks the maximum deepening of the system. By comparison, in landward core OM2, the emplacement of estuarine conditions was interrupted by renewed continental sedimentation. Swamp to lacustrine facies, stratigraphically equivalent to the fully estuarine facies of core OM1, represent the proximal expression of the maximum flooding zone. This succession reflects location in a confined segment of the valley, just landward of the confluence with a tributary valley. It is likely that sudden sediment input from the tributary produced a topographic threshold, damming the main valley course and isolating its landward segment from the sea. The seaward portion of the Ombrone palaeovalley presents the typical estuarine backfilling succession of allogenically controlled incised valleys. In contrast, in the landward portion of the system, local dynamics completely overwhelmed the sea‐level signal, following marine ingression. This study highlights the complexity of palaeovalley systems, where local morphologies, changes in catchment areas, drainage systems and tributary valleys may produce facies patterns significantly different from the general stratigraphic organization depicted by traditional sequence‐stratigraphic models.  相似文献   

20.
Investigation of chemical and physical weathering of bedrock and alluvial sediment in the Anza Borrego Desert, California, sheds light on weathering processes in hot‐arid systems and clarifies interpretations of climate from alluvial sediment. All of the alluvial sediment in the study area emanates from Cretaceous tonalite of the Peninsular Range, enabling exploration of the effects of external variables – climate, transport distance and tectonics – on the physical and chemical properties of the sediment. Chemical weathering in this area is dominated by plagioclase alteration observed in both bedrock outcrops and sediment, evinced most clearly by changes in the Eu anomaly. Biotite chemical weathering, manifested by interlayer K+ loss, is not evident in bedrock, but clearly observed in the sediment. Despite the weak intensity of chemical weathering (Chemical Index of Alteration = 56 to 62), fine‐grained (<63 μm) sediment displays a clear weathering trend in A–CN–K space and contains up to 25% clay minerals. Physical abrasion and grain‐size reduction in biotite during transport predominates in the sediment, whereas physical (insolation) weathering affecting bedrock is inferred from estimates of differential thermal expansion of mineral phases in response to extreme temperature changes in the study area. Chemical alteration and Brunauer–Emmett–Teller surface area both increase within the active Elsinore fault zone at the distal end of the depositional transect, reflecting tectonic‐induced fracturing and associated accelerated weathering. Extensive fracturing, together with a more humid Pleistocene climate, probably facilitated in situ bedrock weathering, preceding arid alluvial deposition in the Holocene. This study demonstrates that both climate and tectonic processes can affect chemical and physical weathering, resulting in alteration of plagioclase, leaching of K+ from biotite in the sediment and formation of clay minerals, even in hot, arid systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号