首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A simple and accurate traveltime approximation is important in many applications in seismic data processing, inversion and modelling stages. Generalized moveout approximation is an explicit equation that approximates reflection traveltimes in general two-dimensional models. Definition of its five parameters can be done from properties of finite offset rays, for general models, or by explicit calculation from model properties, for specific models. Two versions of classical finite-offset parameterization for this approximation use traveltime and traveltime derivatives of two rays to define five parameters, which makes them asymmetrical. Using a third ray, we propose a balance between the number of rays and the order of traveltime derivatives. Our tests using different models also show the higher accuracy of the proposed method. For acoustic transversely isotropic media with a vertical symmetry axis, we calculate a new moveout approximation in the generalized moveout approximation functional form, which is explicitly defined by three independent parameters of zero-offset two-way time, normal moveout velocity and anellipticity parameter. Our test shows that the maximum error of the proposed transversely isotropic moveout approximation is about 1/6 to 1/8 of that of the moveout approximation that had been reported as the most accurate approximation in these media. The higher accuracy is the result of a novel parameterization that do not add any computational complexity. We show a simple example of its application on synthetic seismic data.  相似文献   

2.
I introduce a new explicit form of vertical seismic profile (VSP) traveltime approximation for a 2D model with non‐horizontal boundaries and anisotropic layers. The goal of the new approximation is to dramatically decrease the cost of time calculations by reducing the number of calculated rays in a complex multi‐layered anisotropic model for VSP walkaway data with many sources. This traveltime approximation extends the generalized moveout approximation proposed by Fomel and Stovas. The new equation is designed for borehole seismic geometry where the receivers are placed in a well while the sources are on the surface. For this, the time‐offset function is presented as a sum of odd and even functions. Coefficients in this approximation are determined by calculating the traveltime and its first‐ and second‐order derivatives at five specific rays. Once these coefficients are determined, the traveltimes at other rays are calculated by this approximation. Testing this new approximation on a 2D anisotropic model with dipping boundaries shows its very high accuracy for offsets three times the reflector depths. The new approximation can be used for 2D anisotropic models with tilted symmetry axes for practical VSP geometry calculations. The new explicit approximation eliminates the need of massive ray tracing in a complicated velocity model for multi‐source VSP surveys. This method is designed not for NMO correction but for replacing conventional ray tracing for time calculations.  相似文献   

3.
The numerical tracing of short ray segments and interpolation of new rays between these ray segments are central constituents of the wavefront construction method. In this paper the details of the ray tracing and ray-interpolation procedures are described. The ray-tracing procedure is based on classical ray theory (high-frequency approximation) and it is both accurate and efficient. It is able to compute both kinematic and dynamic parameters at the endpoint of the ray segments, given the same set of parameters at the starting point of the ray. Taylor series are used to approximate the raypath so that the kinematic parameters (new position and new ray tangent) may be found, while a staggered finite-difference approximation gives the dynamic parameters (geometrical spreading). When divergence occurs in some parts of the wavefront, new rays are interpolated. The interpolation procedure uses the kinematic and dynamic parameters of two parent rays to estimate the initial parameters of a new ray on the wavefront between the two rays. Third-order (cubic) interpolation is used for interpolation of position, ray tangent and take-off vector from the source) while linear interpolation is used for the geometrical spreading parameters.  相似文献   

4.
Traveltime computation by wavefront-orientated ray tracing   总被引:1,自引:0,他引:1  
For multivalued traveltime computation on dense grids, we propose a wavefront‐orientated ray‐tracing (WRT) technique. At the source, we start with a few rays which are propagated stepwise through a smooth two‐dimensional (2D) velocity model. The ray field is examined at wavefronts and a new ray might be inserted between two adjacent rays if one of the following criteria is satisfied: (1) the distance between the two rays is larger than a predefined threshold; (2) the difference in wavefront curvature between the rays is larger than a predefined threshold; (3) the adjacent rays intersect. The last two criteria may lead to oversampling by rays in caustic regions. To avoid this oversampling, we do not insert a ray if the distance between adjacent rays is smaller than a predefined threshold. We insert the new ray by tracing it from the source. This approach leads to an improved accuracy compared with the insertion of a new ray by interpolation, which is the method usually applied in wavefront construction. The traveltimes computed along the rays are used for the estimation of traveltimes on a rectangular grid. This estimation is carried out within a region bounded by adjacent wavefronts and rays. As for the insertion criterion, we consider the wavefront curvature and extrapolate the traveltimes, up to the second order, from the intersection points between rays and wavefronts to a gridpoint. The extrapolated values are weighted with respect to the distances to wavefronts and rays. Because dynamic ray tracing is not applied, we approximate the wavefront curvature at a given point using the slowness vector at this point and an adjacent point on the same wavefront. The efficiency of the WRT technique is strongly dependent on the input parameters which control the wavefront and ray densities. On the basis of traveltimes computed in a smoothed Marmousi model, we analyse these dependences and suggest some rules for a correct choice of input parameters. With suitable input parameters, the WRT technique allows an accurate traveltime computation using a small number of rays and wavefronts.  相似文献   

5.
Introduction The calculation of seismic wave traveltimes is a basic and the most important step in tomo-graphy, seismic wave forward modeling and Kirchhoff prestack depth migration. Limitations withtraditional ray tracing fall into four categories. a) Analytical methods can only realize ray tracingfor simply varying velocity fields, so they have relative small applied-range; b) Shooting methodsof ray tracing can cause shadow zones. When the shadow zones exist the method will invalid; c)…  相似文献   

6.
Offset continuation (OCO) is a seismic configuration transform designed to simulate a seismic section as if obtained with a certain source-receiver offset using the data measured with another offset. Since OCO is dependent on the velocity model used in the process, comparison of the simulated section to an acquired section allows for the extraction of velocity information. An algorithm for such a horizon-oriented velocity analysis is based on so-called OCO rays. These OCO rays describe the output point of an OCO as a function of the Root Mean Square (RMS) velocity. The intersection point of an OCO ray with the picked traveltime curve in the acquired data corresponding to the output half-offset defines the RMS velocity at that position. We theoretically relate the OCO rays to the kinematic properties of OCO image waves that describe the continuous transformation of the common-offset reflection event from one offset to another. By applying the method of characteristics to the OCO image-wave equation, we obtain a raytracing-like procedure that allows to construct OCO trajectories describing the position of the OCO output point under varying offset. The endpoints of these OCO trajectories for a single input point and different values of the RMS velocity form then the OCO rays. A numerical example demonstrates that the developed ray-tracing procedure leads to reliable OCO rays, which in turn provide high-quality RMS velocities. The proposed procedure can be carried out fully automatically, while conventional velocity analysis needs human intervention. Moreover, since velocities are extracted using offset sections, more redundancy is available or, alternatively, OCO velocities can be studied as a function of offset.  相似文献   

7.
Large-offset approximation to seismic reflection traveltimes   总被引:4,自引:0,他引:4  
Conventional approximations of reflection traveltimes assume a small offset-to-depth ratio, and their accuracy decreases with increasing offset-to-depth ratio. Hence, they are not suitable for velocity analysis and stacking of long-offset reflection seismic data. Assuming that the offset is large, rather than small, we present a new traveltime approximation which is exact at infinite offset and has a decreasing accuracy with decreasing offset-to-depth ratio. This approximation has the form of a series containing powers of the offset from 1 to −∞. It is particularly accurate in the presence of a thin high-velocity layer above the reflector, i.e. in a situation where the accuracy of the Taner and Koehler series is poor. This new series can be used to gain insight into the velocity information contained in reflection traveltimes at large offsets, and possibly to improve velocity analysis and stacking of long-offset reflection seismic data.  相似文献   

8.
A new ray-tracing method called linear traveltime interpolation (LTI) is proposed. This method computes traveltimes and raypaths in a 2D velocity structure more rapidly and accurately than other conventional methods. The LTI method is formulated for a 2D cell model, and calculations of traveltimes and raypaths are carried out only on cell boundaries. Therefore a raypath is considered to be always straight in a cell with uniform velocity. This approach is suitable to tomography analysis. The algorithm of LTI consists of two separate steps: step 1 calculates traveltimes on all cell boundaries; step 2 traces raypaths for all pairs of receivers and the shot. A traveltime at an arbitrary point on a cell boundary is assumed to be linearly interpolated between traveltimes at the adjacent discrete points at which we calculate traveltimes. Fermat's principle is used as the criterion for choosing the correct traveltimes and raypaths from several candidates routinely. The LTI method has been compared numerically with the shooting method and the finite-difference method (FDM) of the eikonal equation. The results show that the LTI method has great advantages of high speed and high accuracy in the calculation of both traveltimes and raypaths. The LTI method can be regarded as an advanced version of the conventional FDM of the eikonal equation because the formulae of FDM are independently derived from LTI. In the process of derivation, it is shown theoretically that LTI is more accurate than FDM. Moreover in the LTI method, we can avoid the numerical instability that occurs in Vidale's method where the velocity changes abruptly.  相似文献   

9.
Parameters in a stack of homogeneous anelastic layers are estimated from seismic data, using the amplitude versus offset (AVO) variations and the travel-times. The unknown parameters in each layer are the layer thickness, the P-wave velocity, the S-wave velocity, the density and the quality factor. Dynamic ray tracing is used to solve the forward problem. Multiple reflections are included, but wave-mode conversions are not considered. The S-wave velocities are estimated from the PP reflection and transmission coefficients. The inverse problem is solved using a stabilized least-squares procedure. The Gauss-Newton approximation to the Hessian matrix is used, and the derivatives of the dynamic ray-tracing equation are calculated analytically for each iteration. A conventional velocity analysis, the common mid-point (CMP) stack and a set of CMP gathers are used to identify the number of layers and to establish initial estimates for the P-wave velocities and the layer thicknesses. The inversion is carried out globally for all parameters simultaneously or by a stepwise approach where a smaller number of parameters is considered in each step. We discuss several practical problems related to inversion of real data. The performance of the algorithm is tested on one synthetic and two real data sets. For the real data inversion, we explained up to 90% of the energy in the data. However, the reliability of the parameter estimates must at this stage be considered as uncertain.  相似文献   

10.
11.
Ray theories are a class of methods often chosen to compute synthetic seismograms due to their efficiency and ability to deal with complex, three-dimensional inhomogeneous media. To deal with the large number of rays needed to compute synthetic seismograms, a ray generation algorithm is given which is capable of generating a numerical code describing each ray. The code describes a subset of all possible rays by considering only pre-critical reflections. In a horizontally plane-layered medium the generation of rays and computation of amplitudes and traveltimes can be efficiently accomplished by grouping the rays into reflection order and dynamic analogue groups. Expressions summing all unconverted rays and rays with a single mode conversion are given for source and receiver located at arbitrary positions within the medium. Examples of zero-offset synthetic VSPs obtained by this method are given.  相似文献   

12.
Converted waves require special data processing as the wave paths are asymmetrical. The CMP concept is not applicable for converted PS waves, instead a sorting algorithm for a common conversion point (CCP) has to be applied. The coordinates of the conversion points in a single homogeneous layer can be calculated as a function of the offset, the reflector depth and the velocity ratio vP/ vs. For multilayered media, an approximation for the coordinates of the conversion points can be made. Numerical tests show that the traveltime of PS reflections can be approximated with sufficient accuracy for a certain offset range by a two-term series truncation. Therefore NMO corrections can be calculated by standard routines which use the hyperbolic approximation of the reflection traveltime curves. The CCP-stacking technique has been applied to field data which have been generated by three vertical vibrators. The in-line horizontal components have been recorded. The static corrections have been estimated from additional P- and SH-wave measurements for the source and geophone locations, respectively. The data quality has been improved by processes such as spectral balancing. A comparison with the stacked results of the corresponding P- and SH-wavefield surveys shows a good coherency of structural features in P-, SH- and PS-time sections.  相似文献   

13.
The 4 × 4 T -propagator matrix of a 3D central ray determines, among other important seismic quantities, second-order (parabolic or hyperbolic) two-point traveltime approximations of certain paraxial rays in the vicinity of the known central ray through a 3D medium consisting of inhomogeneous isotropic velocity layers. These rays result from perturbing the start and endpoints of the central ray on smoothly curved anterior and posterior surfaces. The perturbation of each ray endpoint is described only by a two-component vector. Here, we provide parabolic and hyperbolic paraxial two-point traveltime approximations using the T -propagator to feature a number of useful 3D seismic models, putting particular emphasis on expressing the traveltimes for paraxial primary reflected rays in terms of hyperbolic approximations. These are of use in solving several forward and inverse seismic problems. Our results simplify those in which the perturbation of the ray endpoints upon a curved interface is described by a three-component vector. In order to emphasize the importance of the hyperbolic expression, we show that the hyperbolic paraxial-ray traveltime (in terms of four independent variables) is exact for the case of a primary ray reflected from a planar dipping interface below a homogeneous velocity medium.  相似文献   

14.
Common‐midpoint moveout of converted waves is generally asymmetric with respect to zero offset and cannot be described by the traveltime series t2(x2) conventionally used for pure modes. Here, we present concise parametric expressions for both common‐midpoint (CMP) and common‐conversion‐point (CCP) gathers of PS‐waves for arbitrary anisotropic, horizontally layered media above a plane dipping reflector. This analytic representation can be used to model 3D (multi‐azimuth) CMP gathers without time‐consuming two‐point ray tracing and to compute attributes of PS moveout such as the slope of the traveltime surface at zero offset and the coordinates of the moveout minimum. In addition to providing an efficient tool for forward modelling, our formalism helps to carry out joint inversion of P and PS data for transverse isotropy with a vertical symmetry axis (VTI media). If the medium above the reflector is laterally homogeneous, P‐wave reflection moveout cannot constrain the depth scale of the model needed for depth migration. Extending our previous results for a single VTI layer, we show that the interval vertical velocities of the P‐ and S‐waves (VP0 and VS0) and the Thomsen parameters ε and δ can be found from surface data alone by combining P‐wave moveout with the traveltimes of the converted PS(PSV)‐wave. If the data are acquired only on the dip line (i.e. in 2D), stable parameter estimation requires including the moveout of P‐ and PS‐waves from both a horizontal and a dipping interface. At the first stage of the velocity‐analysis procedure, we build an initial anisotropic model by applying a layer‐stripping algorithm to CMP moveout of P‐ and PS‐waves. To overcome the distorting influence of conversion‐point dispersal on CMP gathers, the interval VTI parameters are refined by collecting the PS data into CCP gathers and repeating the inversion. For 3D surveys with a sufficiently wide range of source–receiver azimuths, it is possible to estimate all four relevant parameters (VP0, VS0, ε and δ) using reflections from a single mildly dipping interface. In this case, the P‐wave NMO ellipse determined by 3D (azimuthal) velocity analysis is combined with azimuthally dependent traveltimes of the PS‐wave. On the whole, the joint inversion of P and PS data yields a VTI model suitable for depth migration of P‐waves, as well as processing (e.g. transformation to zero offset) of converted waves.  相似文献   

15.
Non‐hyperbolic generalised moveout approximation is a powerful tool to approximate the travel‐time function by using information obtained from two rays. The standard approach for parameter selection is using three parameters defined from zero‐offset ray and two parameters obtained from a reference ray. These parameters include the travel time and travel‐time derivatives of different order. The original parameter selection implies more fit at zero offset compared with offset from a reference ray. We propose an alternative approach for parameter selection within the frame of generalised moveout approximation by transferring more fit from the zero offset to a reference ray by changing in parameter selection. The modified approximation is tested against the original one in few analytical model examples, including the multi‐layered model.  相似文献   

16.
The time-domain discrete state-space models for lossless layered media, characterized by equal one-way traveltimes and normal-incidence reflection coefficients, can be formulated in a vector-arithmetic notation. This approach allows the computation of the seismic wavefield for arbitrary source and sensor location and is well suited for implementation on modern array processors. Included is an extension to a vector-arithmetic notation for the computation of synthetic vertical seismic profiles.  相似文献   

17.
为更好地适应复杂构造的地震偏移成像,本文提出了一套快速射线追踪算法和一种高精度的走时外插计算方法.采用线性多步法的预测-校正公式求解射线追踪方程组,与传统的四阶Runge-Kutta法相比,提高了计算效率.在网格节点上的走时计算中,应用一种基于圆台的外插方法,该方法以射线的方向为轴确定圆台,将轴上的走时外插到圆台内的网格节点上.与传统的矩形体外插方法相比,圆台走时外插方法提高了计算精度,且具有更好的稳定性.另外,该方法利用稀疏分布的射线即可获得高精度的走时表,节省计算量,对复杂构造的偏移成像非常有利,尤其是三维偏移.最后通过逆散射偏移成像算例,验证了算法的有效性和适用性.  相似文献   

18.
We describe two practicable approaches for an efficient computation of seismic traveltimes and amplitudes. The first approach is based on a combined finite‐difference solution of the eikonal equation and the transport equation (the ‘FD approach’). These equations are formulated as hyperbolic conservation laws; the eikonal equation is solved numerically by a third‐order ENO–Godunov scheme for the traveltimes whereas the transport equation is solved by a first‐order upwind scheme for the amplitudes. The schemes are implemented in 2D using polar coordinates. The results are first‐arrival traveltimes and the corresponding amplitudes. The second approach uses ray tracing (the ‘ray approach’) and employs a wavefront construction (WFC) method to calculate the traveltimes. Geometrical spreading factors are then computed from these traveltimes via the ray propagator without the need for dynamic ray tracing or numerical differentiation. With this procedure it is also possible to obtain multivalued traveltimes and the corresponding geometrical spreading factors. Both methods are compared using the Marmousi model. The results show that the FD eikonal traveltimes are highly accurate and perfectly match the WFC traveltimes. The resulting FD amplitudes are smooth and consistent with the geometrical spreading factors obtained from the ray approach. Hence, both approaches can be used for fast and reliable computation of seismic first‐arrival traveltimes and amplitudes in complex models. In addition, the capabilities of the ray approach for computing traveltimes and spreading factors of later arrivals are demonstrated with the help of the Shell benchmark model.  相似文献   

19.
2D inversion of refraction traveltime curves using homogeneous functions   总被引:1,自引:0,他引:1  
A method using simple inversion of refraction traveltimes for the determination of 2D velocity and interface structure is presented. The method is applicable to data obtained from engineering seismics and from deep seismic investigations. The advantage of simple inversion, as opposed to ray‐tracing methods, is that it enables direct calculation of a 2D velocity distribution, including information about interfaces, thus eliminating the calculation of seismic rays at every step of the iteration process. The inversion method is based on a local approximation of the real velocity cross‐section by homogeneous functions of two coordinates. Homogeneous functions are very useful for the approximation of real geological media. Homogeneous velocity functions can include straight‐line seismic boundaries. The contour lines of homogeneous functions are arbitrary curves that are similar to one another. The traveltime curves recorded at the surface of media with homogeneous velocity functions are also similar to one another. This is true for both refraction and reflection traveltime curves. For two reverse traveltime curves, non‐linear transformations exist which continuously convert the direct traveltime curve to the reverse one and vice versa. This fact has enabled us to develop an automatic procedure for the identification of waves refracted at different seismic boundaries using reverse traveltime curves. Homogeneous functions of two coordinates can describe media where the velocity depends significantly on two coordinates. However, the rays and the traveltime fields corresponding to these velocity functions can be transformed to those for media where the velocity depends on one coordinate. The 2D inverse kinematic problem, i.e. the computation of an approximate homogeneous velocity function using the data from two reverse traveltime curves of the refracted first arrival, is thus resolved. Since the solution algorithm is stable, in the case of complex shooting geometry, the common‐velocity cross‐section can be constructed by applying a local approximation. This method enables the reconstruction of practically any arbitrary velocity function of two coordinates. The computer program, known as godograf , which is based on this theory, is a universal program for the interpretation of any system of refraction traveltime curves for any refraction method for both shallow and deep seismic studies of crust and mantle. Examples using synthetic data demonstrate the accuracy of the algorithm and its sensitivity to realistic noise levels. Inversions of the refraction traveltimes from the Salair ore deposit, the Moscow region and the Kamchatka volcano seismic profiles illustrate the methodology, practical considerations and capability of seismic imaging with the inversion method.  相似文献   

20.
We consider multiply covered traveltimes of first or later arrivals which are gathered along a refraction seismic profile. The two-dimensional distribution of these traveltimes above a coordinate frame generated by the shotpoint axis and the geophone axis or by the common midpoint axis and the offset axis is named a traveltime field. The application of the principle of reciprocity to the traveltime field implies that for each traveltime value with a negative offset there is a corresponding equal value with positive offset. In appendix A procedures are demonstrated which minimize the observational errors of traveltimes inherent in particular traveltime branches or complete common shotpoint sections. The application of the principle of parallelism to an area of the traveltime field associated with a particular refractor can be formulated as a partial differential equation corresponding to the type of the vibrating string. The solution of this equation signifies that the two-dimensional distribution of these traveltimes may be generated by the sum of two one-dimensional functions which depend on the shotpoint coordinate and the geophone coordinate. Physically, these two functions may be interpreted as the mean traveltime branches of the reverse and the normal shot. In appendix B procedures are described which compute these two functions from real traveltime observations by a least-squares fit. The application of these regressed traveltime field data to known time-to-depth conversion methods is straightforward and more accurate and flexible than the use of individual traveltime branches. The wavefront method, the plus-minus method, the generalized reciprocal method and a ray tracing method are considered in detail. A field example demonstrates the adjustment of regressed traveltime fields to observed traveltime data. A time-to-depth conversion is also demonstrated applying a ray tracing method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号